dma-mapping.c 52.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/dma-contiguous.h>
21
#include <linux/highmem.h>
22
#include <linux/memblock.h>
23
#include <linux/slab.h>
24
#include <linux/iommu.h>
25
#include <linux/io.h>
26
#include <linux/vmalloc.h>
27
#include <linux/sizes.h>
L
Linus Torvalds 已提交
28

29
#include <asm/memory.h>
30
#include <asm/highmem.h>
L
Linus Torvalds 已提交
31 32
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
33
#include <asm/mach/arch.h>
34
#include <asm/dma-iommu.h>
35 36 37
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
38

39 40
#include "mm.h"

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
53
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54
		size_t, enum dma_data_direction);
55
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 57
		size_t, enum dma_data_direction);

58 59 60 61 62 63 64 65 66 67 68 69 70 71
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
72
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 74 75
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
R
Rob Herring 已提交
76
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 78
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 80
}

R
Rob Herring 已提交
81 82 83 84 85 86 87
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
102
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 104 105
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
R
Rob Herring 已提交
106
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 108
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
109 110
}

111
static void arm_dma_sync_single_for_cpu(struct device *dev,
112 113 114 115
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
116
	__dma_page_dev_to_cpu(page, offset, size, dir);
117 118
}

119
static void arm_dma_sync_single_for_device(struct device *dev,
120 121 122 123
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
124
	__dma_page_cpu_to_dev(page, offset, size, dir);
125 126 127
}

struct dma_map_ops arm_dma_ops = {
128 129 130
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
131
	.get_sgtable		= arm_dma_get_sgtable,
132 133 134 135 136 137 138 139 140 141 142 143
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs);

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
	.mmap			= arm_dma_mmap,
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

160 161
static u64 get_coherent_dma_mask(struct device *dev)
{
162
	u64 mask = (u64)DMA_BIT_MASK(32);
163 164 165 166 167 168 169 170 171 172 173 174 175

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
		/*
		 * If the mask allows for more memory than we can address,
		 * and we actually have that much memory, then fail the
		 * allocation.
		 */
		if (sizeof(mask) != sizeof(dma_addr_t) &&
		    mask > (dma_addr_t)~0 &&
		    dma_to_pfn(dev, ~0) > arm_dma_pfn_limit) {
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
			return 0;
		}

		/*
		 * Now check that the mask, when translated to a PFN,
		 * fits within the allowable addresses which we can
		 * allocate.
		 */
		if (dma_to_pfn(dev, mask) < arm_dma_pfn_limit) {
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 arm_dma_pfn_limit + 1);
200 201 202
			return 0;
		}
	}
L
Linus Torvalds 已提交
203

204 205 206
	return mask;
}

207 208 209 210 211 212
static void __dma_clear_buffer(struct page *page, size_t size)
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
			dmac_flush_range(ptr, ptr + PAGE_SIZE);
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
		outer_flush_range(base, end);
	} else {
		void *ptr = page_address(page);
227 228 229 230
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

253
	__dma_clear_buffer(page, size);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

271
#ifdef CONFIG_MMU
272
#ifdef CONFIG_HUGETLB_PAGE
273
#warning ARM Coherent DMA allocator does not (yet) support huge TLB
274
#endif
275

276
static void *__alloc_from_contiguous(struct device *dev, size_t size,
277 278
				     pgprot_t prot, struct page **ret_page,
				     const void *caller);
279

280 281 282
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller);
283

284 285 286
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
287
{
288 289
	struct vm_struct *area;
	unsigned long addr;
290

291 292 293 294 295 296 297 298 299 300
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
		return NULL;
	addr = (unsigned long)area->addr;
	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
301

302 303 304 305 306
	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
		vunmap((void *)addr);
		return NULL;
	}
	return (void *)addr;
307
}
L
Linus Torvalds 已提交
308

