dma-mapping.c 62.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
12
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
13 14
#include <linux/module.h>
#include <linux/mm.h>
15
#include <linux/genalloc.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
22
#include <linux/dma-contiguous.h>
23
#include <linux/highmem.h>
24
#include <linux/memblock.h>
25
#include <linux/slab.h>
26
#include <linux/iommu.h>
27
#include <linux/io.h>
28
#include <linux/vmalloc.h>
29
#include <linux/sizes.h>
30
#include <linux/cma.h>
L
Linus Torvalds 已提交
31

32
#include <asm/memory.h>
33
#include <asm/highmem.h>
L
Linus Torvalds 已提交
34 35
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
36
#include <asm/mach/arch.h>
37
#include <asm/dma-iommu.h>
38 39 40
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
41

42
#include "dma.h"
43 44
#include "mm.h"

45 46 47 48 49 50 51
struct arm_dma_alloc_args {
	struct device *dev;
	size_t size;
	gfp_t gfp;
	pgprot_t prot;
	const void *caller;
	bool want_vaddr;
52
	int coherent_flag;
53 54 55 56 57 58 59 60 61 62
};

struct arm_dma_free_args {
	struct device *dev;
	size_t size;
	void *cpu_addr;
	struct page *page;
	bool want_vaddr;
};

63 64 65
#define NORMAL	    0
#define COHERENT    1

66 67 68 69 70 71
struct arm_dma_allocator {
	void *(*alloc)(struct arm_dma_alloc_args *args,
		       struct page **ret_page);
	void (*free)(struct arm_dma_free_args *args);
};

72 73 74
struct arm_dma_buffer {
	struct list_head list;
	void *virt;
75
	struct arm_dma_allocator *allocator;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
};

static LIST_HEAD(arm_dma_bufs);
static DEFINE_SPINLOCK(arm_dma_bufs_lock);

static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
{
	struct arm_dma_buffer *buf, *found = NULL;
	unsigned long flags;

	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
	list_for_each_entry(buf, &arm_dma_bufs, list) {
		if (buf->virt == virt) {
			list_del(&buf->list);
			found = buf;
			break;
		}
	}
	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
	return found;
}

98 99 100 101 102 103 104 105 106 107 108 109
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
110
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111
		size_t, enum dma_data_direction);
112
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 114
		size_t, enum dma_data_direction);

115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
129
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130
	     unsigned long offset, size_t size, enum dma_data_direction dir,
131
	     unsigned long attrs)
132
{
133
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 135
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 137
}

R
Rob Herring 已提交
138 139
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
140
	     unsigned long attrs)
R
Rob Herring 已提交
141 142 143 144
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
159
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160
		size_t size, enum dma_data_direction dir, unsigned long attrs)
161
{
162
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 164
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
165 166
}

167
static void arm_dma_sync_single_for_cpu(struct device *dev,
168 169 170 171
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
172
	__dma_page_dev_to_cpu(page, offset, size, dir);
173 174
}

175
static void arm_dma_sync_single_for_device(struct device *dev,
176 177 178 179
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
180
	__dma_page_cpu_to_dev(page, offset, size, dir);
181 182 183
}

struct dma_map_ops arm_dma_ops = {
184 185 186
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
187
	.get_sgtable		= arm_dma_get_sgtable,
188 189 190 191 192 193 194 195 196 197 198
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
199
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
200
	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
R
Rob Herring 已提交
201
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
202
				  dma_addr_t handle, unsigned long attrs);
203 204
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
205
		 unsigned long attrs);
R
Rob Herring 已提交
206 207 208 209

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
210
	.mmap			= arm_coherent_dma_mmap,
R
Rob Herring 已提交
211 212 213 214 215 216
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

217 218 219 220 221 222 223 224 225 226 227
static int __dma_supported(struct device *dev, u64 mask, bool warn)
{
	unsigned long max_dma_pfn;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
228
	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		if (warn) {
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
		}
		return 0;
	}

	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
		if (warn)
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 max_dma_pfn + 1);
		return 0;
	}

	return 1;
}

255 256
static u64 get_coherent_dma_mask(struct device *dev)
{
257
	u64 mask = (u64)DMA_BIT_MASK(32);
258 259 260 261 262 263 264 265 266 267 268 269 270

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

271
		if (!__dma_supported(dev, mask, true))
272 273
			return 0;
	}
L
Linus Torvalds 已提交
274

275 276 277
	return mask;
}

278
static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
279 280 281 282 283
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
284 285 286 287 288 289
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
290 291
			if (coherent_flag != COHERENT)
				dmac_flush_range(ptr, ptr + PAGE_SIZE);
292 293 294 295
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
296 297
		if (coherent_flag != COHERENT)
			outer_flush_range(base, end);
298 299
	} else {
		void *ptr = page_address(page);
300
		memset(ptr, 0, size);
301 302 303 304
		if (coherent_flag != COHERENT) {
			dmac_flush_range(ptr, ptr + size);
			outer_flush_range(__pa(ptr), __pa(ptr) + size);
		}
305
	}
306 307
}

