1. 23 4月, 2020 14 次提交
  2. 13 4月, 2020 1 次提交
  3. 27 12月, 2019 1 次提交
  4. 05 10月, 2019 1 次提交
  5. 15 6月, 2018 1 次提交
  6. 25 5月, 2018 1 次提交
    • J
      Revert "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE" · d883c6cf
      Joonsoo Kim 提交于
      This reverts the following commits that change CMA design in MM.
      
       3d2054ad ("ARM: CMA: avoid double mapping to the CMA area if CONFIG_HIGHMEM=y")
      
       1d47a3ec ("mm/cma: remove ALLOC_CMA")
      
       bad8c6c0 ("mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE")
      
      Ville reported a following error on i386.
      
        Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
        microcode: microcode updated early to revision 0x4, date = 2013-06-28
        Initializing CPU#0
        Initializing HighMem for node 0 (000377fe:00118000)
        Initializing Movable for node 0 (00000001:00118000)
        BUG: Bad page state in process swapper  pfn:377fe
        page:f53effc0 count:0 mapcount:-127 mapping:00000000 index:0x0
        flags: 0x80000000()
        raw: 80000000 00000000 00000000 ffffff80 00000000 00000100 00000200 00000001
        page dumped because: nonzero mapcount
        Modules linked in:
        CPU: 0 PID: 0 Comm: swapper Not tainted 4.17.0-rc5-elk+ #145
        Hardware name: Dell Inc. Latitude E5410/03VXMC, BIOS A15 07/11/2013
        Call Trace:
         dump_stack+0x60/0x96
         bad_page+0x9a/0x100
         free_pages_check_bad+0x3f/0x60
         free_pcppages_bulk+0x29d/0x5b0
         free_unref_page_commit+0x84/0xb0
         free_unref_page+0x3e/0x70
         __free_pages+0x1d/0x20
         free_highmem_page+0x19/0x40
         add_highpages_with_active_regions+0xab/0xeb
         set_highmem_pages_init+0x66/0x73
         mem_init+0x1b/0x1d7
         start_kernel+0x17a/0x363
         i386_start_kernel+0x95/0x99
         startup_32_smp+0x164/0x168
      
      The reason for this error is that the span of MOVABLE_ZONE is extended
      to whole node span for future CMA initialization, and, normal memory is
      wrongly freed here.  I submitted the fix and it seems to work, but,
      another problem happened.
      
      It's so late time to fix the later problem so I decide to reverting the
      series.
      Reported-by: NVille Syrjälä <ville.syrjala@linux.intel.com>
      Acked-by: NLaura Abbott <labbott@redhat.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d883c6cf
  7. 12 4月, 2018 2 次提交
  8. 06 4月, 2018 2 次提交
    • M
    • D
      mm, compaction: drain pcps for zone when kcompactd fails · bc3106b2
      David Rientjes 提交于
      It's possible for free pages to become stranded on per-cpu pagesets
      (pcps) that, if drained, could be merged with buddy pages on the zone's
      free area to form large order pages, including up to MAX_ORDER.
      
      Consider a verbose example using the tools/vm/page-types tool at the
      beginning of a ZONE_NORMAL ('B' indicates a buddy page and 'S' indicates
      a slab page).  Pages on pcps do not have any page flags set.
      
        109954  1       _______S________________________________________________________
        109955  2       __________B_____________________________________________________
        109957  1       ________________________________________________________________
        109958  1       __________B_____________________________________________________
        109959  7       ________________________________________________________________
        109960  1       __________B_____________________________________________________
        109961  9       ________________________________________________________________
        10996a  1       __________B_____________________________________________________
        10996b  3       ________________________________________________________________
        10996e  1       __________B_____________________________________________________
        10996f  1       ________________________________________________________________
        ...
        109f8c  1       __________B_____________________________________________________
        109f8d  2       ________________________________________________________________
        109f8f  2       __________B_____________________________________________________
        109f91  f       ________________________________________________________________
        109fa0  1       __________B_____________________________________________________
        109fa1  7       ________________________________________________________________
        109fa8  1       __________B_____________________________________________________
        109fa9  1       ________________________________________________________________
        109faa  1       __________B_____________________________________________________
        109fab  1       _______S________________________________________________________
      
      The compaction migration scanner is attempting to defragment this memory
      since it is at the beginning of the zone.  It has done so quite well,
      all movable pages have been migrated.  From pfn [0x109955, 0x109fab),
      there are only buddy pages and pages without flags set.
      
      These pages may be stranded on pcps that could otherwise allow this
      memory to be coalesced if freed back to the zone free area.  It is
      possible that some of these pages may not be on pcps and that something
      has called alloc_pages() and used the memory directly, but we rely on
      the absence of __GFP_MOVABLE in these cases to allocate from
      MIGATE_UNMOVABLE pageblocks to try to keep these MIGRATE_MOVABLE
      pageblocks as free as possible.
      
      These buddy and pcp pages, spanning 1,621 pages, could be coalesced and
      allow for three transparent hugepages to be dynamically allocated.
      Running the numbers for all such spans on the system, it was found that
      there were over 400 such spans of only buddy pages and pages without
      flags set at the time this /proc/kpageflags sample was collected.
      Without this support, there were _no_ order-9 or order-10 pages free.
      
      When kcompactd fails to defragment memory such that a cc.order page can
      be allocated, drain all pcps for the zone back to the buddy allocator so
      this stranding cannot occur.  Compaction for that order will
      subsequently be deferred, which acts as a ratelimit on this drain.
      
      Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803010340100.88270@chino.kir.corp.google.comSigned-off-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bc3106b2
  9. 01 2月, 2018 1 次提交
  10. 18 11月, 2017 5 次提交
  11. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  12. 04 10月, 2017 1 次提交
  13. 07 7月, 2017 1 次提交
  14. 09 5月, 2017 5 次提交
  15. 04 5月, 2017 1 次提交
  16. 02 3月, 2017 1 次提交
  17. 25 2月, 2017 1 次提交