dma-mapping.c 52.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
12
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
13 14
#include <linux/module.h>
#include <linux/mm.h>
15
#include <linux/genalloc.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
22
#include <linux/dma-contiguous.h>
23
#include <linux/highmem.h>
24
#include <linux/memblock.h>
25
#include <linux/slab.h>
26
#include <linux/iommu.h>
27
#include <linux/io.h>
28
#include <linux/vmalloc.h>
29
#include <linux/sizes.h>
30
#include <linux/cma.h>
L
Linus Torvalds 已提交
31

32
#include <asm/memory.h>
33
#include <asm/highmem.h>
L
Linus Torvalds 已提交
34 35
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
36
#include <asm/mach/arch.h>
37
#include <asm/dma-iommu.h>
38 39 40
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
41

42 43
#include "mm.h"

44 45 46 47 48 49 50 51 52 53 54 55
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
56
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57
		size_t, enum dma_data_direction);
58
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 60
		size_t, enum dma_data_direction);

61 62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
75
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 77 78
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
R
Rob Herring 已提交
79
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 81
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 83
}

R
Rob Herring 已提交
84 85 86 87 88 89 90
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
105
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 107 108
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
R
Rob Herring 已提交
109
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 111
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
112 113
}

114
static void arm_dma_sync_single_for_cpu(struct device *dev,
115 116 117 118
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
119
	__dma_page_dev_to_cpu(page, offset, size, dir);
120 121
}

122
static void arm_dma_sync_single_for_device(struct device *dev,
123 124 125 126
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
127
	__dma_page_cpu_to_dev(page, offset, size, dir);
128 129 130
}

struct dma_map_ops arm_dma_ops = {
131 132 133
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
134
	.get_sgtable		= arm_dma_get_sgtable,
135 136 137 138 139 140 141 142 143 144 145 146
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs);

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
	.mmap			= arm_dma_mmap,
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static int __dma_supported(struct device *dev, u64 mask, bool warn)
{
	unsigned long max_dma_pfn;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
	    dma_to_pfn(dev, ~0) < max_pfn) {
		if (warn) {
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
		}
		return 0;
	}

	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
		if (warn)
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 max_dma_pfn + 1);
		return 0;
	}

	return 1;
}

201 202
static u64 get_coherent_dma_mask(struct device *dev)
{
203
	u64 mask = (u64)DMA_BIT_MASK(32);
204 205 206 207 208 209 210 211 212 213 214 215 216

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

217
		if (!__dma_supported(dev, mask, true))
218 219
			return 0;
	}
L
Linus Torvalds 已提交
220

221 222 223
	return mask;
}

224 225 226 227 228 229
static void __dma_clear_buffer(struct page *page, size_t size)
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
230 231 232 233 234 235 236 237 238 239 240 241 242 243
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
			dmac_flush_range(ptr, ptr + PAGE_SIZE);
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
		outer_flush_range(base, end);
	} else {
		void *ptr = page_address(page);
244 245 246 247
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
248 249
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

270
	__dma_clear_buffer(page, size);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

288
#ifdef CONFIG_MMU
289

290
static void *__alloc_from_contiguous(struct device *dev, size_t size,
291 292
				     pgprot_t prot, struct page **ret_page,
				     const void *caller);
293

294 295 296
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller);
297

298 299 300
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
301
{
302 303 304 305
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
306 307 308
	return dma_common_contiguous_remap(page, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
			prot, caller);
309
}
L
Linus Torvalds 已提交
310

311
static void __dma_free_remap(void *cpu_addr, size_t size)
312
{
313 314
	dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315 316
}

317
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
318
static struct gen_pool *atomic_pool;
319

320
static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321 322 323

static int __init early_coherent_pool(char *p)
{
324
	atomic_pool_size = memparse(p, &p);
325 326 327 328
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

329 330 331 332 333
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
334
	BUG_ON(atomic_pool);
335 336 337 338 339

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
340 341
	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool_size = size;
342 343
}