308 309 310 311
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
312 313
static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
				       gfp_t gfp, int coherent_flag)
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

329
	__dma_clear_buffer(page, size, coherent_flag);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

347
#ifdef CONFIG_MMU
348

349
static void *__alloc_from_contiguous(struct device *dev, size_t size,
350
				     pgprot_t prot, struct page **ret_page,
351 352
				     const void *caller, bool want_vaddr,
				     int coherent_flag);
353

354 355
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
356
				 const void *caller, bool want_vaddr);
357

358 359 360
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
361
{
362 363 364 365
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
366 367 368
	return dma_common_contiguous_remap(page, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
			prot, caller);
369
}
L
Linus Torvalds 已提交
370

371
static void __dma_free_remap(void *cpu_addr, size_t size)
372
{
373 374
	dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
375 376
}

377
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
378
static struct gen_pool *atomic_pool;
379

380
static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
381 382 383

static int __init early_coherent_pool(char *p)
{
384
	atomic_pool_size = memparse(p, &p);
385 386 387 388
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

389 390 391 392 393
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
394
	BUG_ON(atomic_pool);
395 396 397 398 399

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
400 401
	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool_size = size;
402 403
}

404 405 406
/*
 * Initialise the coherent pool for atomic allocations.
 */
407
static int __init atomic_pool_init(void)
408
{
409
	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
410
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
411 412 413
	struct page *page;
	void *ptr;

414 415 416
	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
	if (!atomic_pool)
		goto out;
417 418 419 420
	/*
	 * The atomic pool is only used for non-coherent allocations
	 * so we must pass NORMAL for coherent_flag.
	 */
421
	if (dev_get_cma_area(NULL))
422
		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
423
				      &page, atomic_pool_init, true, NORMAL);
424
	else
425
		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
426
					   &page, atomic_pool_init, true);
427
	if (ptr) {
428 429 430 431 432 433 434 435 436 437 438
		int ret;

		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
					page_to_phys(page),
					atomic_pool_size, -1);
		if (ret)
			goto destroy_genpool;

		gen_pool_set_algo(atomic_pool,
				gen_pool_first_fit_order_align,
				(void *)PAGE_SHIFT);
439
		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
440
		       atomic_pool_size / 1024);
441 442
		return 0;
	}
443

444 445 446 447
destroy_genpool:
	gen_pool_destroy(atomic_pool);
	atomic_pool = NULL;
out:
448
	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
449
	       atomic_pool_size / 1024);
450 451 452 453 454
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
455
postcore_initcall(atomic_pool_init);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
485
			continue;
486 487 488 489 490 491 492

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
493 494 495 496 497 498 499
		 * Clear previous low-memory mapping to ensure that the
		 * TLB does not see any conflicting entries, then flush
		 * the TLB of the old entries before creating new mappings.
		 *
		 * This ensures that any speculatively loaded TLB entries
		 * (even though they may be rare) can not cause any problems,
		 * and ensures that this code is architecturally compliant.
500 501
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
502
		     addr += PMD_SIZE)
503 504
			pmd_clear(pmd_off_k(addr));

505 506 507
		flush_tlb_kernel_range(__phys_to_virt(start),
				       __phys_to_virt(end));

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
533
				 const void *caller, bool want_vaddr)
534 535
{
	struct page *page;
536
	void *ptr = NULL;
537 538 539 540 541
	/*
	 * __alloc_remap_buffer is only called when the device is
	 * non-coherent
	 */
	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
542 543
	if (!page)
		return NULL;
544 545
	if (!want_vaddr)
		goto out;
546 547 548 549 550 551 552

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

553
 out:
554 555 556 557
	*ret_page = page;
	return ptr;
}

558
static void *__alloc_from_pool(size_t size, struct page **ret_page)
559
{
560
	unsigned long val;
561
	void *ptr = NULL;
562

563
	if (!atomic_pool) {
564
		WARN(1, "coherent pool not initialised!\n");
565 566 567
		return NULL;
	}

568 569 570 571 572 573
	val = gen_pool_alloc(atomic_pool, size);
	if (val) {
		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);

		*ret_page = phys_to_page(phys);
		ptr = (void *)val;
574
	}
575 576

	return ptr;
577 578
}

579 580
static bool __in_atomic_pool(void *start, size_t size)
{
581
	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
582 583
}

584
static int __free_from_pool(void *start, size_t size)
585
{
586
	if (!__in_atomic_pool(start, size))
587 588
		return 0;

589
	gen_pool_free(atomic_pool, (unsigned long)start, size);
590

591 592 593 594
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
595
				     pgprot_t prot, struct page **ret_page,
596 597
				     const void *caller, bool want_vaddr,
				     int coherent_flag)
598 599 600 601
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
602
	void *ptr = NULL;
603 604 605 606 607

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

608
	__dma_clear_buffer(page, size, coherent_flag);
609

610 611 612
	if (!want_vaddr)
		goto out;