309
static void __dma_free_remap(void *cpu_addr, size_t size)
310
{
311 312 313 314 315
	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
	struct vm_struct *area = find_vm_area(cpu_addr);
	if (!area || (area->flags & flags) != flags) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
316
	}
317 318
	unmap_kernel_range((unsigned long)cpu_addr, size);
	vunmap(cpu_addr);
319 320
}

321 322
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K

323 324 325 326 327 328
struct dma_pool {
	size_t size;
	spinlock_t lock;
	unsigned long *bitmap;
	unsigned long nr_pages;
	void *vaddr;
329
	struct page **pages;
330 331
};

332
static struct dma_pool atomic_pool = {
333
	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
334
};
335 336 337

static int __init early_coherent_pool(char *p)
{
338
	atomic_pool.size = memparse(p, &p);
339 340 341 342
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
	BUG_ON(atomic_pool.vaddr);

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool.size = size;
}

358 359 360
/*
 * Initialise the coherent pool for atomic allocations.
 */
361
static int __init atomic_pool_init(void)
362
{
363
	struct dma_pool *pool = &atomic_pool;
364
	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
365
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
366 367
	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
	unsigned long *bitmap;
368
	struct page *page;
369
	struct page **pages;
370
	void *ptr;
371
	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
372

373 374 375
	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!bitmap)
		goto no_bitmap;
376

377 378 379 380
	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
	if (!pages)
		goto no_pages;

381
	if (IS_ENABLED(CONFIG_DMA_CMA))
382 383
		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
					      atomic_pool_init);
384
	else
385 386
		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
					   atomic_pool_init);
387
	if (ptr) {
388 389 390 391 392
		int i;

		for (i = 0; i < nr_pages; i++)
			pages[i] = page + i;

393 394
		spin_lock_init(&pool->lock);
		pool->vaddr = ptr;
395
		pool->pages = pages;
396 397 398 399
		pool->bitmap = bitmap;
		pool->nr_pages = nr_pages;
		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
		       (unsigned)pool->size / 1024);
400 401
		return 0;
	}
402 403

	kfree(pages);
404
no_pages:
405 406 407 408
	kfree(bitmap);
no_bitmap:
	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
	       (unsigned)pool->size / 1024);
409 410 411 412 413
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
414
postcore_initcall(atomic_pool_init);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
444
			continue;
445 446 447 448 449 450 451 452 453 454

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
		 * Clear previous low-memory mapping
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
455
		     addr += PMD_SIZE)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
			pmd_clear(pmd_off_k(addr));

		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller)
{
	struct page *page;
	void *ptr;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

	*ret_page = page;
	return ptr;
}

501
static void *__alloc_from_pool(size_t size, struct page **ret_page)
502
{
503 504 505 506 507
	struct dma_pool *pool = &atomic_pool;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned int pageno;
	unsigned long flags;
	void *ptr = NULL;
508
	unsigned long align_mask;
509

510 511
	if (!pool->vaddr) {
		WARN(1, "coherent pool not initialised!\n");
512 513 514 515 516 517 518 519
		return NULL;
	}

	/*
	 * Align the region allocation - allocations from pool are rather
	 * small, so align them to their order in pages, minimum is a page
	 * size. This helps reduce fragmentation of the DMA space.
	 */
520
	align_mask = (1 << get_order(size)) - 1;
521 522 523

	spin_lock_irqsave(&pool->lock, flags);
	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
524
					    0, count, align_mask);
525 526 527
	if (pageno < pool->nr_pages) {
		bitmap_set(pool->bitmap, pageno, count);
		ptr = pool->vaddr + PAGE_SIZE * pageno;
528
		*ret_page = pool->pages[pageno];
529 530 531 532
	} else {
		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
			    "Please increase it with coherent_pool= kernel parameter!\n",
			    (unsigned)pool->size / 1024);
533
	}
534 535 536
	spin_unlock_irqrestore(&pool->lock, flags);

	return ptr;
537 538
}

539 540 541 542 543 544 545
static bool __in_atomic_pool(void *start, size_t size)
{
	struct dma_pool *pool = &atomic_pool;
	void *end = start + size;
	void *pool_start = pool->vaddr;
	void *pool_end = pool->vaddr + pool->size;

