backref.c 59.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/mm.h>
20
#include <linux/rbtree.h>
21
#include <trace/events/btrfs.h>
22 23 24
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
25 26 27
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
28
#include "locking.h"
29

30 31 32
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

39 40 41 42
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
43 44
			      struct extent_inode_elem **eie,
			      bool ignore_offset)
45
{
46
	u64 offset = 0;
47 48
	struct extent_inode_elem *e;

49 50
	if (!ignore_offset &&
	    !btrfs_file_extent_compression(eb, fi) &&
51 52 53 54
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
55

56 57 58 59 60 61 62 63
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
64 65 66 67 68 69 70

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
71
	e->offset = key->offset + offset;
72 73 74 75 76
	*eie = e;

	return 0;
}

77 78 79 80 81 82 83 84 85 86
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

87 88
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
89 90
			     struct extent_inode_elem **eie,
			     bool ignore_offset)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

119
		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
120 121 122 123 124 125 126
		if (ret < 0)
			return ret;
	}

	return 0;
}

127 128
struct preftree {
	struct rb_root root;
129
	unsigned int count;
130 131
};

132
#define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
133 134 135 136 137 138 139

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
/*
 * Checks for a shared extent during backref search.
 *
 * The share_count tracks prelim_refs (direct and indirect) having a
 * ref->count >0:
 *  - incremented when a ref->count transitions to >0
 *  - decremented when a ref->count transitions to <1
 */
struct share_check {
	u64 root_objectid;
	u64 inum;
	int share_count;
};

static inline int extent_is_shared(struct share_check *sc)
{
	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
}

159 160 161 162 163
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
164
					sizeof(struct prelim_ref),
165
					0,
166
					SLAB_MEM_SPREAD,
167 168 169 170 171 172
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

173
void __cold btrfs_prelim_ref_exit(void)
174
{
175
	kmem_cache_destroy(btrfs_prelim_ref_cache);
176 177
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

219 220
static void update_share_count(struct share_check *sc, int oldcount,
			       int newcount)
221 222 223 224 225 226 227 228 229 230
{
	if ((!sc) || (oldcount == 0 && newcount < 1))
		return;

	if (oldcount > 0 && newcount < 1)
		sc->share_count--;
	else if (oldcount < 1 && newcount > 0)
		sc->share_count++;
}

231 232 233
/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
234
 * Callers should assume that newref has been freed after calling.
235
 */
236 237
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
			      struct preftree *preftree,
238 239
			      struct prelim_ref *newref,
			      struct share_check *sc)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
{
	struct rb_root *root;
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;

	root = &preftree->root;
	p = &root->rb_node;

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
269 270
			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
						     preftree->count);
271 272 273 274 275 276 277
			/*
			 * A delayed ref can have newref->count < 0.
			 * The ref->count is updated to follow any
			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
			 */
			update_share_count(sc, ref->count,
					   ref->count + newref->count);
278 279 280 281 282 283
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

284
	update_share_count(sc, 0, newref->count);
285
	preftree->count++;
286
	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	rb_link_node(&newref->rbnode, parent, p);
	rb_insert_color(&newref->rbnode, root);
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
					     rbnode)
		free_pref(ref);

	preftree->root = RB_ROOT;
304
	preftree->count = 0;
305 306
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
339
 *                (see add_missing_keys)
340 341 342 343 344
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
345 346
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
			  struct preftree *preftree, u64 root_id,
347
			  const struct btrfs_key *key, int level, u64 parent,
348 349
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
350
{
351
	struct prelim_ref *ref;
352

353 354 355
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

356
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
357 358 359 360
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
361
	if (key) {
362
		ref->key_for_search = *key;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
386
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
387
	}
388

389
	ref->inode_list = NULL;
390 391 392 393
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
394 395
	prelim_ref_insert(fs_info, preftree, ref, sc);
	return extent_is_shared(sc);
396 397
}