344 345 346
/*
 * Initialise the coherent pool for atomic allocations.
 */
347
static int __init atomic_pool_init(void)
348
{
349
	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
351 352 353
	struct page *page;
	void *ptr;

354 355 356
	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
	if (!atomic_pool)
		goto out;
357

358
	if (dev_get_cma_area(NULL))
359 360
		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
					      &page, atomic_pool_init);
361
	else
362 363
		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
					   &page, atomic_pool_init);
364
	if (ptr) {
365 366 367 368 369 370 371 372 373 374 375 376 377
		int ret;

		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
					page_to_phys(page),
					atomic_pool_size, -1);
		if (ret)
			goto destroy_genpool;

		gen_pool_set_algo(atomic_pool,
				gen_pool_first_fit_order_align,
				(void *)PAGE_SHIFT);
		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
		       atomic_pool_size / 1024);
378 379
		return 0;
	}
380

381 382 383 384 385 386
destroy_genpool:
	gen_pool_destroy(atomic_pool);
	atomic_pool = NULL;
out:
	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
	       atomic_pool_size / 1024);
387 388 389 390 391
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
392
postcore_initcall(atomic_pool_init);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
422
			continue;
423 424 425 426 427 428 429

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
430 431 432 433 434 435 436
		 * Clear previous low-memory mapping to ensure that the
		 * TLB does not see any conflicting entries, then flush
		 * the TLB of the old entries before creating new mappings.
		 *
		 * This ensures that any speculatively loaded TLB entries
		 * (even though they may be rare) can not cause any problems,
		 * and ensures that this code is architecturally compliant.
437 438
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439
		     addr += PMD_SIZE)
440 441
			pmd_clear(pmd_off_k(addr));

442 443 444
		flush_tlb_kernel_range(__phys_to_virt(start),
				       __phys_to_virt(end));

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller)
{
	struct page *page;
	void *ptr;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

	*ret_page = page;
	return ptr;
}

488
static void *__alloc_from_pool(size_t size, struct page **ret_page)
489
{
490
	unsigned long val;
491
	void *ptr = NULL;
492

493
	if (!atomic_pool) {
494
		WARN(1, "coherent pool not initialised!\n");
495 496 497
		return NULL;
	}

498 499 500 501 502 503
	val = gen_pool_alloc(atomic_pool, size);
	if (val) {
		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);

		*ret_page = phys_to_page(phys);
		ptr = (void *)val;
504
	}
505 506

	return ptr;
507 508
}

509 510
static bool __in_atomic_pool(void *start, size_t size)
{
511
	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
512 513
}

514
static int __free_from_pool(void *start, size_t size)
515
{
516
	if (!__in_atomic_pool(start, size))
517 518
		return 0;

519
	gen_pool_free(atomic_pool, (unsigned long)start, size);
520

521 522 523 524
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
525 526
				     pgprot_t prot, struct page **ret_page,
				     const void *caller)
527 528 529 530
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
531
	void *ptr;
532 533 534 535 536 537 538

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);

539 540 541 542 543 544 545 546 547 548
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
549
	*ret_page = page;
550
	return ptr;
551 552 553
}

static void __free_from_contiguous(struct device *dev, struct page *page,
554
				   void *cpu_addr, size_t size)
555
{
556 557 558
	if (PageHighMem(page))
		__dma_free_remap(cpu_addr, size);
	else
559
		__dma_remap(page, size, PAGE_KERNEL);
560 561 562
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

563 564 565 566 567 568 569 570
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

571 572
#define nommu() 0

573
#else	/* !CONFIG_MMU */
574

575 576
#define nommu() 1

577
#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
578
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
579
#define __alloc_from_pool(size, ret_page)			NULL
580
#define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
581
#define __free_from_pool(cpu_addr, size)			0
582
#define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
583
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
584 585 586

#endif	/* CONFIG_MMU */

587 588
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
589
{
590 591 592 593 594 595 596 597 598 599 600 601
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
602
			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
603 604
{
	u64 mask = get_coherent_dma_mask(dev);
605
	struct page *page = NULL;
606
	void *addr;
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