613 614 615 616 617 618 619 620 621 622
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
623 624

 out:
625
	*ret_page = page;
626
	return ptr;
627 628 629
}

static void __free_from_contiguous(struct device *dev, struct page *page,
630
				   void *cpu_addr, size_t size, bool want_vaddr)
631
{
632 633 634 635 636 637
	if (want_vaddr) {
		if (PageHighMem(page))
			__dma_free_remap(cpu_addr, size);
		else
			__dma_remap(page, size, PAGE_KERNEL);
	}
638 639 640
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

641
static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
642
{
643 644 645
	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
			pgprot_writecombine(prot) :
			pgprot_dmacoherent(prot);
646 647 648
	return prot;
}

649 650
#define nommu() 0

651
#else	/* !CONFIG_MMU */
652

653 654
#define nommu() 1

655 656
#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
657
#define __alloc_from_pool(size, ret_page)			NULL
658
#define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag)	NULL
659
#define __free_from_pool(cpu_addr, size)			do { } while (0)
660
#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
661
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
662 663 664

#endif	/* CONFIG_MMU */

665 666
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
667
{
668
	struct page *page;
669 670
	/* __alloc_simple_buffer is only called when the device is coherent */
	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
671 672 673 674 675 676 677
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}

678 679 680 681 682 683
static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
				    struct page **ret_page)
{
	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
				     ret_page);
}
684

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
static void simple_allocator_free(struct arm_dma_free_args *args)
{
	__dma_free_buffer(args->page, args->size);
}

static struct arm_dma_allocator simple_allocator = {
	.alloc = simple_allocator_alloc,
	.free = simple_allocator_free,
};

static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
				 struct page **ret_page)
{
	return __alloc_from_contiguous(args->dev, args->size, args->prot,
				       ret_page, args->caller,
700
				       args->want_vaddr, args->coherent_flag);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
}

static void cma_allocator_free(struct arm_dma_free_args *args)
{
	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
			       args->size, args->want_vaddr);
}

static struct arm_dma_allocator cma_allocator = {
	.alloc = cma_allocator_alloc,
	.free = cma_allocator_free,
};

static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
				  struct page **ret_page)
{
	return __alloc_from_pool(args->size, ret_page);
}

static void pool_allocator_free(struct arm_dma_free_args *args)
{
	__free_from_pool(args->cpu_addr, args->size);
}

static struct arm_dma_allocator pool_allocator = {
	.alloc = pool_allocator_alloc,
	.free = pool_allocator_free,
};

static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
				   struct page **ret_page)
{
	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
				    args->prot, ret_page, args->caller,
				    args->want_vaddr);
}

static void remap_allocator_free(struct arm_dma_free_args *args)
{
	if (args->want_vaddr)
		__dma_free_remap(args->cpu_addr, args->size);

	__dma_free_buffer(args->page, args->size);
}

static struct arm_dma_allocator remap_allocator = {
	.alloc = remap_allocator_alloc,
	.free = remap_allocator_free,
};
750 751

static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
752
			 gfp_t gfp, pgprot_t prot, bool is_coherent,
753
			 unsigned long attrs, const void *caller)
754 755
{
	u64 mask = get_coherent_dma_mask(dev);
756
	struct page *page = NULL;
757
	void *addr;
758
	bool allowblock, cma;
759
	struct arm_dma_buffer *buf;
760 761 762 763 764 765
	struct arm_dma_alloc_args args = {
		.dev = dev,
		.size = PAGE_ALIGN(size),
		.gfp = gfp,
		.prot = prot,
		.caller = caller,
766
		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
767
		.coherent_flag = is_coherent ? COHERENT : NORMAL,
768
	};
769

770 771 772 773 774 775 776 777 778 779 780 781
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

782 783
	buf = kzalloc(sizeof(*buf),
		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
784 785 786
	if (!buf)
		return NULL;

787 788 789
	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

790 791 792 793 794 795 796 797
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);
798
	args.gfp = gfp;
799

800
	*handle = DMA_ERROR_CODE;
801 802 803 804 805 806 807 808 809
	allowblock = gfpflags_allow_blocking(gfp);
	cma = allowblock ? dev_get_cma_area(dev) : false;

	if (cma)
		buf->allocator = &cma_allocator;
	else if (nommu() || is_coherent)
		buf->allocator = &simple_allocator;
	else if (allowblock)
		buf->allocator = &remap_allocator;
810
	else
811 812 813
		buf->allocator = &pool_allocator;

	addr = buf->allocator->alloc(&args, &page);
814

815 816 817
	if (page) {
		unsigned long flags;

818
		*handle = pfn_to_dma(dev, page_to_pfn(page));
819
		buf->virt = args.want_vaddr ? addr : page;
820 821 822 823 824 825 826

		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
		list_add(&buf->list, &arm_dma_bufs);
		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
	} else {
		kfree(buf);
	}
827

828
	return args.want_vaddr ? addr : page;
829
}
L
Linus Torvalds 已提交
830 831 832 833 834