398
/* direct refs use root == 0, key == NULL */
399 400
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
			  struct preftrees *preftrees, int level, u64 parent,
401 402
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
403
{
404
	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
405
			      parent, wanted_disk_byte, count, sc, gfp_mask);
406 407 408
}

/* indirect refs use parent == 0 */
409 410
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
			    struct preftrees *preftrees, u64 root_id,
411
			    const struct btrfs_key *key, int level,
412 413
			    u64 wanted_disk_byte, int count,
			    struct share_check *sc, gfp_t gfp_mask)
414 415 416 417 418
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
419
	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
420
			      wanted_disk_byte, count, sc, gfp_mask);
421 422
}

423
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
424
			   struct ulist *parents, struct prelim_ref *ref,
425
			   int level, u64 time_seq, const u64 *extent_item_pos,
426
			   u64 total_refs, bool ignore_offset)
427
{
428 429 430 431
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
432
	struct btrfs_key *key_for_search = &ref->key_for_search;
433
	struct btrfs_file_extent_item *fi;
434
	struct extent_inode_elem *eie = NULL, *old = NULL;
435
	u64 disk_byte;
436 437
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
438

439 440 441
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
442 443
		if (ret < 0)
			return ret;
444
		return 0;
445
	}
446 447

	/*
448 449 450
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
451
	 */
452
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
453
		if (time_seq == SEQ_LAST)
454 455 456 457
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
458

459
	while (!ret && count < total_refs) {
460
		eb = path->nodes[0];
461 462 463 464 465 466 467 468 469 470 471 472 473
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
474
			old = NULL;
475
			count++;
476 477 478
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
479
						&eie, ignore_offset);
480 481 482
				if (ret < 0)
					break;
			}
483 484
			if (ret > 0)
				goto next;
485 486
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
487 488 489 490 491 492
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
493
			}
494
			eie = NULL;
495
		}
496
next:
497
		if (time_seq == SEQ_LAST)
498 499 500
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
501 502
	}

503 504
	if (ret > 0)
		ret = 0;
505 506
	else if (ret < 0)
		free_inode_elem_list(eie);
507
	return ret;
508 509 510 511 512 513
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
514 515 516
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
				struct prelim_ref *ref, struct ulist *parents,
517 518
				const u64 *extent_item_pos, u64 total_refs,
				bool ignore_offset)
519 520 521 522 523 524 525
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
526
	int index;
527 528 529 530

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
531 532 533

	index = srcu_read_lock(&fs_info->subvol_srcu);

534
	root = btrfs_get_fs_root(fs_info, &root_key, false);
535
	if (IS_ERR(root)) {
536
		srcu_read_unlock(&fs_info->subvol_srcu, index);
537 538 539 540
		ret = PTR_ERR(root);
		goto out;
	}

541
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
542 543 544 545 546
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

547 548
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
549
	else if (time_seq == SEQ_LAST)
550
		root_level = btrfs_header_level(root->node);
551 552
	else
		root_level = btrfs_old_root_level(root, time_seq);
553

554 555
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
556
		goto out;
557
	}
558 559

	path->lowest_level = level;
560
	if (time_seq == SEQ_LAST)
561 562 563 564 565
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
566 567 568 569

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

570 571
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
572 573 574
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
575 576 577 578
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
579
	while (!eb) {
580
		if (WARN_ON(!level)) {
581 582 583 584 585
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
586 587
	}

588
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
589
			      extent_item_pos, total_refs, ignore_offset);
590
out:
591 592
	path->lowest_level = 0;
	btrfs_release_path(path);
593 594 595
	return ret;
}

596 597 598 599 600 601 602 603
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

604
/*
605 606 607 608 609 610 611 612 613 614 615 616 617 618
 * We maintain three seperate rbtrees: one for direct refs, one for
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
619
 */
620 621
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
622
				 struct preftrees *preftrees,
623
				 const u64 *extent_item_pos, u64 total_refs,
624
				 struct share_check *sc, bool ignore_offset)
625 626 627 628 629
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
630
	struct ulist_iterator uiter;
631
	struct rb_node *rnode;
632 633 634 635 636 637

