backref.c 47.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30 31 32 33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
39
	u64 offset = 0;
40 41
	struct extent_inode_elem *e;

42 43 44 45 46
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
47

48 49 50 51 52 53 54 55
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
56 57 58 59 60 61 62

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
63
	e->offset = key->offset + offset;
64 65 66 67 68
	*eie = e;

	return 0;
}

69 70 71 72 73 74 75 76 77 78
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

118 119 120 121 122 123
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
124
	struct btrfs_key key_for_search;
125 126
	int level;
	int count;
127
	struct extent_inode_elem *inode_list;
128 129 130 131
	u64 parent;
	u64 wanted_disk_byte;
};

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

191
static int __add_prelim_ref(struct list_head *head, u64 root_id,
192
			    struct btrfs_key *key, int level,
193 194
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
195 196 197
{
	struct __prelim_ref *ref;

198 199 200
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

201
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
202 203 204 205 206
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
207
		ref->key_for_search = *key;
208
	else
209
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
210

211
	ref->inode_list = NULL;
212 213 214 215 216 217 218 219 220 221
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
222
			   struct ulist *parents, struct __prelim_ref *ref,
223 224
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
225
{
226 227 228 229
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
230
	struct btrfs_key *key_for_search = &ref->key_for_search;
231
	struct btrfs_file_extent_item *fi;
232
	struct extent_inode_elem *eie = NULL, *old = NULL;
233
	u64 disk_byte;
234 235
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
236

237 238 239
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
240 241
		if (ret < 0)
			return ret;
242
		return 0;
243
	}
244 245

	/*
246 247 248
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
249
	 */
250
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
251
		ret = btrfs_next_old_leaf(root, path, time_seq);
252

253
	while (!ret && count < total_refs) {
254
		eb = path->nodes[0];
255 256 257 258 259 260 261 262 263 264 265 266 267
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
268
			old = NULL;
269
			count++;
270 271 272 273 274 275 276
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
277 278 279 280 281 282 283 284 285 286 287
			if (ret > 0)
				goto next;
			ret = ulist_add_merge(parents, eb->start,
					      (uintptr_t)eie,
					      (u64 *)&old, GFP_NOFS);
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
288
			}
289
			eie = NULL;
290
		}
291
next:
292
		ret = btrfs_next_old_item(root, path, time_seq);
293 294
	}

295 296
	if (ret > 0)
		ret = 0;
297 298
	else if (ret < 0)
		free_inode_elem_list(eie);
299
	return ret;
300 301 302 303 304 305 306
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
307 308 309
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
310
				  const u64 *extent_item_pos, u64 total_refs)
311 312 313 314 315 316 317
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
318
	int index;
319 320 321 322

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
323 324 325

	index = srcu_read_lock(&fs_info->subvol_srcu);

326 327
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
328
		srcu_read_unlock(&fs_info->subvol_srcu, index);
329 330 331 332
		ret = PTR_ERR(root);
		goto out;
	}

J
Jan Schmidt 已提交
333
	root_level = btrfs_old_root_level(root, time_seq);
334

335 336
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
337
		goto out;
338
	}
339 340

	path->lowest_level = level;
341
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
342 343 344 345

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

346 347
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
348 349 350
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
351 352 353 354
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
355
	while (!eb) {
356
		if (WARN_ON(!level)) {
357 358 359 360 361
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
362 363
	}

364
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
365
			      extent_item_pos, total_refs);
366
out:
367 368
	path->lowest_level = 0;
	btrfs_release_path(path);
369 370 371 372 373 374 375
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
376
				   struct btrfs_path *path, u64 time_seq,
377
				   struct list_head *head,
378
				   const u64 *extent_item_pos, u64 total_refs)
379 380 381 382 383 384 385 386
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
387
	struct ulist_iterator uiter;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
403
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
404 405
					     parents, extent_item_pos,
					     total_refs);
406 407 408 409 410
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
411
			continue;
412 413 414 415
		} else if (err) {
			ret = err;
			goto out;
		}
416 417

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
418 419
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
420
		ref->parent = node ? node->val : 0;
421
		ref->inode_list = node ?
422
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
423 424

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
425
		while ((node = ulist_next(parents, &uiter))) {
426 427
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
428 429
			if (!new_ref) {
				ret = -ENOMEM;
430
				goto out;
431 432 433
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
434 435
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
436 437 438 439
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
440
out:
441 442 443 444
	ulist_free(parents);
	return ret;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
484 485 486 487
		if (!eb || !extent_buffer_uptodate(eb)) {
			free_extent_buffer(eb);
			return -EIO;
		}
488 489 490 491 492 493 494 495 496 497 498
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