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
835
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
836
		    gfp_t gfp, unsigned long attrs)
L
Linus Torvalds 已提交
837
{
838
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
839

R
Rob Herring 已提交
840
	return __dma_alloc(dev, size, handle, gfp, prot, false,
841
			   attrs, __builtin_return_address(0));
R
Rob Herring 已提交
842 843 844
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
845
	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
R
Rob Herring 已提交
846
{
847
	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
848
			   attrs, __builtin_return_address(0));
L
Linus Torvalds 已提交
849 850
}

851
static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
852
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
853
		 unsigned long attrs)
L
Linus Torvalds 已提交
854
{
855 856
	int ret = -ENXIO;
#ifdef CONFIG_MMU
857 858
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
859
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
860 861
	unsigned long off = vma->vm_pgoff;

862 863 864
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

865 866 867 868 869 870
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
871
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
872 873 874 875

	return ret;
}

876 877 878 879 880
/*
 * Create userspace mapping for the DMA-coherent memory.
 */
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
881
		 unsigned long attrs)
882 883 884 885 886 887
{
	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}

int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
888
		 unsigned long attrs)
889 890 891 892 893 894 895
{
#ifdef CONFIG_MMU
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
#endif	/* CONFIG_MMU */
	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}

L
Linus Torvalds 已提交
896
/*
897
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
898
 */
R
Rob Herring 已提交
899
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
900
			   dma_addr_t handle, unsigned long attrs,
R
Rob Herring 已提交
901
			   bool is_coherent)
L
Linus Torvalds 已提交
902
{
903
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
904
	struct arm_dma_buffer *buf;
905 906 907 908 909
	struct arm_dma_free_args args = {
		.dev = dev,
		.size = PAGE_ALIGN(size),
		.cpu_addr = cpu_addr,
		.page = page,
910
		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
911
	};
912 913 914 915

	buf = arm_dma_buffer_find(cpu_addr);
	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
		return;
916

917
	buf->allocator->free(&args);
918
	kfree(buf);
L
Linus Torvalds 已提交
919
}
920

R
Rob Herring 已提交
921
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
922
		  dma_addr_t handle, unsigned long attrs)
R
Rob Herring 已提交
923 924 925 926 927
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
928
				  dma_addr_t handle, unsigned long attrs)
R
Rob Herring 已提交
929 930 931 932
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

933 934
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
935
		 unsigned long attrs)
936 937 938 939 940 941 942 943 944 945 946 947
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

948
static void dma_cache_maint_page(struct page *page, unsigned long offset,
949 950
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
951
{
952 953 954 955 956 957
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

958 959 960 961 962 963 964 965
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
966 967
		void *vaddr;

968 969
		page = pfn_to_page(pfn);

970
		if (PageHighMem(page)) {
971
			if (len + offset > PAGE_SIZE)
972
				len = PAGE_SIZE - offset;
973 974

			if (cache_is_vipt_nonaliasing()) {
975
				vaddr = kmap_atomic(page);
976
				op(vaddr + offset, len, dir);
977
				kunmap_atomic(vaddr);
978 979 980 981 982 983
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
984
			}
985 986
		} else {
			vaddr = page_address(page) + offset;
987
			op(vaddr, len, dir);
988 989
		}
		offset = 0;
990
		pfn++;
991 992 993
		left -= len;
	} while (left);
}
994

995 996 997 998 999 1000 1001
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1002 1003
	size_t size, enum dma_data_direction dir)
{
1004
	phys_addr_t paddr;
1005

1006
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1007 1008

	paddr = page_to_phys(page) + off;
1009 1010 1011 1012 1013 1014
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
1015 1016
}

1017
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1018 1019
	size_t size, enum dma_data_direction dir)
{
1020
	phys_addr_t paddr = page_to_phys(page) + off;
1021 1022

	/* FIXME: non-speculating: not required */
1023 1024
	/* in any case, don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
1025 1026
		outer_inv_range(paddr, paddr + size);

1027 1028
		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
	}
1029 1030

	/*
1031
	 * Mark the D-cache clean for these pages to avoid extra flushing.
1032
	 */
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
1049
}
1050

1051
/**
1052
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
1067
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1068
		enum dma_data_direction dir, unsigned long attrs)
1069
{
1070
	struct dma_map_ops *ops = get_dma_ops(dev);
1071
	struct scatterlist *s;
1072
	int i, j;
1073 1074

	for_each_sg(sg, s, nents, i) {
1075 1076 1077
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
1078 1079
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
1080 1081
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
1082 1083
	}
	return nents;
1084 1085 1086

 bad_mapping:
	for_each_sg(sg, s, i, j)
1087
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1088
	return 0;
1089 1090 1091
}

/**
1092
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1093 1094
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
1095
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1096 1097 1098 1099 1100
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
1101
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1102
		enum dma_data_direction dir, unsigned long attrs)
1103
{
1104
	struct dma_map_ops *ops = get_dma_ops(dev);
1105 1106 1107
	struct scatterlist *s;

	int i;
1108

1109
	for_each_sg(sg, s, nents, i)
1110
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1111 1112 1113
}