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
638 639 640 641
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
642
	 */
643 644 645 646 647 648 649 650 651 652 653
	while ((rnode = rb_first(&preftrees->indirect.root))) {
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

		rb_erase(&ref->rbnode, &preftrees->indirect.root);
654
		preftrees->indirect.count--;
655 656 657

		if (ref->count == 0) {
			free_pref(ref);
658
			continue;
659 660
		}

661 662
		if (sc && sc->root_objectid &&
		    ref->root_id != sc->root_objectid) {
663
			free_pref(ref);
664 665 666
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
667 668
		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
					   parents, extent_item_pos,
669
					   total_refs, ignore_offset);
670 671 672 673 674
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
675 676
			prelim_ref_insert(fs_info, &preftrees->direct, ref,
					  NULL);
677
			continue;
678
		} else if (err) {
679
			free_pref(ref);
680 681 682
			ret = err;
			goto out;
		}
683 684

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
685 686
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
687
		ref->parent = node ? node->val : 0;
688
		ref->inode_list = unode_aux_to_inode_list(node);
689

690
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
691
		while ((node = ulist_next(parents, &uiter))) {
692 693
			struct prelim_ref *new_ref;

694 695
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
696
			if (!new_ref) {
697
				free_pref(ref);
698
				ret = -ENOMEM;
699
				goto out;
700 701 702
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
703
			new_ref->inode_list = unode_aux_to_inode_list(node);
704 705
			prelim_ref_insert(fs_info, &preftrees->direct,
					  new_ref, NULL);
706
		}
707

708 709 710 711 712
		/*
		 * Now it's a direct ref, put it in the the direct tree. We must
		 * do this last because the ref could be merged/freed here.
		 */
		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
713

714
		ulist_reinit(parents);
715
		cond_resched();
716
	}
717
out:
718 719 720 721
	ulist_free(parents);
	return ret;
}

722 723 724
/*
 * read tree blocks and add keys where required.
 */
725
static int add_missing_keys(struct btrfs_fs_info *fs_info,
726
			    struct preftrees *preftrees)
727
{
728
	struct prelim_ref *ref;
729
	struct extent_buffer *eb;
730 731
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
732

733 734 735 736 737 738
	while ((node = rb_first(&tree->root))) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		rb_erase(node, &tree->root);

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
739
		BUG_ON(!ref->wanted_disk_byte);
740

741
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
742
		if (IS_ERR(eb)) {
743
			free_pref(ref);
744 745
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
746
			free_pref(ref);
747 748 749
			free_extent_buffer(eb);
			return -EIO;
		}
750 751 752 753 754 755 756
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
757
		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
758
		cond_resched();
759 760 761 762
	}
	return 0;
}

763 764 765 766
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
767 768
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
			    struct btrfs_delayed_ref_head *head, u64 seq,
769
			    struct preftrees *preftrees, u64 *total_refs,
770
			    struct share_check *sc)
771
{
772
	struct btrfs_delayed_ref_node *node;
773
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
774
	struct btrfs_key key;
775
	struct btrfs_key tmp_op_key;
776
	struct rb_node *n;
777
	int count;
778
	int ret = 0;
779

780
	if (extent_op && extent_op->update_key)
781
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
782

783
	spin_lock(&head->lock);
784 785 786
	for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				ref_node);
787 788 789 790 791 792 793 794 795
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
796
			count = node->ref_mod;
797 798
			break;
		case BTRFS_DROP_DELAYED_REF:
799
			count = node->ref_mod * -1;
800 801 802 803
			break;
		default:
			BUG_ON(1);
		}
804
		*total_refs += count;
805 806
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
807
			/* NORMAL INDIRECT METADATA backref */
808 809 810
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
811 812
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &tmp_op_key, ref->level + 1,
813 814
					       node->bytenr, count, sc,
					       GFP_ATOMIC);
815 816 817
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
818
			/* SHARED DIRECT METADATA backref */
819 820 821
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
822