546
	if (start < pool_start || start >= pool_end)
547 548 549 550 551 552 553 554 555 556 557
		return false;

	if (end <= pool_end)
		return true;

	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
	     start, end - 1, pool_start, pool_end - 1);

	return false;
}

558
static int __free_from_pool(void *start, size_t size)
559
{
560 561 562
	struct dma_pool *pool = &atomic_pool;
	unsigned long pageno, count;
	unsigned long flags;
563

564
	if (!__in_atomic_pool(start, size))
565 566
		return 0;

567 568 569 570 571 572 573
	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
	count = size >> PAGE_SHIFT;

	spin_lock_irqsave(&pool->lock, flags);
	bitmap_clear(pool->bitmap, pageno, count);
	spin_unlock_irqrestore(&pool->lock, flags);

574 575 576 577
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
578 579
				     pgprot_t prot, struct page **ret_page,
				     const void *caller)
580 581 582 583
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
584
	void *ptr;
585 586 587 588 589 590 591

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);

592 593 594 595 596 597 598 599 600 601
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
602
	*ret_page = page;
603
	return ptr;
604 605 606
}

static void __free_from_contiguous(struct device *dev, struct page *page,
607
				   void *cpu_addr, size_t size)
608
{
609 610 611 612
	if (PageHighMem(page))
		__dma_free_remap(cpu_addr, size);
	else
		__dma_remap(page, size, pgprot_kernel);
613 614 615
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

616 617 618 619 620 621 622 623
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

624 625
#define nommu() 0

626
#else	/* !CONFIG_MMU */
627

628 629
#define nommu() 1

630
#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
631
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
632
#define __alloc_from_pool(size, ret_page)			NULL
633
#define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
634
#define __free_from_pool(cpu_addr, size)			0
635
#define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
636
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
637 638 639

#endif	/* CONFIG_MMU */

640 641
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
642
{
643 644 645 646 647 648 649 650 651 652 653 654
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
655
			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
656 657
{
	u64 mask = get_coherent_dma_mask(dev);
658
	struct page *page = NULL;
659
	void *addr;
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

676 677 678 679 680 681 682 683 684
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

685
	*handle = DMA_ERROR_CODE;
686
	size = PAGE_ALIGN(size);
687

R
Rob Herring 已提交
688
	if (is_coherent || nommu())
689
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
690
	else if (!(gfp & __GFP_WAIT))
691
		addr = __alloc_from_pool(size, &page);
692
	else if (!IS_ENABLED(CONFIG_DMA_CMA))
693
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
694
	else
695
		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
696

697
	if (addr)
698
		*handle = pfn_to_dma(dev, page_to_pfn(page));
699

700 701
	return addr;
}
L
Linus Torvalds 已提交
702 703 704 705 706

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
707 708
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
709
{
710
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
711 712 713 714 715
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

R
Rob Herring 已提交
716 717 718 719 720 721 722
	return __dma_alloc(dev, size, handle, gfp, prot, false,
			   __builtin_return_address(0));
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
723
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
R
Rob Herring 已提交
724 725 726 727 728 729
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp, prot, true,
730
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
731 732 733
}

/*
734
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
735
 */
736 737 738
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
739
{
740 741
	int ret = -ENXIO;
#ifdef CONFIG_MMU
742 743
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
744
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
745 746
	unsigned long off = vma->vm_pgoff;

747 748
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

749 750 751
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

752 753 754 755 756 757
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
758
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
759 760 761 762 763

	return ret;
}

/*
764
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
765
 */
R
Rob Herring 已提交
766 767 768
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, struct dma_attrs *attrs,
			   bool is_coherent)
L
Linus Torvalds 已提交
769
{
770
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
771

772 773 774
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

775 776
	size = PAGE_ALIGN(size);