/**
1114
 * arm_dma_sync_sg_for_cpu
1115 1116 1117 1118 1119
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1120
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1121 1122
			int nents, enum dma_data_direction dir)
{
1123
	struct dma_map_ops *ops = get_dma_ops(dev);
1124 1125 1126
	struct scatterlist *s;
	int i;

1127 1128 1129
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
1130 1131 1132
}

/**
1133
 * arm_dma_sync_sg_for_device
1134 1135 1136 1137 1138
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1139
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1140 1141
			int nents, enum dma_data_direction dir)
{
1142
	struct dma_map_ops *ops = get_dma_ops(dev);
1143 1144 1145
	struct scatterlist *s;
	int i;

1146 1147 1148
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
1149
}
1150

1151 1152 1153 1154 1155 1156 1157 1158
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
1159
	return __dma_supported(dev, mask, false);
1160 1161 1162
}
EXPORT_SYMBOL(dma_supported);

1163 1164 1165 1166 1167 1168 1169 1170
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
1171 1172 1173 1174 1175

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

1176 1177
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);

1178 1179 1180 1181 1182 1183
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
1184
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1185
	unsigned long flags;
1186 1187
	dma_addr_t iova;
	int i;
1188

1189 1190 1191
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1192 1193
	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	align = (1 << order) - 1;
1194 1195

	spin_lock_irqsave(&mapping->lock, flags);
1196 1197 1198 1199 1200 1201 1202 1203 1204
	for (i = 0; i < mapping->nr_bitmaps; i++) {
		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits)
			continue;

		bitmap_set(mapping->bitmaps[i], start, count);
		break;
1205 1206
	}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	/*
	 * No unused range found. Try to extend the existing mapping
	 * and perform a second attempt to reserve an IO virtual
	 * address range of size bytes.
	 */
	if (i == mapping->nr_bitmaps) {
		if (extend_iommu_mapping(mapping)) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		bitmap_set(mapping->bitmaps[i], start, count);
	}
1228 1229
	spin_unlock_irqrestore(&mapping->lock, flags);

1230
	iova = mapping->base + (mapping_size * i);
1231
	iova += start << PAGE_SHIFT;
1232 1233

	return iova;
1234 1235 1236 1237 1238
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
1239
	unsigned int start, count;
1240
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1241
	unsigned long flags;
1242 1243 1244 1245 1246 1247
	dma_addr_t bitmap_base;
	u32 bitmap_index;

	if (!size)
		return;

1248
	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1249 1250
	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);

1251
	bitmap_base = mapping->base + mapping_size * bitmap_index;
1252

1253
	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1254

1255
	if (addr + size > bitmap_base + mapping_size) {
1256 1257 1258 1259 1260 1261 1262 1263
		/*
		 * The address range to be freed reaches into the iova
		 * range of the next bitmap. This should not happen as
		 * we don't allow this in __alloc_iova (at the
		 * moment).
		 */
		BUG();
	} else
1264
		count = size >> PAGE_SHIFT;
1265 1266

	spin_lock_irqsave(&mapping->lock, flags);
1267
	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1268 1269 1270
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1271 1272 1273
/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
static const int iommu_order_array[] = { 9, 8, 4, 0 };

1274
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1275
					  gfp_t gfp, unsigned long attrs,
1276
					  int coherent_flag)
1277 1278 1279 1280 1281
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;
1282
	int order_idx = 0;
1283 1284

	if (array_size <= PAGE_SIZE)
1285
		pages = kzalloc(array_size, GFP_KERNEL);
1286 1287 1288 1289 1290
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1291
	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1292 1293 1294 1295 1296 1297 1298 1299
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

1300
		__dma_clear_buffer(page, size, coherent_flag);
1301 1302 1303 1304 1305 1306 1307

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1308
	/* Go straight to 4K chunks if caller says it's OK. */
1309
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1310 1311
		order_idx = ARRAY_SIZE(iommu_order_array) - 1;

1312 1313 1314 1315 1316
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1317
	while (count) {
1318 1319
		int j, order;

1320 1321 1322 1323 1324 1325
		order = iommu_order_array[order_idx];

		/* Drop down when we get small */
		if (__fls(count) < order) {
			order_idx++;
			continue;
1326
		}
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		if (order) {
			/* See if it's easy to allocate a high-order chunk */
			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);

			/* Go down a notch at first sign of pressure */
			if (!pages[i]) {
				order_idx++;
				continue;
			}
		} else {
1338 1339 1340 1341
			pages[i] = alloc_pages(gfp, 0);
			if (!pages[i])
				goto error;
		}
1342

1343
		if (order) {
1344
			split_page(pages[i], order);
1345 1346 1347 1348
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1349

1350
		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1351 1352 1353 1354 1355 1356
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1357
	while (i--)
1358 1359
		if (pages[i])
			__free_pages(pages[i], 0);
1360
	kvfree(pages);
1361 1362 1363
	return NULL;
}