623 624 625 626 627 628 629 630 631
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

632
	*handle = DMA_ERROR_CODE;
633
	size = PAGE_ALIGN(size);
634

R
Rob Herring 已提交
635
	if (is_coherent || nommu())
636
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
637
	else if (!(gfp & __GFP_WAIT))
638
		addr = __alloc_from_pool(size, &page);
639
	else if (!dev_get_cma_area(dev))
640
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
641
	else
642
		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
643

644
	if (addr)
645
		*handle = pfn_to_dma(dev, page_to_pfn(page));
646

647 648
	return addr;
}
L
Linus Torvalds 已提交
649 650 651 652 653

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
654 655
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
656
{
657
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
658 659 660 661 662
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

R
Rob Herring 已提交
663 664 665 666 667 668 669
	return __dma_alloc(dev, size, handle, gfp, prot, false,
			   __builtin_return_address(0));
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
670
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
R
Rob Herring 已提交
671 672 673 674 675 676
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp, prot, true,
677
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
678 679 680
}

/*
681
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
682
 */
683 684 685
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
686
{
687 688
	int ret = -ENXIO;
#ifdef CONFIG_MMU
689 690
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
691
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
692 693
	unsigned long off = vma->vm_pgoff;

694 695
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

696 697 698
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

699 700 701 702 703 704
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
705
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
706 707 708 709 710

	return ret;
}

/*
711
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
712
 */
R
Rob Herring 已提交
713 714 715
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, struct dma_attrs *attrs,
			   bool is_coherent)
L
Linus Torvalds 已提交
716
{
717
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
718

719 720 721
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

722 723
	size = PAGE_ALIGN(size);

R
Rob Herring 已提交
724
	if (is_coherent || nommu()) {
725
		__dma_free_buffer(page, size);
726 727
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
728
	} else if (!dev_get_cma_area(dev)) {
729
		__dma_free_remap(cpu_addr, size);
730 731 732 733 734 735
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
736
		__free_from_contiguous(dev, page, cpu_addr, size);
737
	}
L
Linus Torvalds 已提交
738
}
739

R
Rob Herring 已提交
740 741 742 743 744 745 746 747 748 749 750 751
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

767
static void dma_cache_maint_page(struct page *page, unsigned long offset,
768 769
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
770
{
771 772 773 774 775 776
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

777 778 779 780 781 782 783 784
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
785 786
		void *vaddr;

787 788
		page = pfn_to_page(pfn);

789
		if (PageHighMem(page)) {
790
			if (len + offset > PAGE_SIZE)
791
				len = PAGE_SIZE - offset;
792 793

			if (cache_is_vipt_nonaliasing()) {
794
				vaddr = kmap_atomic(page);
795
				op(vaddr + offset, len, dir);
796
				kunmap_atomic(vaddr);
797 798 799 800 801 802
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
803
			}
804 805
		} else {
			vaddr = page_address(page) + offset;
806
			op(vaddr, len, dir);
807 808
		}
		offset = 0;
809
		pfn++;
810 811 812
		left -= len;
	} while (left);
}
813

814 815 816 817 818 819 820
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
821 822
	size_t size, enum dma_data_direction dir)
{
823
	phys_addr_t paddr;
824

825
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
826 827

	paddr = page_to_phys(page) + off;
828 829 830 831 832 833
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
834 835
}

836
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
837 838
	size_t size, enum dma_data_direction dir)
{
839
	phys_addr_t paddr = page_to_phys(page) + off;
840 841

	/* FIXME: non-speculating: not required */
842 843
	/* in any case, don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
844 845
		outer_inv_range(paddr, paddr + size);

846 847
		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
	}
848 849

	/*
850
	 * Mark the D-cache clean for these pages to avoid extra flushing.
851
	 */
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
868
}
869