R
Rob Herring 已提交
777
	if (is_coherent || nommu()) {
778
		__dma_free_buffer(page, size);
779 780
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
781
	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
782
		__dma_free_remap(cpu_addr, size);
783 784 785 786 787 788
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
789
		__free_from_contiguous(dev, page, cpu_addr, size);
790
	}
L
Linus Torvalds 已提交
791
}
792

R
Rob Herring 已提交
793 794 795 796 797 798 799 800 801 802 803 804
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

820
static void dma_cache_maint_page(struct page *page, unsigned long offset,
821 822
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
823
{
824 825 826 827 828 829
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

830 831 832 833 834 835 836 837
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
838 839
		void *vaddr;

840 841
		page = pfn_to_page(pfn);

842
		if (PageHighMem(page)) {
843
			if (len + offset > PAGE_SIZE)
844
				len = PAGE_SIZE - offset;
845 846

			if (cache_is_vipt_nonaliasing()) {
847
				vaddr = kmap_atomic(page);
848
				op(vaddr + offset, len, dir);
849
				kunmap_atomic(vaddr);
850 851 852 853 854 855
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
856
			}
857 858
		} else {
			vaddr = page_address(page) + offset;
859
			op(vaddr, len, dir);
860 861
		}
		offset = 0;
862
		pfn++;
863 864 865
		left -= len;
	} while (left);
}
866

867 868 869 870 871 872 873
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
874 875
	size_t size, enum dma_data_direction dir)
{
876 877
	unsigned long paddr;

878
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
879 880

	paddr = page_to_phys(page) + off;
881 882 883 884 885 886
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
887 888
}

889
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
890 891
	size_t size, enum dma_data_direction dir)
{
892 893 894 895 896 897 898
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

899
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
900 901

	/*
902
	 * Mark the D-cache clean for these pages to avoid extra flushing.
903
	 */
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
920
}
921

922
/**
923
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
924 925 926 927 928 929 930 931 932 933 934 935 936 937
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
938 939
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
940
{
941
	struct dma_map_ops *ops = get_dma_ops(dev);
942
	struct scatterlist *s;
943
	int i, j;
944 945

	for_each_sg(sg, s, nents, i) {
946 947 948
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
949 950
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
951 952
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
953 954
	}
	return nents;
955 956 957

 bad_mapping:
	for_each_sg(sg, s, i, j)
958
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
959
	return 0;
960 961 962
}

/**
963
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
964 965
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
966
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
967 968 969 970 971
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
972 973
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
974
{
975
	struct dma_map_ops *ops = get_dma_ops(dev);
976 977 978
	struct scatterlist *s;

	int i;
979

980
	for_each_sg(sg, s, nents, i)
981
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
982 983 984
}

/**
985
 * arm_dma_sync_sg_for_cpu
986 987 988 989 990
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
991
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
992 993
			int nents, enum dma_data_direction dir)
{
994
	struct dma_map_ops *ops = get_dma_ops(dev);
995 996 997
	struct scatterlist *s;
	int i;

998 999 1000
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
1001 1002 1003
}

/**
1004
 * arm_dma_sync_sg_for_device
1005 1006 1007 1008 1009
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1010
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1011 1012
			int nents, enum dma_data_direction dir)
{
1013
	struct dma_map_ops *ops = get_dma_ops(dev);
1014 1015 1016
	struct scatterlist *s;
	int i;

1017 1018 1019
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
1020
}
1021

1022 1023 1024 1025 1026 1027 1028 1029
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	unsigned long limit;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
	    dma_to_pfn(dev, ~0) > arm_dma_pfn_limit)
		return 0;

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	limit = dma_to_pfn(dev, mask);

	if (limit < arm_dma_pfn_limit)
1049
		return 0;
1050

1051 1052 1053 1054
	return 1;
}
EXPORT_SYMBOL(dma_supported);

1055
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1056 1057 1058 1059 1060 1061 1062 1063 1064
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

1065 1066 1067 1068 1069 1070 1071 1072
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
	unsigned long flags;