1364
static int __iommu_free_buffer(struct device *dev, struct page **pages,
1365
			       size_t size, unsigned long attrs)
1366 1367 1368
{
	int count = size >> PAGE_SHIFT;
	int i;
1369

1370
	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1371 1372 1373 1374 1375 1376 1377
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1378
	kvfree(pages);
1379 1380 1381 1382 1383 1384 1385
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1386 1387
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1388
{
1389 1390
	return dma_common_pages_remap(pages, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1391 1392 1393 1394 1395 1396 1397 1398
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
1399
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1400 1401
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
1402
	int i;
1403 1404 1405 1406 1407 1408 1409

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
1410 1411
		int ret;

1412 1413 1414 1415 1416 1417 1418 1419 1420
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1421 1422
		ret = iommu_map(mapping->domain, iova, phys, len,
				IOMMU_READ|IOMMU_WRITE);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
1437
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1451 1452
static struct page **__atomic_get_pages(void *addr)
{
1453 1454 1455 1456 1457
	struct page *page;
	phys_addr_t phys;

	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
	page = phys_to_page(phys);
1458

1459
	return (struct page **)page;
1460 1461
}

1462
static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1463 1464 1465
{
	struct vm_struct *area;

1466 1467 1468
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1469
	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1470 1471
		return cpu_addr;

1472 1473 1474 1475 1476 1477
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1478 1479
static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
				  dma_addr_t *handle, int coherent_flag)
1480 1481 1482 1483
{
	struct page *page;
	void *addr;

1484 1485 1486 1487
	if (coherent_flag  == COHERENT)
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
	else
		addr = __alloc_from_pool(size, &page);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1502
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1503
			dma_addr_t handle, size_t size, int coherent_flag)
1504 1505
{
	__iommu_remove_mapping(dev, handle, size);
1506 1507 1508 1509
	if (coherent_flag == COHERENT)
		__dma_free_buffer(virt_to_page(cpu_addr), size);
	else
		__free_from_pool(cpu_addr, size);
1510 1511
}

1512
static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1513
	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1514
	    int coherent_flag)
1515
{
1516
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1517 1518 1519 1520 1521 1522
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1523 1524 1525
	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
		return __iommu_alloc_simple(dev, size, gfp, handle,
					    coherent_flag);
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1536
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1537 1538 1539 1540 1541 1542 1543
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1544
	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1545 1546
		return pages;

1547 1548
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1549 1550 1551 1552 1553 1554 1555 1556
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1557
	__iommu_free_buffer(dev, pages, size, attrs);
1558 1559 1560
	return NULL;
}

1561
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1562
	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1563 1564 1565 1566 1567
{
	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
}

static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1568
		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1569 1570 1571 1572 1573
{
	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
}

static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1574
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1575
		    unsigned long attrs)
1576
{
1577 1578
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1579
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1580 1581
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned long off = vma->vm_pgoff;
1582

1583 1584
	if (!pages)
		return -ENXIO;
1585

1586 1587 1588
	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
		return -ENXIO;

1589 1590
	pages += off;

1591 1592 1593 1594 1595 1596 1597 1598 1599
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1600 1601 1602

	return 0;
}
1603 1604
static int arm_iommu_mmap_attrs(struct device *dev,
		struct vm_area_struct *vma, void *cpu_addr,
1605
		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1606 1607 1608 1609 1610 1611 1612 1613
{
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
}

static int arm_coherent_iommu_mmap_attrs(struct device *dev,
		struct vm_area_struct *vma, void *cpu_addr,
1614
		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1615 1616 1617
{
	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
}
1618 1619 1620 1621 1622

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
1623
void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1624
	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1625
{
1626
	struct page **pages;
1627 1628
	size = PAGE_ALIGN(size);

1629 1630
	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1631
		return;
1632
	}
1633

1634 1635 1636
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1637 1638 1639
		return;
	}

1640
	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1641 1642
		dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1643
	}
1644 1645

	__iommu_remove_mapping(dev, handle, size);
1646
	__iommu_free_buffer(dev, pages, size, attrs);
1647 1648
}

1649
void arm_iommu_free_attrs(struct device *dev, size_t size,
1650
		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1651 1652 1653 1654 1655
{
	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
}

void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1656
		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1657 1658 1659 1660
{
	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
}

1661 1662
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
1663
				 size_t size, unsigned long attrs)
1664 1665 1666 1667 1668 1669 1670 1671 1672
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1673 1674
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static int __dma_direction_to_prot(enum dma_data_direction dir)
{
	int prot;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		prot = IOMMU_READ | IOMMU_WRITE;
		break;
	case DMA_TO_DEVICE:
		prot = IOMMU_READ;
		break;
	case DMA_FROM_DEVICE:
		prot = IOMMU_WRITE;
		break;
	default:
		prot = 0;
	}

	return prot;
}

1696 1697 1698 1699 1700
/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
1701
			  enum dma_data_direction dir, unsigned long attrs,
R
Rob Herring 已提交
1702
			  bool is_coherent)
1703
{
1704
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1705 1706 1707 1708
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1709
	int prot;
1710 1711 1712 1713 1714 1715 1716 1717 1718