499 500 501 502
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
503 504 505 506
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
507 508
 * mode = 2: merge identical parents
 */
509
static void __merge_refs(struct list_head *head, int mode)
510 511 512 513 514 515 516 517 518 519 520 521 522
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
523
			struct __prelim_ref *xchg;
524
			struct extent_inode_elem *eie;
525 526 527 528

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
529
				if (!ref_for_same_block(ref1, ref2))
530
					continue;
531 532 533 534 535
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
536 537 538 539
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
540 541 542 543 544 545 546 547 548 549

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

550
			list_del(&ref2->list);
551
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
552 553 554 555 556 557 558 559 560 561
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
562
			      struct list_head *prefs, u64 *total_refs)
563 564 565
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
566 567
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
568
	int sgn;
569
	int ret = 0;
570 571

	if (extent_op && extent_op->update_key)
572
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
573

574 575 576
	spin_lock(&head->lock);
	n = rb_first(&head->ref_root);
	while (n) {
577 578 579
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
580
		n = rb_next(n);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
598
		*total_refs += (node->ref_mod * sgn);
599 600 601 602 603
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
604
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
605
					       ref->level + 1, 0, node->bytenr,
606
					       node->ref_mod * sgn, GFP_ATOMIC);
607 608 609 610 611 612
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
613
			ret = __add_prelim_ref(prefs, ref->root, NULL,
614 615
					       ref->level + 1, ref->parent,
					       node->bytenr,
616
					       node->ref_mod * sgn, GFP_ATOMIC);
617 618 619 620 621 622 623 624 625 626 627
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
628
					       node->ref_mod * sgn, GFP_ATOMIC);
629 630 631 632 633 634 635 636 637 638 639 640
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
641
					       node->ref_mod * sgn, GFP_ATOMIC);
642 643 644 645 646
			break;
		}
		default:
			WARN_ON(1);
		}
647
		if (ret)
648
			break;
649
	}
650 651
	spin_unlock(&head->lock);
	return ret;
652 653 654 655 656 657 658
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
659 660
			     int *info_level, struct list_head *prefs,
			     u64 *total_refs)
661
{
662
	int ret = 0;
663 664 665
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
666
	struct btrfs_key found_key;
667 668 669 670 671 672 673 674 675 676
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
677
	slot = path->slots[0];
678 679 680 681 682 683

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
684
	*total_refs += btrfs_extent_refs(leaf, ei);
685
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
686 687 688 689

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

690 691
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
692 693 694 695 696 697
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
698 699
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
715
			ret = __add_prelim_ref(prefs, 0, NULL,
716
						*info_level + 1, offset,
717
						bytenr, 1, GFP_NOFS);
718 719 720 721 722 723 724 725
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
726
					       bytenr, count, GFP_NOFS);
727 728 729
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
730 731
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
732
					       bytenr, 1, GFP_NOFS);
733 734 735 736 737 738 739 740 741 742 743 744 745
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
746
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
747
					       bytenr, count, GFP_NOFS);
748 749 750 751 752
			break;
		}
		default:
			WARN_ON(1);
		}
753 754
		if (ret)
			return ret;
755 756 757 758 759 760 761 762 763 764 765
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
766
			    int info_level, struct list_head *prefs)
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
796
			ret = __add_prelim_ref(prefs, 0, NULL,
797
						info_level + 1, key.offset,
798
						bytenr, 1, GFP_NOFS);
799 800 801 802 803 804 805 806 807
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
808
						bytenr, count, GFP_NOFS);
809 810 811
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
812 813
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
814
					       bytenr, 1, GFP_NOFS);
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
830
					       bytenr, count, GFP_NOFS);
831 832 833 834 835
			break;
		}
		default:
			WARN_ON(1);
		}
836 837 838
		if (ret)
			return ret;

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
854 855
			     u64 time_seq, struct ulist *refs,
			     struct ulist *roots, const u64 *extent_item_pos)
856 857 858 859
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
860
	struct btrfs_delayed_ref_head *head;
861 862 863 864 865
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
866
	struct extent_inode_elem *eie = NULL;
867
	u64 total_refs = 0;
868 869 870 871 872 873

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
874 875 876 877
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
878 879 880 881

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
882
	if (!trans) {
883
		path->search_commit_root = 1;
884 885
		path->skip_locking = 1;
	}
886 887 888 889 890 891 892

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
893 894
	head = NULL;