823 824
			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
					     ref->parent, node->bytenr, count,
825
					     sc, GFP_ATOMIC);
826 827 828
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
829
			/* NORMAL INDIRECT DATA backref */
830 831 832 833 834 835
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
836 837 838 839 840

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
841
			if (sc && sc->inum && ref->objectid != sc->inum) {
842
				ret = BACKREF_FOUND_SHARED;
843
				goto out;
844 845
			}

846
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
847 848
					       &key, 0, node->bytenr, count, sc,
					       GFP_ATOMIC);
849 850 851
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
852
			/* SHARED DIRECT FULL backref */
853 854 855
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
856

857 858 859
			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
					     node->bytenr, count, sc,
					     GFP_ATOMIC);
860 861 862 863 864
			break;
		}
		default:
			WARN_ON(1);
		}
865 866 867 868 869
		/*
		 * We must ignore BACKREF_FOUND_SHARED until all delayed
		 * refs have been checked.
		 */
		if (ret && (ret != BACKREF_FOUND_SHARED))
870
			break;
871
	}
872 873 874
	if (!ret)
		ret = extent_is_shared(sc);
out:
875 876
	spin_unlock(&head->lock);
	return ret;
877 878 879 880
}

/*
 * add all inline backrefs for bytenr to the list
881 882
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
883
 */
884 885
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path, u64 bytenr,
886
			   int *info_level, struct preftrees *preftrees,
887
			   u64 *total_refs, struct share_check *sc)
888
{
889
	int ret = 0;
890 891 892
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
893
	struct btrfs_key found_key;
894 895 896 897 898 899 900 901 902 903
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
904
	slot = path->slots[0];
905 906 907 908 909 910

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
911
	*total_refs += btrfs_extent_refs(leaf, ei);
912
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
913 914 915 916

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

917 918
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
919 920 921 922 923 924
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
925 926
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
927 928 929 930 931 932 933 934 935 936
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
937 938 939 940 941
		type = btrfs_get_extent_inline_ref_type(leaf, iref,
							BTRFS_REF_TYPE_ANY);
		if (type == BTRFS_REF_TYPE_INVALID)
			return -EINVAL;

942 943 944 945
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
946 947
			ret = add_direct_ref(fs_info, preftrees,
					     *info_level + 1, offset,
948
					     bytenr, 1, NULL, GFP_NOFS);
949 950 951 952 953 954 955
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
956

957
			ret = add_direct_ref(fs_info, preftrees, 0, offset,
958
					     bytenr, count, sc, GFP_NOFS);
959 960 961
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
962 963
			ret = add_indirect_ref(fs_info, preftrees, offset,
					       NULL, *info_level + 1,
964
					       bytenr, 1, NULL, GFP_NOFS);
965 966 967 968 969 970 971 972 973 974 975 976
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
977

978
			if (sc && sc->inum && key.objectid != sc->inum) {
979 980 981 982
				ret = BACKREF_FOUND_SHARED;
				break;
			}

