backref.c 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30 31 32 33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
39
	u64 offset = 0;
40 41
	struct extent_inode_elem *e;

42 43 44 45 46
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
47

48 49 50 51 52 53 54 55
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
56 57 58 59 60 61 62

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
63
	e->offset = key->offset + offset;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	*eie = e;

	return 0;
}

static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

108 109 110 111 112 113
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
114
	struct btrfs_key key_for_search;
115 116
	int level;
	int count;
117
	struct extent_inode_elem *inode_list;
118 119 120 121
	u64 parent;
	u64 wanted_disk_byte;
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

181
static int __add_prelim_ref(struct list_head *head, u64 root_id,
182
			    struct btrfs_key *key, int level,
183 184
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
185 186 187
{
	struct __prelim_ref *ref;

188 189 190
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

191
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
192 193 194 195 196
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
197
		ref->key_for_search = *key;
198
	else
199
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
200

201
	ref->inode_list = NULL;
202 203 204 205 206 207 208 209 210 211
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
212
				struct ulist *parents, int level,
213
				struct btrfs_key *key_for_search, u64 time_seq,
J
Jan Schmidt 已提交
214
				u64 wanted_disk_byte,
215
				const u64 *extent_item_pos)
216
{
217 218 219 220
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
221
	struct btrfs_file_extent_item *fi;
222
	struct extent_inode_elem *eie = NULL, *old = NULL;
223 224
	u64 disk_byte;

225 226 227
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
228 229
		if (ret < 0)
			return ret;
230
		return 0;
231
	}
232 233

	/*
234 235 236
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
237
	 */
238
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
239
		ret = btrfs_next_old_leaf(root, path, time_seq);
240

241
	while (!ret) {
242
		eb = path->nodes[0];
243 244 245 246 247 248 249 250 251 252 253 254 255
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
256
			old = NULL;
257 258 259 260 261 262 263
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
264 265 266 267 268 269 270 271 272 273 274
			if (ret > 0)
				goto next;
			ret = ulist_add_merge(parents, eb->start,
					      (uintptr_t)eie,
					      (u64 *)&old, GFP_NOFS);
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
275
			}
276
		}
277
next:
278
		ret = btrfs_next_old_item(root, path, time_seq);
279 280
	}

281 282 283
	if (ret > 0)
		ret = 0;
	return ret;
284 285 286 287 288 289 290
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
291 292 293 294
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
				  const u64 *extent_item_pos)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}

J
Jan Schmidt 已提交
312
	root_level = btrfs_old_root_level(root, time_seq);
313 314 315 316 317

	if (root_level + 1 == level)
		goto out;

	path->lowest_level = level;
318
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
319 320
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
321 322 323
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
324 325 326 327
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
328
	while (!eb) {
329
		if (WARN_ON(!level)) {
330 331 332 333 334
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
335 336
	}

337 338 339
	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
				time_seq, ref->wanted_disk_byte,
				extent_item_pos);
340
out:
341 342
	path->lowest_level = 0;
	btrfs_release_path(path);
343 344 345 346 347 348 349
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
350
				   struct btrfs_path *path, u64 time_seq,
351 352
				   struct list_head *head,
				   const u64 *extent_item_pos)
353 354 355 356 357 358 359 360
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
361
	struct ulist_iterator uiter;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
377 378
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
					     parents, extent_item_pos);
379 380
		if (err == -ENOMEM)
			goto out;
381
		if (err)
382 383 384
			continue;

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
385 386
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
387
		ref->parent = node ? node->val : 0;
388
		ref->inode_list = node ?
389
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
390 391

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
392
		while ((node = ulist_next(parents, &uiter))) {
393 394
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
395 396
			if (!new_ref) {
				ret = -ENOMEM;
397
				goto out;
398 399 400
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
401 402
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
403 404 405 406
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
407
out:
408 409 410 411
	ulist_free(parents);
	return ret;
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
451 452 453 454
		if (!eb || !extent_buffer_uptodate(eb)) {
			free_extent_buffer(eb);
			return -EIO;
		}
455 456 457 458 459 460 461 462 463 464 465
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

466 467 468 469
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
470 471 472 473
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
474 475
 * mode = 2: merge identical parents
 */
476
static void __merge_refs(struct list_head *head, int mode)
477 478 479 480 481 482 483 484 485 486 487 488 489
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
490
			struct __prelim_ref *xchg;
491
			struct extent_inode_elem *eie;
492 493 494 495