1086 1087 1088
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
		 (1 << mapping->order) - 1) >> mapping->order;

	if (order > mapping->order)
		align = (1 << (order - mapping->order)) - 1;

	spin_lock_irqsave(&mapping->lock, flags);
	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
					   count, align);
	if (start > mapping->bits) {
		spin_unlock_irqrestore(&mapping->lock, flags);
		return DMA_ERROR_CODE;
	}

	bitmap_set(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);

	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
	unsigned int start = (addr - mapping->base) >>
			     (mapping->order + PAGE_SHIFT);
	unsigned int count = ((size >> PAGE_SHIFT) +
			      (1 << mapping->order) - 1) >> mapping->order;
	unsigned long flags;

	spin_lock_irqsave(&mapping->lock, flags);
	bitmap_clear(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1123 1124
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, struct dma_attrs *attrs)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, gfp);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1155 1156 1157 1158 1159
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1160
	while (count) {
1161
		int j, order = __fls(count);
1162

1163
		pages[i] = alloc_pages(gfp, order);
1164
		while (!pages[i] && order)
1165
			pages[i] = alloc_pages(gfp, --order);
1166 1167 1168
		if (!pages[i])
			goto error;

1169
		if (order) {
1170
			split_page(pages[i], order);
1171 1172 1173 1174
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1175 1176 1177 1178 1179 1180 1181 1182

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1183
	while (i--)
1184 1185
		if (pages[i])
			__free_pages(pages[i], 0);
1186
	if (array_size <= PAGE_SIZE)
1187 1188 1189 1190 1191 1192
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

1193 1194
static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, struct dma_attrs *attrs)
1195 1196 1197 1198
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
1199 1200 1201 1202 1203 1204 1205 1206 1207

	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1208
	if (array_size <= PAGE_SIZE)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1219 1220
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1221
{
1222 1223 1224
	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct vm_struct *area;
	unsigned long p;
1225

1226 1227 1228
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
1229 1230
		return NULL;

1231 1232 1233
	area->pages = pages;
	area->nr_pages = nr_pages;
	p = (unsigned long)area->addr;
1234

1235 1236 1237 1238 1239
	for (i = 0; i < nr_pages; i++) {
		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
			goto err;
		p += PAGE_SIZE;
1240
	}
1241 1242 1243 1244
	return area->addr;
err:
	unmap_kernel_range((unsigned long)area->addr, size);
	vunmap(area->addr);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	return NULL;
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1274 1275
		ret = iommu_map(mapping->domain, iova, phys, len,
				IOMMU_READ|IOMMU_WRITE);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1304 1305 1306 1307 1308 1309 1310 1311 1312
static struct page **__atomic_get_pages(void *addr)
{
	struct dma_pool *pool = &atomic_pool;
	struct page **pages = pool->pages;
	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;

	return pages + offs;
}

1313
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1314 1315 1316
{
	struct vm_struct *area;

1317 1318 1319
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1320 1321 1322
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1323 1324 1325 1326 1327 1328
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1350
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1351 1352 1353
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
1354
	__free_from_pool(cpu_addr, size);
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1367 1368 1369
	if (gfp & GFP_ATOMIC)
		return __iommu_alloc_atomic(dev, size, handle);

1370 1371 1372 1373 1374 1375 1376 1377 1378
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1379
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1380 1381 1382 1383 1384 1385 1386
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1387 1388 1389
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1390 1391
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1392 1393 1394 1395 1396 1397 1398 1399
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1400
	__iommu_free_buffer(dev, pages, size, attrs);
1401 1402 1403 1404 1405 1406 1407
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1408 1409
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1410
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1411 1412 1413

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1414 1415
	if (!pages)
		return -ENXIO;
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1437
	struct page **pages;
1438 1439
	size = PAGE_ALIGN(size);

1440 1441
	if (__in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size);
1442
		return;
1443
	}
1444

1445 1446 1447
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1448 1449 1450
		return;
	}