870
/**
871
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
872 873 874 875 876 877 878 879 880 881 882 883 884 885
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
886 887
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
888
{
889
	struct dma_map_ops *ops = get_dma_ops(dev);
890
	struct scatterlist *s;
891
	int i, j;
892 893

	for_each_sg(sg, s, nents, i) {
894 895 896
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
897 898
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
899 900
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
901 902
	}
	return nents;
903 904 905

 bad_mapping:
	for_each_sg(sg, s, i, j)
906
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
907
	return 0;
908 909 910
}

/**
911
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
912 913
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
914
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
915 916 917 918 919
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
920 921
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
922
{
923
	struct dma_map_ops *ops = get_dma_ops(dev);
924 925 926
	struct scatterlist *s;

	int i;
927

928
	for_each_sg(sg, s, nents, i)
929
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
930 931 932
}

/**
933
 * arm_dma_sync_sg_for_cpu
934 935 936 937 938
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
939
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
940 941
			int nents, enum dma_data_direction dir)
{
942
	struct dma_map_ops *ops = get_dma_ops(dev);
943 944 945
	struct scatterlist *s;
	int i;

946 947 948
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
949 950 951
}

/**
952
 * arm_dma_sync_sg_for_device
953 954 955 956 957
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
958
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
959 960
			int nents, enum dma_data_direction dir)
{
961
	struct dma_map_ops *ops = get_dma_ops(dev);
962 963 964
	struct scatterlist *s;
	int i;

965 966 967
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
968
}
969

970 971 972 973 974 975 976 977
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
978
	return __dma_supported(dev, mask, false);
979 980 981
}
EXPORT_SYMBOL(dma_supported);

982
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
983 984 985 986 987 988 989 990 991
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

992 993 994 995 996 997 998 999
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
1000 1001 1002 1003 1004

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

1005 1006
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);

1007 1008 1009 1010 1011 1012
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
1013
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1014
	unsigned long flags;
1015 1016
	dma_addr_t iova;
	int i;
1017

1018 1019 1020
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1021 1022
	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	align = (1 << order) - 1;
1023 1024

	spin_lock_irqsave(&mapping->lock, flags);
1025 1026 1027 1028 1029 1030 1031 1032 1033
	for (i = 0; i < mapping->nr_bitmaps; i++) {
		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits)
			continue;

		bitmap_set(mapping->bitmaps[i], start, count);
		break;
1034 1035
	}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	/*
	 * No unused range found. Try to extend the existing mapping
	 * and perform a second attempt to reserve an IO virtual
	 * address range of size bytes.
	 */
	if (i == mapping->nr_bitmaps) {
		if (extend_iommu_mapping(mapping)) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		bitmap_set(mapping->bitmaps[i], start, count);
	}
1057 1058
	spin_unlock_irqrestore(&mapping->lock, flags);

1059
	iova = mapping->base + (mapping_size * i);
1060
	iova += start << PAGE_SHIFT;
1061 1062

	return iova;
1063 1064 1065 1066 1067
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
1068
	unsigned int start, count;
1069
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1070
	unsigned long flags;
1071 1072 1073 1074 1075 1076
	dma_addr_t bitmap_base;
	u32 bitmap_index;

	if (!size)
		return;

1077
	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1078 1079
	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);

1080
	bitmap_base = mapping->base + mapping_size * bitmap_index;
1081

1082
	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1083

1084
	if (addr + size > bitmap_base + mapping_size) {
1085 1086 1087 1088 1089 1090 1091 1092
		/*
		 * The address range to be freed reaches into the iova
		 * range of the next bitmap. This should not happen as
		 * we don't allow this in __alloc_iova (at the
		 * moment).
		 */
		BUG();
	} else
1093
		count = size >> PAGE_SHIFT;
1094 1095

	spin_lock_irqsave(&mapping->lock, flags);
1096
	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1097 1098 1099
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1100 1101
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, struct dma_attrs *attrs)
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, gfp);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1132 1133 1134 1135 1136
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1137
	while (count) {
1138
		int j, order = __fls(count);
1139