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
496
				if (!ref_for_same_block(ref1, ref2))
497
					continue;
498 499 500 501 502
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
503 504 505 506
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
507 508 509 510 511 512 513 514 515 516

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

517
			list_del(&ref2->list);
518
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
519 520 521 522 523 524 525 526 527 528 529 530 531 532
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
			      struct list_head *prefs)
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
533 534
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
535
	int sgn;
536
	int ret = 0;
537 538

	if (extent_op && extent_op->update_key)
539
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
540

541 542 543
	spin_lock(&head->lock);
	n = rb_first(&head->ref_root);
	while (n) {
544 545 546
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
547
		n = rb_next(n);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
570
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
571
					       ref->level + 1, 0, node->bytenr,
572
					       node->ref_mod * sgn, GFP_ATOMIC);
573 574 575 576 577 578
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
579
			ret = __add_prelim_ref(prefs, ref->root, NULL,
580 581
					       ref->level + 1, ref->parent,
					       node->bytenr,
582
					       node->ref_mod * sgn, GFP_ATOMIC);
583 584 585 586 587 588 589 590 591 592 593
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
594
					       node->ref_mod * sgn, GFP_ATOMIC);
595 596 597 598 599 600 601 602 603 604 605 606
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
607
					       node->ref_mod * sgn, GFP_ATOMIC);
608 609 610 611 612
			break;
		}
		default:
			WARN_ON(1);
		}
613
		if (ret)
614
			break;
615
	}
616 617
	spin_unlock(&head->lock);
	return ret;
618 619 620 621 622 623 624
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
625
			     int *info_level, struct list_head *prefs)
626
{
627
	int ret = 0;
628 629 630
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
631
	struct btrfs_key found_key;
632 633 634 635 636 637 638 639 640 641
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
642
	slot = path->slots[0];
643 644 645 646 647 648

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
649
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
650 651 652 653

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

654 655
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
656 657 658 659 660 661
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
662 663
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
679
			ret = __add_prelim_ref(prefs, 0, NULL,
680
						*info_level + 1, offset,
681
						bytenr, 1, GFP_NOFS);
682 683 684 685 686 687 688 689
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
690
					       bytenr, count, GFP_NOFS);
691 692 693
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
694 695
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
696
					       bytenr, 1, GFP_NOFS);
697 698 699 700 701 702 703 704 705 706 707 708 709
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
710
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
711
					       bytenr, count, GFP_NOFS);
712 713 714 715 716
			break;
		}
		default:
			WARN_ON(1);
		}
717 718
		if (ret)
			return ret;
719 720 721 722 723 724 725 726 727 728 729
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
730
			    int info_level, struct list_head *prefs)
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
760
			ret = __add_prelim_ref(prefs, 0, NULL,
761
						info_level + 1, key.offset,
762
						bytenr, 1, GFP_NOFS);
763 764 765 766 767 768 769 770 771
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
772
						bytenr, count, GFP_NOFS);
773 774 775
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
776 777
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
778
					       bytenr, 1, GFP_NOFS);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
794
					       bytenr, count, GFP_NOFS);
795 796 797 798 799
			break;
		}
		default:
			WARN_ON(1);
		}
800 801 802
		if (ret)
			return ret;

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
818 819
			     u64 time_seq, struct ulist *refs,
			     struct ulist *roots, const u64 *extent_item_pos)
820 821 822 823
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
824
	struct btrfs_delayed_ref_head *head;
825 826 827 828 829 830 831 832 833 834 835
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
836 837 838 839
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
840 841 842 843

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
844 845
	if (!trans)
		path->search_commit_root = 1;
846 847 848 849 850 851 852

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
853 854
	head = NULL;

855 856 857 858 859
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

860
	if (trans) {
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
884
			spin_unlock(&delayed_refs->lock);
885
			ret = __add_delayed_refs(head, time_seq,
886
						 &prefs_delayed);
887
			mutex_unlock(&head->mutex);
888
			if (ret)
889
				goto out;
890 891
		} else {
			spin_unlock(&delayed_refs->lock);
892
		}
893 894 895 896 897 898
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