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
D
Dan Williams 已提交
1719
		phys_addr_t phys = page_to_phys(sg_page(s));
1720 1721
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

1722
		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1723 1724
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1725 1726 1727
		prot = __dma_direction_to_prot(dir);

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1742
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1743
		     enum dma_data_direction dir, unsigned long attrs,
R
Rob Herring 已提交
1744
		     bool is_coherent)
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1760
			    dir, attrs, is_coherent) < 0)
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1773 1774
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1789
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1790 1791
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1792 1793
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1794
 *
R
Rob Herring 已提交
1795 1796 1797 1798
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1799
 */
R
Rob Herring 已提交
1800
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1801
		int nents, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1819
		int nents, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1820 1821 1822 1823 1824
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1825 1826
		int nents, enum dma_data_direction dir,
		unsigned long attrs, bool is_coherent)
1827 1828 1829 1830 1831 1832 1833 1834
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
1835
		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1836 1837 1838 1839 1840
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1852 1853
		int nents, enum dma_data_direction dir,
		unsigned long attrs)
R
Rob Herring 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1869 1870
			enum dma_data_direction dir,
			unsigned long attrs)
R
Rob Herring 已提交
1871 1872 1873 1874
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1889
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1907
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1908 1909 1910 1911
}


/**
R
Rob Herring 已提交
1912
 * arm_coherent_iommu_map_page
1913 1914 1915 1916 1917 1918
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1919
 * Coherent IOMMU aware version of arm_dma_map_page()
1920
 */
R
Rob Herring 已提交
1921
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1922
	     unsigned long offset, size_t size, enum dma_data_direction dir,
1923
	     unsigned long attrs)
1924
{
1925
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926
	dma_addr_t dma_addr;
1927
	int ret, prot, len = PAGE_ALIGN(size + offset);
1928 1929 1930 1931 1932

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

1933
	prot = __dma_direction_to_prot(dir);
1934 1935

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1936 1937 1938 1939 1940 1941 1942 1943 1944
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
1957
	     unsigned long attrs)
R
Rob Herring 已提交
1958
{
1959
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
R
Rob Herring 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1975
		size_t size, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1976
{
1977
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
R
Rob Herring 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1999
		size_t size, enum dma_data_direction dir, unsigned long attrs)
2000
{
2001
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2002 2003 2004 2005 2006 2007 2008 2009
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

2010
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2011 2012 2013 2014 2015 2016
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
/**
 * arm_iommu_map_resource - map a device resource for DMA
 * @dev: valid struct device pointer
 * @phys_addr: physical address of resource
 * @size: size of resource to map
 * @dir: DMA transfer direction
 */
static dma_addr_t arm_iommu_map_resource(struct device *dev,
		phys_addr_t phys_addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t dma_addr;
	int ret, prot;
	phys_addr_t addr = phys_addr & PAGE_MASK;
	unsigned int offset = phys_addr & ~PAGE_MASK;
	size_t len = PAGE_ALIGN(size + offset);

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	prot = __dma_direction_to_prot(dir) | IOMMU_MMIO;

	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

/**
 * arm_iommu_unmap_resource - unmap a device DMA resource
 * @dev: valid struct device pointer
 * @dma_handle: DMA address to resource
 * @size: size of resource to map
 * @dir: DMA transfer direction
 */
static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
		size_t size, enum dma_data_direction dir,
		unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t iova = dma_handle & PAGE_MASK;
	unsigned int offset = dma_handle & ~PAGE_MASK;
	size_t len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

2074 2075 2076
static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
2077
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2078 2079 2080 2081 2082 2083 2084
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
2085
	__dma_page_dev_to_cpu(page, offset, size, dir);
2086 2087 2088 2089 2090
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
2091
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
2106
	.get_sgtable	= arm_iommu_get_sgtable,
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2117 2118 2119

	.map_resource		= arm_iommu_map_resource,
	.unmap_resource		= arm_iommu_unmap_resource,
2120 2121
};

R
Rob Herring 已提交
2122
struct dma_map_ops iommu_coherent_ops = {
2123 2124 2125
	.alloc		= arm_coherent_iommu_alloc_attrs,
	.free		= arm_coherent_iommu_free_attrs,
	.mmap		= arm_coherent_iommu_mmap_attrs,
R
Rob Herring 已提交
2126 2127 2128 2129 2130 2131 2132
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2133 2134 2135

	.map_resource	= arm_iommu_map_resource,
	.unmap_resource	= arm_iommu_unmap_resource,
R
Rob Herring 已提交
2136 2137
};

2138 2139 2140 2141
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
2142
 * @size: maximum size of the valid IO address space
2143 2144 2145 2146 2147 2148 2149 2150 2151
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
2152
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2153
{
2154 2155
	unsigned int bits = size >> PAGE_SHIFT;
	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2156
	struct dma_iommu_mapping *mapping;
2157
	int extensions = 1;
2158 2159
	int err = -ENOMEM;