1140
		pages[i] = alloc_pages(gfp, order);
1141
		while (!pages[i] && order)
1142
			pages[i] = alloc_pages(gfp, --order);
1143 1144 1145
		if (!pages[i])
			goto error;

1146
		if (order) {
1147
			split_page(pages[i], order);
1148 1149 1150 1151
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1152 1153 1154 1155 1156 1157 1158 1159

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1160
	while (i--)
1161 1162
		if (pages[i])
			__free_pages(pages[i], 0);
1163
	if (array_size <= PAGE_SIZE)
1164 1165 1166 1167 1168 1169
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

1170 1171
static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, struct dma_attrs *attrs)
1172 1173 1174 1175
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
1176 1177 1178 1179 1180 1181 1182 1183 1184

	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1185
	if (array_size <= PAGE_SIZE)
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1196 1197
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1198
{
1199 1200
	return dma_common_pages_remap(pages, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1229 1230
		ret = iommu_map(mapping->domain, iova, phys, len,
				IOMMU_READ|IOMMU_WRITE);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1259 1260
static struct page **__atomic_get_pages(void *addr)
{
1261 1262 1263 1264 1265
	struct page *page;
	phys_addr_t phys;

	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
	page = phys_to_page(phys);
1266

1267
	return (struct page **)page;
1268 1269
}

1270
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1271 1272 1273
{
	struct vm_struct *area;

1274 1275 1276
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1277 1278 1279
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1280 1281 1282 1283 1284 1285
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1307
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1308 1309 1310
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
1311
	__free_from_pool(cpu_addr, size);
1312 1313
}

1314 1315 1316
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
1317
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1318 1319 1320 1321 1322 1323
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1324
	if (!(gfp & __GFP_WAIT))
1325 1326
		return __iommu_alloc_atomic(dev, size, handle);

1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1336
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1337 1338 1339 1340 1341 1342 1343
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1344 1345 1346
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1347 1348
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1349 1350 1351 1352 1353 1354 1355 1356
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1357
	__iommu_free_buffer(dev, pages, size, attrs);
1358 1359 1360 1361 1362 1363 1364
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1365 1366
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1367
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1368 1369 1370

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1371 1372
	if (!pages)
		return -ENXIO;
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1394
	struct page **pages;
1395 1396
	size = PAGE_ALIGN(size);

1397 1398
	if (__in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size);
1399
		return;
1400
	}
1401

1402 1403 1404
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1405 1406 1407
		return;
	}

1408
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1409 1410
		dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1411
	}
1412 1413

	__iommu_remove_mapping(dev, handle, size);
1414
	__iommu_free_buffer(dev, pages, size, attrs);
1415 1416
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static int __dma_direction_to_prot(enum dma_data_direction dir)
{
	int prot;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		prot = IOMMU_READ | IOMMU_WRITE;
		break;
	case DMA_TO_DEVICE:
		prot = IOMMU_READ;
		break;
	case DMA_FROM_DEVICE:
		prot = IOMMU_WRITE;
		break;
	default:
		prot = 0;
	}

	return prot;
}

1452 1453 1454 1455 1456
/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
1457 1458
			  enum dma_data_direction dir, struct dma_attrs *attrs,
			  bool is_coherent)
1459 1460 1461 1462 1463 1464
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1465
	int prot;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

R
Rob Herring 已提交
1478 1479
		if (!is_coherent &&
			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1480 1481
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1482 1483 1484
		prot = __dma_direction_to_prot(dir);

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1499 1500 1501
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs,
		     bool is_coherent)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1517
			    dir, attrs, is_coherent) < 0)
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1530 1531
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1546
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1547 1548
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1549 1550
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1551
 *
R
Rob Herring 已提交
1552 1553 1554 1555
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1556
 */
R
Rob Herring 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
		bool is_coherent)
1584 1585 1586 1587 1588 1589 1590 1591
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
R
Rob Herring 已提交
1592
		if (!is_coherent &&
1593
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1594 1595 1596 1597 1598
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1645
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1663
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1664 1665 1666 1667
}