899
		path->slots[0]--;
900
		leaf = path->nodes[0];
901
		slot = path->slots[0];
902 903
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
904 905
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
906
			ret = __add_inline_refs(fs_info, path, bytenr,
907
						&info_level, &prefs);
908 909
			if (ret)
				goto out;
910
			ret = __add_keyed_refs(fs_info, path, bytenr,
911 912 913 914 915 916 917 918 919
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

920 921 922 923
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

924
	__merge_refs(&prefs, 1);
925

926 927
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
				      extent_item_pos);
928 929 930
	if (ret)
		goto out;

931
	__merge_refs(&prefs, 2);
932 933 934

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
935
		WARN_ON(ref->count < 0);
936 937 938
		if (ref->count && ref->root_id && ref->parent == 0) {
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
939 940
			if (ret < 0)
				goto out;
941 942
		}
		if (ref->count && ref->parent) {
943
			struct extent_inode_elem *eie = NULL;
944
			if (extent_item_pos && !ref->inode_list) {
945 946 947 948 949 950
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
951 952
				if (!eb || !extent_buffer_uptodate(eb)) {
					free_extent_buffer(eb);
953 954
					ret = -EIO;
					goto out;
955
				}
956 957 958
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
				free_extent_buffer(eb);
959 960 961
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
962
			}
963
			ret = ulist_add_merge(refs, ref->parent,
964
					      (uintptr_t)ref->inode_list,
965
					      (u64 *)&eie, GFP_NOFS);
966 967
			if (ret < 0)
				goto out;
968 969 970 971 972 973 974 975 976 977
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
978
		}
979
		list_del(&ref->list);
980
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
981 982 983 984 985 986 987
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
988
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
989 990 991 992 993
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
994
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
995 996 997 998 999
	}

	return ret;
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct extent_inode_elem *eie_next;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1011
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		for (; eie; eie = eie_next) {
			eie_next = eie->next;
			kfree(eie);
		}
		node->aux = 0;
	}

	ulist_free(blocks);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1032
				u64 time_seq, struct ulist **leafs,
1033
				const u64 *extent_item_pos)
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
{
	struct ulist *tmp;
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*leafs = ulist_alloc(GFP_NOFS);
	if (!*leafs) {
		ulist_free(tmp);
		return -ENOMEM;
	}

1047
	ret = find_parent_nodes(trans, fs_info, bytenr,
1048
				time_seq, *leafs, tmp, extent_item_pos);
1049 1050 1051
	ulist_free(tmp);

	if (ret < 0 && ret != -ENOENT) {
1052
		free_leaf_list(*leafs);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1074
				u64 time_seq, struct ulist **roots)
1075 1076 1077
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1078
	struct ulist_iterator uiter;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1090
	ULIST_ITER_INIT(&uiter);
1091
	while (1) {
1092
		ret = find_parent_nodes(trans, fs_info, bytenr,
1093
					time_seq, tmp, *roots, NULL);
1094 1095 1096 1097 1098
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1099
		node = ulist_next(tmp, &uiter);
1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (!node)
			break;
		bytenr = node->val;
	}

	ulist_free(tmp);
	return 0;
}

1109 1110 1111 1112 1113 1114 1115
/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
1116 1117
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_ITEM_KEY, &key);
1118 1119 1120 1121 1122 1123
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
1124 1125
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_REF_KEY, found_key);
1126 1127
}

M
Mark Fasheh 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1210 1211 1212 1213
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1214 1215 1216 1217
{
	int slot;
	u64 next_inum;
	int ret;
1218
	s64 bytes_left = ((s64)size) - 1;
1219 1220
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1221
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1222
	struct btrfs_inode_ref *iref;
1223 1224 1225 1226

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1227
	path->leave_spinning = 1;
1228
	while (1) {
M
Mark Fasheh 已提交
1229
		bytes_left -= name_len;
1230 1231
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1232
					   name_off, name_len);
1233 1234
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1235
			free_extent_buffer(eb);
1236
		}
1237
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1238 1239
		if (ret > 0)
			ret = -ENOENT;
1240 1241
		if (ret)
			break;
M
Mark Fasheh 已提交
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1252
		if (eb != eb_in) {
1253
			atomic_inc(&eb->refs);
1254 1255 1256
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1257 1258
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1259 1260 1261 1262