983
			root = btrfs_extent_data_ref_root(leaf, dref);
984

985 986
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
987
					       sc, GFP_NOFS);
988 989 990 991 992
			break;
		}
		default:
			WARN_ON(1);
		}
993 994
		if (ret)
			return ret;
995 996 997 998 999 1000 1001 1002
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
1003 1004
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1005
 */
1006 1007
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
1008
			  int info_level, struct preftrees *preftrees,
1009
			  struct share_check *sc)
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1039
			/* SHARED DIRECT METADATA backref */
1040 1041
			ret = add_direct_ref(fs_info, preftrees,
					     info_level + 1, key.offset,
1042
					     bytenr, 1, NULL, GFP_NOFS);
1043 1044
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
1045
			/* SHARED DIRECT FULL backref */
1046 1047 1048 1049 1050 1051
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1052 1053
			ret = add_direct_ref(fs_info, preftrees, 0,
					     key.offset, bytenr, count,
1054
					     sc, GFP_NOFS);
1055 1056 1057
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1058
			/* NORMAL INDIRECT METADATA backref */
1059 1060
			ret = add_indirect_ref(fs_info, preftrees, key.offset,
					       NULL, info_level + 1, bytenr,
1061
					       1, NULL, GFP_NOFS);
1062 1063
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
1064
			/* NORMAL INDIRECT DATA backref */
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1076

1077
			if (sc && sc->inum && key.objectid != sc->inum) {
1078 1079 1080 1081
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1082
			root = btrfs_extent_data_ref_root(leaf, dref);
1083 1084
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1085
					       sc, GFP_NOFS);
1086 1087 1088 1089 1090
			break;
		}
		default:
			WARN_ON(1);
		}
1091 1092 1093
		if (ret)
			return ret;

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1105
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1106 1107 1108 1109
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1110 1111 1112 1113 1114
 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
 * shared extent is detected.
 *
 * Otherwise this returns 0 for success and <0 for an error.
 *
1115 1116 1117 1118
 * If ignore_offset is set to false, only extent refs whose offsets match
 * extent_item_pos are returned.  If true, every extent ref is returned
 * and extent_item_pos is ignored.
 *
1119 1120 1121 1122
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1123
			     u64 time_seq, struct ulist *refs,
1124
			     struct ulist *roots, const u64 *extent_item_pos,
1125
			     struct share_check *sc, bool ignore_offset)
1126 1127 1128 1129
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1130
	struct btrfs_delayed_ref_head *head;
1131 1132
	int info_level = 0;
	int ret;
1133
	struct prelim_ref *ref;
1134
	struct rb_node *node;
1135
	struct extent_inode_elem *eie = NULL;
1136
	/* total of both direct AND indirect refs! */
1137
	u64 total_refs = 0;
1138 1139 1140 1141 1142
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1143 1144 1145

	key.objectid = bytenr;
	key.offset = (u64)-1;
1146 1147 1148 1149
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1150 1151 1152 1153

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1154
	if (!trans) {
1155
		path->search_commit_root = 1;
1156 1157
		path->skip_locking = 1;
	}
1158

1159
	if (time_seq == SEQ_LAST)
1160 1161
		path->skip_locking = 1;

1162 1163 1164 1165 1166 1167
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1168 1169
	head = NULL;

1170 1171 1172 1173 1174
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1175
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1176
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1177
	    time_seq != SEQ_LAST) {
1178
#else
1179
	if (trans && time_seq != SEQ_LAST) {
1180
#endif
1181 1182 1183 1184 1185 1186
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1187
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1188 1189
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1190
				refcount_inc(&head->refs);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
1201
				btrfs_put_delayed_ref_head(head);
1202 1203
				goto again;
			}
1204
			spin_unlock(&delayed_refs->lock);
1205
			ret = add_delayed_refs(fs_info, head, time_seq,
1206
					       &preftrees, &total_refs, sc);
1207
			mutex_unlock(&head->mutex);
1208
			if (ret)
1209
				goto out;
1210 1211
		} else {
			spin_unlock(&delayed_refs->lock);
1212
		}
1213 1214 1215 1216 1217 1218
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1219
		path->slots[0]--;
1220
		leaf = path->nodes[0];
1221
		slot = path->slots[0];
1222 1223
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1224 1225
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1226 1227
			ret = add_inline_refs(fs_info, path, bytenr,
					      &info_level, &preftrees,
1228
					      &total_refs, sc);
1229 1230
			if (ret)
				goto out;
1231
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1232
					     &preftrees, sc);
1233 1234 1235 1236 1237
			if (ret)
				goto out;
		}
	}