1451 1452 1453 1454
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
		unmap_kernel_range((unsigned long)cpu_addr, size);
		vunmap(cpu_addr);
	}
1455 1456

	__iommu_remove_mapping(dev, handle, size);
1457
	__iommu_free_buffer(dev, pages, size, attrs);
1458 1459
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1472 1473
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static int __dma_direction_to_prot(enum dma_data_direction dir)
{
	int prot;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		prot = IOMMU_READ | IOMMU_WRITE;
		break;
	case DMA_TO_DEVICE:
		prot = IOMMU_READ;
		break;
	case DMA_FROM_DEVICE:
		prot = IOMMU_WRITE;
		break;
	default:
		prot = 0;
	}

	return prot;
}

1495 1496 1497 1498 1499
/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
1500 1501
			  enum dma_data_direction dir, struct dma_attrs *attrs,
			  bool is_coherent)
1502 1503 1504 1505 1506 1507
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1508
	int prot;
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

R
Rob Herring 已提交
1521 1522
		if (!is_coherent &&
			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1523 1524
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1525 1526 1527
		prot = __dma_direction_to_prot(dir);

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1542 1543 1544
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs,
		     bool is_coherent)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1560
			    dir, attrs, is_coherent) < 0)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1573 1574
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1589
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1590 1591
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1592 1593
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1594
 *
R
Rob Herring 已提交
1595 1596 1597 1598
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1599
 */
R
Rob Herring 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
		bool is_coherent)
1627 1628 1629 1630 1631 1632 1633 1634
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
R
Rob Herring 已提交
1635
		if (!is_coherent &&
1636
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1637 1638 1639 1640 1641
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1688
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1706
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1707 1708 1709 1710
}


/**
R
Rob Herring 已提交
1711
 * arm_coherent_iommu_map_page
1712 1713 1714 1715 1716 1717
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1718
 * Coherent IOMMU aware version of arm_dma_map_page()
1719
 */
R
Rob Herring 已提交
1720
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1721 1722 1723 1724 1725
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t dma_addr;
1726
	int ret, prot, len = PAGE_ALIGN(size + offset);
1727 1728 1729 1730 1731

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

1732
	prot = __dma_direction_to_prot(dir);
1733 1734

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1735 1736 1737 1738 1739 1740 1741 1742 1743
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

R
Rob Herring 已提交
1811
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
1829
	__dma_page_dev_to_cpu(page, offset, size, dir);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1850
	.get_sgtable	= arm_iommu_get_sgtable,
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1861 1862

	.set_dma_mask		= arm_dma_set_mask,
1863 1864
};

R
Rob Herring 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
struct dma_map_ops iommu_coherent_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1876 1877

	.set_dma_mask	= arm_dma_set_mask,
R
Rob Herring 已提交
1878 1879
};

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
 * @size: size of the valid IO address space
 * @order: accuracy of the IO addresses allocations
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
			 int order)
{
	unsigned int count = size >> (PAGE_SHIFT + order);
	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
	struct dma_iommu_mapping *mapping;
	int err = -ENOMEM;

	if (!count)
		return ERR_PTR(-EINVAL);

	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!mapping->bitmap)
		goto err2;

	mapping->base = base;
	mapping->bits = BITS_PER_BYTE * bitmap_size;
	mapping->order = order;
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
		goto err3;

	kref_init(&mapping->kref);
	return mapping;
err3:
	kfree(mapping->bitmap);
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
1932
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

static void release_iommu_mapping(struct kref *kref)
{
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
	kfree(mapping->bitmap);
	kfree(mapping);
}

void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
1949
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Attaches specified io address space mapping to the provided device,
 * this replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version. More than one client might be attached to
 * the same io address space mapping.
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
	dev->archdata.mapping = mapping;
	set_dma_ops(dev, &iommu_ops);

1975
	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1976 1977
	return 0;
}
1978
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
1999
	dev->archdata.mapping = NULL;
2000 2001 2002 2003
	set_dma_ops(dev, NULL);

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
2004
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2005

2006
#endif