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1263 1264 1265 1266 1267 1268 1269
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1270
	path->leave_spinning = leave_spinning;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1284 1285
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1286 1287 1288
{
	int ret;
	u64 flags;
1289
	u64 size = 0;
1290 1291 1292 1293 1294
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1295 1296 1297 1298
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	ret = btrfs_previous_item(fs_info->extent_root, path,
					0, BTRFS_EXTENT_ITEM_KEY);
	if (ret < 0)
		return ret;

	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1311 1312 1313 1314 1315 1316 1317
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
		size = fs_info->extent_root->leafsize;
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

	if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
	     found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1318
	    found_key->objectid > logical ||
1319
	    found_key->objectid + size <= logical) {
1320
		pr_debug("logical %llu is not within any extent\n", logical);
1321
		return -ENOENT;
J
Jan Schmidt 已提交
1322
	}
1323 1324 1325 1326 1327 1328 1329 1330

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1331 1332
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1333 1334
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1438 1439
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1440
				iterate_extent_inodes_t *iterate, void *ctx)
1441
{
1442
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1443 1444
	int ret = 0;

1445
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1446
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1447 1448 1449
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1450
		if (ret) {
1451 1452
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1453 1454
			break;
		}
1455 1456 1457 1458 1459 1460 1461
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1462
 * the given parameters.
1463 1464 1465
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1466
				u64 extent_item_objectid, u64 extent_item_pos,
1467
				int search_commit_root,
1468 1469 1470
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1471
	struct btrfs_trans_handle *trans = NULL;
1472 1473
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1474 1475
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1476
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1477 1478
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1479

J
Jan Schmidt 已提交
1480 1481
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1482

1483
	if (!search_commit_root) {
1484 1485 1486
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1487
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1488
	}
1489

J
Jan Schmidt 已提交
1490
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1491
				   tree_mod_seq_elem.seq, &refs,
1492
				   &extent_item_pos);
J
Jan Schmidt 已提交
1493 1494
	if (ret)
		goto out;
1495

J
Jan Schmidt 已提交
1496 1497
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1498
		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1499
					   tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1500 1501
		if (ret)
			break;
J
Jan Schmidt 已提交
1502 1503
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1504
			pr_debug("root %llu references leaf %llu, data list "
1505
				 "%#llx\n", root_node->val, ref_node->val,
1506
				 ref_node->aux);
1507 1508 1509 1510 1511
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1512
		}
1513
		ulist_free(roots);
1514 1515
	}

1516
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1517
out:
1518
	if (!search_commit_root) {
1519
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1520 1521 1522
		btrfs_end_transaction(trans, fs_info->extent_root);
	}

1523 1524 1525 1526 1527 1528 1529 1530
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1531
	u64 extent_item_pos;
1532
	u64 flags = 0;
1533
	struct btrfs_key found_key;
1534
	int search_commit_root = path->search_commit_root;
1535

1536
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1537
	btrfs_release_path(path);
1538 1539
	if (ret < 0)
		return ret;
1540
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1541
		return -EINVAL;
1542

J
Jan Schmidt 已提交
1543
	extent_item_pos = logical - found_key.objectid;
1544 1545 1546
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1547 1548 1549 1550

	return ret;
}

M
Mark Fasheh 已提交
1551 1552 1553 1554 1555 1556
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1557
{
1558
	int ret = 0;
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1570
	while (!ret) {
1571
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1572
				     &found_key);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1583 1584 1585 1586 1587 1588
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1589 1590
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1591 1592
		btrfs_release_path(path);

1593
		item = btrfs_item_nr(slot);
1594 1595 1596 1597 1598
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1599
			pr_debug("following ref at offset %u for inode %llu in "
1600 1601
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1602 1603
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1604
			if (ret)
1605 1606 1607 1608
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1609
		btrfs_tree_read_unlock_blocking(eb);
1610 1611 1612 1613 1614 1615 1616 1617
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1646 1647 1648 1649 1650 1651
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1652 1653 1654 1655 1656 1657

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
1658 1659
		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
M
Mark Fasheh 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1707 1708 1709 1710
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1711 1712
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1724
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1725 1726
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1727 1728 1729 1730
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1731
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1746
 * from ipath->fspath->val[i].
1747
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1748
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1749 1750 1751 1752 1753 1754 1755
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1756
			     inode_to_path, ipath);
1757 1758 1759 1760 1761 1762 1763 1764
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1765
	data = vmalloc(alloc_bytes);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1814 1815
	if (!ipath)
		return;
1816
	vfree(ipath->fspath);
1817 1818
	kfree(ipath);
}