1238
	btrfs_release_path(path);
1239

1240
	ret = add_missing_keys(fs_info, &preftrees);
1241 1242 1243
	if (ret)
		goto out;

1244
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1245

1246
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1247
				    extent_item_pos, total_refs, sc, ignore_offset);
1248 1249 1250
	if (ret)
		goto out;

1251
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
	node = rb_first(&preftrees.direct.root);
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		/*
		 * ref->count < 0 can happen here if there are delayed
		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
		 * prelim_ref_insert() relies on this when merging
		 * identical refs to keep the overall count correct.
		 * prelim_ref_insert() will merge only those refs
		 * which compare identically.  Any refs having
		 * e.g. different offsets would not be merged,
		 * and would retain their original ref->count < 0.
		 */
1274
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1275 1276
			if (sc && sc->root_objectid &&
			    ref->root_id != sc->root_objectid) {
1277 1278 1279 1280
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1281 1282
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1283 1284
			if (ret < 0)
				goto out;
1285 1286
		}
		if (ref->count && ref->parent) {
1287 1288
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1289
				struct extent_buffer *eb;
1290

1291
				eb = read_tree_block(fs_info, ref->parent, 0);
1292 1293 1294 1295
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1296
					free_extent_buffer(eb);
1297 1298
					ret = -EIO;
					goto out;
1299
				}
1300 1301
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1302
				ret = find_extent_in_eb(eb, bytenr,
1303
							*extent_item_pos, &eie, ignore_offset);
1304
				btrfs_tree_read_unlock_blocking(eb);
1305
				free_extent_buffer(eb);
1306 1307 1308
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1309
			}
1310 1311 1312
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1313 1314
			if (ret < 0)
				goto out;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1325
			eie = NULL;
1326
		}
1327
		cond_resched();
1328 1329 1330 1331
	}

out:
	btrfs_free_path(path);
1332 1333 1334 1335 1336

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1337 1338
	if (ret < 0)
		free_inode_elem_list(eie);
1339 1340 1341
	return ret;
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1352
		eie = unode_aux_to_inode_list(node);
1353
		free_inode_elem_list(eie);
1354 1355 1356 1357 1358 1359
		node->aux = 0;
	}

	ulist_free(blocks);
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1370
				u64 time_seq, struct ulist **leafs,
1371
				const u64 *extent_item_pos, bool ignore_offset)
1372 1373 1374 1375
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1376
	if (!*leafs)
1377 1378
		return -ENOMEM;

1379
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1380
				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1381
	if (ret < 0 && ret != -ENOENT) {
1382
		free_leaf_list(*leafs);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1402 1403
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
1404 1405
				     u64 time_seq, struct ulist **roots,
				     bool ignore_offset)
1406 1407 1408
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1409
	struct ulist_iterator uiter;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1421
	ULIST_ITER_INIT(&uiter);
1422
	while (1) {
1423
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1424
					tmp, *roots, NULL, NULL, ignore_offset);
1425 1426 1427 1428 1429
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1430
		node = ulist_next(tmp, &uiter);
1431 1432 1433
		if (!node)
			break;
		bytenr = node->val;
1434
		cond_resched();
1435 1436 1437 1438 1439 1440
	}

	ulist_free(tmp);
	return 0;
}

1441 1442
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
1443 1444
			 u64 time_seq, struct ulist **roots,
			 bool ignore_offset)
1445 1446 1447 1448 1449
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1450
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1451
					time_seq, roots, ignore_offset);
1452 1453 1454 1455 1456
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1466 1467 1468
 * This attempts to allocate a transaction in order to account for
 * delayed refs, but continues on even when the alloc fails.
 *
1469 1470
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1471
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1472
{
1473 1474
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1475 1476 1477 1478
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1479
	struct seq_list elem = SEQ_LIST_INIT(elem);
1480
	int ret = 0;
1481 1482 1483 1484 1485
	struct share_check shared = {
		.root_objectid = root->objectid,
		.inum = inum,
		.share_count = 0,
	};
1486 1487 1488 1489 1490 1491 1492 1493 1494