2160 2161 2162 2163
	/* currently only 32-bit DMA address space is supported */
	if (size > DMA_BIT_MASK(32) + 1)
		return ERR_PTR(-ERANGE);

2164
	if (!bitmap_size)
2165 2166
		return ERR_PTR(-EINVAL);

2167 2168 2169 2170 2171
	if (bitmap_size > PAGE_SIZE) {
		extensions = bitmap_size / PAGE_SIZE;
		bitmap_size = PAGE_SIZE;
	}

2172 2173 2174 2175
	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

2176 2177
	mapping->bitmap_size = bitmap_size;
	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2178 2179
				GFP_KERNEL);
	if (!mapping->bitmaps)
2180 2181
		goto err2;

2182
	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2183 2184 2185 2186 2187
	if (!mapping->bitmaps[0])
		goto err3;

	mapping->nr_bitmaps = 1;
	mapping->extensions = extensions;
2188
	mapping->base = base;
2189
	mapping->bits = BITS_PER_BYTE * bitmap_size;
2190

2191 2192 2193 2194
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
2195
		goto err4;
2196 2197 2198

	kref_init(&mapping->kref);
	return mapping;
2199 2200
err4:
	kfree(mapping->bitmaps[0]);
2201
err3:
2202
	kfree(mapping->bitmaps);
2203 2204 2205 2206 2207
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
2208
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2209 2210 2211

static void release_iommu_mapping(struct kref *kref)
{
2212
	int i;
2213 2214 2215 2216
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
2217 2218 2219
	for (i = 0; i < mapping->nr_bitmaps; i++)
		kfree(mapping->bitmaps[i]);
	kfree(mapping->bitmaps);
2220 2221 2222
	kfree(mapping);
}

2223 2224 2225 2226
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
{
	int next_bitmap;

2227
	if (mapping->nr_bitmaps >= mapping->extensions)
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		return -EINVAL;

	next_bitmap = mapping->nr_bitmaps;
	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
						GFP_ATOMIC);
	if (!mapping->bitmaps[next_bitmap])
		return -ENOMEM;

	mapping->nr_bitmaps++;

	return 0;
}

2241 2242 2243 2244 2245
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
2246
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2247

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static int __arm_iommu_attach_device(struct device *dev,
				     struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
2258
	to_dma_iommu_mapping(dev) = mapping;
2259 2260 2261 2262 2263

	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
	return 0;
}

2264 2265 2266 2267 2268 2269
/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
2270 2271 2272 2273
 * Attaches specified io address space mapping to the provided device.
 * This replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version.
 *
2274 2275
 * More than one client might be attached to the same io address space
 * mapping.
2276 2277 2278 2279 2280 2281
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

2282
	err = __arm_iommu_attach_device(dev, mapping);
2283 2284 2285
	if (err)
		return err;

2286
	set_dma_ops(dev, &iommu_ops);
2287 2288
	return 0;
}
2289
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2290

2291
static void __arm_iommu_detach_device(struct device *dev)
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
2303
	to_dma_iommu_mapping(dev) = NULL;
2304 2305 2306

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	__arm_iommu_detach_device(dev);
	set_dma_ops(dev, NULL);
}
2320
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2321

2322 2323 2324 2325 2326 2327
static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
{
	return coherent ? &iommu_coherent_ops : &iommu_ops;
}

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2328
				    const struct iommu_ops *iommu)
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
{
	struct dma_iommu_mapping *mapping;

	if (!iommu)
		return false;

	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
	if (IS_ERR(mapping)) {
		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
				size, dev_name(dev));
		return false;
	}

2342
	if (__arm_iommu_attach_device(dev, mapping)) {
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
				dev_name(dev));
		arm_iommu_release_mapping(mapping);
		return false;
	}

	return true;
}

static void arm_teardown_iommu_dma_ops(struct device *dev)
{
2354
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2355

2356 2357 2358
	if (!mapping)
		return;

2359
	__arm_iommu_detach_device(dev);
2360 2361 2362 2363 2364 2365
	arm_iommu_release_mapping(mapping);
}

#else

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2366
				    const struct iommu_ops *iommu)
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
{
	return false;
}

static void arm_teardown_iommu_dma_ops(struct device *dev) { }

#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops

#endif	/* CONFIG_ARM_DMA_USE_IOMMU */

static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
{
	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
}

void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2383
			const struct iommu_ops *iommu, bool coherent)
2384 2385 2386
{
	struct dma_map_ops *dma_ops;

2387
	dev->archdata.dma_coherent = coherent;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
		dma_ops = arm_get_iommu_dma_map_ops(coherent);
	else
		dma_ops = arm_get_dma_map_ops(coherent);

	set_dma_ops(dev, dma_ops);
}

void arch_teardown_dma_ops(struct device *dev)
{
	arm_teardown_iommu_dma_ops(dev);
}