/**
R
Rob Herring 已提交
1668
 * arm_coherent_iommu_map_page
1669 1670 1671 1672 1673 1674
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1675
 * Coherent IOMMU aware version of arm_dma_map_page()
1676
 */
R
Rob Herring 已提交
1677
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1678 1679 1680 1681 1682
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t dma_addr;
1683
	int ret, prot, len = PAGE_ALIGN(size + offset);
1684 1685 1686 1687 1688

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

1689
	prot = __dma_direction_to_prot(dir);
1690 1691

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1692 1693 1694 1695 1696 1697 1698 1699 1700
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

R
Rob Herring 已提交
1768
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
1786
	__dma_page_dev_to_cpu(page, offset, size, dir);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1807
	.get_sgtable	= arm_iommu_get_sgtable,
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1818 1819

	.set_dma_mask		= arm_dma_set_mask,
1820 1821
};

R
Rob Herring 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
struct dma_map_ops iommu_coherent_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1833 1834

	.set_dma_mask	= arm_dma_set_mask,
R
Rob Herring 已提交
1835 1836
};

1837 1838 1839 1840
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
1841
 * @size: maximum size of the valid IO address space
1842 1843 1844 1845 1846 1847 1848 1849 1850
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
1851
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1852
{
1853 1854
	unsigned int bits = size >> PAGE_SHIFT;
	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1855
	struct dma_iommu_mapping *mapping;
1856
	int extensions = 1;
1857 1858
	int err = -ENOMEM;

1859
	if (!bitmap_size)
1860 1861
		return ERR_PTR(-EINVAL);

1862 1863 1864 1865 1866
	if (bitmap_size > PAGE_SIZE) {
		extensions = bitmap_size / PAGE_SIZE;
		bitmap_size = PAGE_SIZE;
	}

1867 1868 1869 1870
	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

1871 1872
	mapping->bitmap_size = bitmap_size;
	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1873 1874
				GFP_KERNEL);
	if (!mapping->bitmaps)
1875 1876
		goto err2;

1877
	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1878 1879 1880 1881 1882
	if (!mapping->bitmaps[0])
		goto err3;

	mapping->nr_bitmaps = 1;
	mapping->extensions = extensions;
1883
	mapping->base = base;
1884
	mapping->bits = BITS_PER_BYTE * bitmap_size;
1885

1886 1887 1888 1889
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
1890
		goto err4;
1891 1892 1893

	kref_init(&mapping->kref);
	return mapping;
1894 1895
err4:
	kfree(mapping->bitmaps[0]);
1896
err3:
1897
	kfree(mapping->bitmaps);
1898 1899 1900 1901 1902
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
1903
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1904 1905 1906

static void release_iommu_mapping(struct kref *kref)
{
1907
	int i;
1908 1909 1910 1911
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
1912 1913 1914
	for (i = 0; i < mapping->nr_bitmaps; i++)
		kfree(mapping->bitmaps[i]);
	kfree(mapping->bitmaps);
1915 1916 1917
	kfree(mapping);
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
{
	int next_bitmap;

	if (mapping->nr_bitmaps > mapping->extensions)
		return -EINVAL;

	next_bitmap = mapping->nr_bitmaps;
	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
						GFP_ATOMIC);
	if (!mapping->bitmaps[next_bitmap])
		return -ENOMEM;

	mapping->nr_bitmaps++;

	return 0;
}

1936 1937 1938 1939 1940
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
1941
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Attaches specified io address space mapping to the provided device,
 * this replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version. More than one client might be attached to
 * the same io address space mapping.
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
	dev->archdata.mapping = mapping;
	set_dma_ops(dev, &iommu_ops);

1967
	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1968 1969
	return 0;
}
1970
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
1991
	dev->archdata.mapping = NULL;
1992 1993 1994 1995
	set_dma_ops(dev, NULL);

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
1996
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1997

1998
#endif