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

1495 1496 1497
	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		trans = NULL;
1498
		down_read(&fs_info->commit_root_sem);
1499 1500 1501 1502
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1503 1504 1505
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1506
					roots, NULL, &shared, false);
1507
		if (ret == BACKREF_FOUND_SHARED) {
1508
			/* this is the only condition under which we return 1 */
1509 1510 1511 1512 1513
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1514
		ret = 0;
1515 1516 1517 1518
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
1519
		shared.share_count = 0;
1520 1521
		cond_resched();
	}
1522 1523

	if (trans) {
1524
		btrfs_put_tree_mod_seq(fs_info, &elem);
1525 1526
		btrfs_end_transaction(trans);
	} else {
1527
		up_read(&fs_info->commit_root_sem);
1528
	}
1529 1530 1531 1532 1533
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1543
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1544 1545 1546
	unsigned long ptr;

	key.objectid = inode_objectid;
1547
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1587
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1616 1617 1618 1619
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1620 1621 1622 1623
{
	int slot;
	u64 next_inum;
	int ret;
1624
	s64 bytes_left = ((s64)size) - 1;
1625 1626
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1627
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1628
	struct btrfs_inode_ref *iref;
1629 1630 1631 1632

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1633
	path->leave_spinning = 1;
1634
	while (1) {
M
Mark Fasheh 已提交
1635
		bytes_left -= name_len;
1636 1637
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1638
					   name_off, name_len);
1639
		if (eb != eb_in) {
1640 1641
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1642
			free_extent_buffer(eb);
1643
		}
1644 1645
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1646 1647
		if (ret > 0)
			ret = -ENOENT;
1648 1649
		if (ret)
			break;
M
Mark Fasheh 已提交
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1660
		if (eb != eb_in) {
1661 1662 1663 1664
			if (!path->skip_locking)
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1665
		}
1666 1667
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1668 1669 1670 1671

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1672 1673 1674 1675 1676 1677 1678
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1679
	path->leave_spinning = leave_spinning;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1693 1694
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1695 1696 1697
{
	int ret;
	u64 flags;
1698
	u64 size = 0;
1699
	u32 item_size;
1700
	const struct extent_buffer *eb;
1701 1702 1703
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1704 1705 1706 1707
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1708 1709 1710 1711 1712 1713 1714
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1715 1716 1717 1718 1719
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1720
	}
1721
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1722
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1723
		size = fs_info->nodesize;
1724 1725 1726
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1727
	if (found_key->objectid > logical ||
1728
	    found_key->objectid + size <= logical) {
1729 1730
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1731
		return -ENOENT;
J
Jan Schmidt 已提交
1732
	}
1733 1734 1735 1736 1737 1738 1739 1740

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1741 1742
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1743 1744
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1756 1757 1758 1759 1760 1761 1762 1763

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1764
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1765 1766 1767
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1768 1769 1770 1771 1772 1773 1774
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1775 1776 1777 1778 1779 1780 1781 1782 1783
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1794 1795 1796 1797
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1798
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1799 1800 1801 1802
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1803
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1804 1805 1806 1807
	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
						     BTRFS_REF_TYPE_ANY);
	if (*out_type == BTRFS_REF_TYPE_INVALID)
		return -EINVAL;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1820
 * call and may be modified (see get_extent_inline_ref comment).
1821 1822 1823 1824
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1825 1826
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1827 1828 1829 1830 1831 1832 1833 1834 1835
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1836
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1837
					      &eiref, &type);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1861 1862 1863 1864 1865 1866 1867

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1868 1869 1870 1871
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1872
{
1873
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1874 1875
	int ret = 0;

1876
	for (eie = inode_list; eie; eie = eie->next) {
1877 1878 1879 1880
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1881
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1882
		if (ret) {
1883 1884 1885
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1886 1887
			break;
		}
1888 1889 1890 1891 1892 1893 1894
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1895
 * the given parameters.
1896 1897 1898
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1899
				u64 extent_item_objectid, u64 extent_item_pos,
1900
				int search_commit_root,
1901 1902
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1903 1904
{
	int ret;
1905
	struct btrfs_trans_handle *trans = NULL;
1906 1907
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1908 1909
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1910
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1911 1912
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1913

1914
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1915
			extent_item_objectid);
1916

1917
	if (!search_commit_root) {
1918 1919 1920
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1921
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1922 1923
	} else {
		down_read(&fs_info->commit_root_sem);
1924
	}
1925

J
Jan Schmidt 已提交
1926
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1927
				   tree_mod_seq_elem.seq, &refs,
1928
				   &extent_item_pos, ignore_offset);
J
Jan Schmidt 已提交
1929 1930
	if (ret)
		goto out;
1931

J
Jan Schmidt 已提交
1932 1933
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1934
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1935 1936
						tree_mod_seq_elem.seq, &roots,
						ignore_offset);
J
Jan Schmidt 已提交
1937 1938
		if (ret)
			break;
J
Jan Schmidt 已提交
1939 1940
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1941 1942 1943 1944 1945 1946
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1947 1948 1949 1950
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1951
		}
1952
		ulist_free(roots);
1953 1954
	}

1955
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1956
out:
1957
	if (!search_commit_root) {
1958
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1959
		btrfs_end_transaction(trans);
1960 1961
	} else {
		up_read(&fs_info->commit_root_sem);
1962 1963
	}

1964 1965 1966 1967 1968
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
1969 1970
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1971 1972
{
	int ret;
J
Jan Schmidt 已提交
1973
	u64 extent_item_pos;
1974
	u64 flags = 0;
1975
	struct btrfs_key found_key;
1976
	int search_commit_root = path->search_commit_root;
1977

1978
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1979
	btrfs_release_path(path);
1980 1981
	if (ret < 0)
		return ret;
1982
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1983
		return -EINVAL;
1984

J
Jan Schmidt 已提交
1985
	extent_item_pos = logical - found_key.objectid;
1986 1987
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
1988
					iterate, ctx, ignore_offset);
1989 1990 1991 1992

	return ret;
}

M
Mark Fasheh 已提交
1993 1994 1995 1996 1997 1998
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1999
{
2000
	int ret = 0;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

2012
	while (!ret) {
2013 2014 2015 2016
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
2027 2028 2029 2030 2031 2032
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
2033 2034
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2035 2036
		btrfs_release_path(path);

2037
		item = btrfs_item_nr(slot);
2038 2039 2040 2041 2042
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
2043 2044 2045
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
				cur, found_key.objectid, fs_root->objectid);
M
Mark Fasheh 已提交
2046 2047
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
2048
			if (ret)
2049 2050 2051 2052
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
2053
		btrfs_tree_read_unlock_blocking(eb);
2054 2055 2056 2057 2058 2059 2060 2061
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
2089 2090 2091 2092 2093 2094
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
2095 2096 2097 2098 2099

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

2100 2101
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2115
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2149 2150 2151 2152
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2153 2154
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2166
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2167 2168
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2169 2170 2171 2172
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2173
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2188
 * from ipath->fspath->val[i].
2189
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2190
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2191
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2192 2193 2194 2195 2196 2197
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2198
			     inode_to_path, ipath);
2199 2200 2201 2202 2203 2204 2205 2206
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2207
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

2241
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2242
	if (!ifp) {
2243
		kvfree(fspath);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2256 2257
	if (!ipath)
		return;
2258
	kvfree(ipath->fspath);
2259 2260
	kfree(ipath);
}