895 896 897 898 899
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

900
	if (trans) {
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
924
			spin_unlock(&delayed_refs->lock);
925
			ret = __add_delayed_refs(head, time_seq,
926
						 &prefs_delayed, &total_refs);
927
			mutex_unlock(&head->mutex);
928
			if (ret)
929
				goto out;
930 931
		} else {
			spin_unlock(&delayed_refs->lock);
932
		}
933 934 935 936 937 938
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

939
		path->slots[0]--;
940
		leaf = path->nodes[0];
941
		slot = path->slots[0];
942 943
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
944 945
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
946
			ret = __add_inline_refs(fs_info, path, bytenr,
947 948
						&info_level, &prefs,
						&total_refs);
949 950
			if (ret)
				goto out;
951
			ret = __add_keyed_refs(fs_info, path, bytenr,
952 953 954 955 956 957 958 959 960
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

961 962 963 964
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

965
	__merge_refs(&prefs, 1);
966

967
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
968
				      extent_item_pos, total_refs);
969 970 971
	if (ret)
		goto out;

972
	__merge_refs(&prefs, 2);
973 974 975

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
976
		WARN_ON(ref->count < 0);
977
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
978 979
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
980 981
			if (ret < 0)
				goto out;
982 983
		}
		if (ref->count && ref->parent) {
984
			if (extent_item_pos && !ref->inode_list) {
985 986 987 988 989 990
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
991 992
				if (!eb || !extent_buffer_uptodate(eb)) {
					free_extent_buffer(eb);
993 994
					ret = -EIO;
					goto out;
995
				}
996 997 998
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
				free_extent_buffer(eb);
999 1000 1001
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1002
			}
1003
			ret = ulist_add_merge(refs, ref->parent,
1004
					      (uintptr_t)ref->inode_list,
1005
					      (u64 *)&eie, GFP_NOFS);
1006 1007
			if (ret < 0)
				goto out;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1018
			eie = NULL;
1019
		}
1020
		list_del(&ref->list);
1021
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1022 1023 1024 1025 1026 1027 1028
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1029
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1030 1031 1032 1033 1034
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1035
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1036
	}
1037 1038
	if (ret < 0)
		free_inode_elem_list(eie);
1039 1040 1041
	return ret;
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1052
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1053
		free_inode_elem_list(eie);
1054 1055 1056 1057 1058 1059
		node->aux = 0;
	}

	ulist_free(blocks);
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1070
				u64 time_seq, struct ulist **leafs,
1071
				const u64 *extent_item_pos)
1072 1073 1074 1075
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1076
	if (!*leafs)
1077 1078
		return -ENOMEM;

1079
	ret = find_parent_nodes(trans, fs_info, bytenr,
1080
				time_seq, *leafs, NULL, extent_item_pos);
1081
	if (ret < 0 && ret != -ENOENT) {
1082
		free_leaf_list(*leafs);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1104
				u64 time_seq, struct ulist **roots)
1105 1106 1107
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1108
	struct ulist_iterator uiter;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1120
	ULIST_ITER_INIT(&uiter);
1121
	while (1) {
1122
		ret = find_parent_nodes(trans, fs_info, bytenr,
1123
					time_seq, tmp, *roots, NULL);
1124 1125 1126 1127 1128
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1129
		node = ulist_next(tmp, &uiter);
1130 1131 1132
		if (!node)
			break;
		bytenr = node->val;
1133
		cond_resched();
1134 1135 1136 1137 1138 1139
	}

	ulist_free(tmp);
	return 0;
}

1140 1141 1142 1143 1144 1145 1146
/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
1147 1148
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_ITEM_KEY, &key);
1149 1150 1151 1152 1153 1154
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
1155 1156
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_REF_KEY, found_key);
1157 1158
}

M
Mark Fasheh 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1241 1242 1243 1244
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1245 1246 1247 1248
{
	int slot;
	u64 next_inum;
	int ret;
1249
	s64 bytes_left = ((s64)size) - 1;
1250 1251
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1252
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1253
	struct btrfs_inode_ref *iref;
1254 1255 1256 1257

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1258
	path->leave_spinning = 1;
1259
	while (1) {
M
Mark Fasheh 已提交
1260
		bytes_left -= name_len;
1261 1262
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1263
					   name_off, name_len);
1264 1265
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1266
			free_extent_buffer(eb);
1267
		}
1268
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1269 1270
		if (ret > 0)
			ret = -ENOENT;
1271 1272
		if (ret)
			break;
M
Mark Fasheh 已提交
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1283
		if (eb != eb_in) {
1284
			atomic_inc(&eb->refs);
1285 1286 1287
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1288 1289
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1290 1291 1292 1293

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1294 1295 1296 1297 1298 1299 1300
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1301
	path->leave_spinning = leave_spinning;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1315 1316
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1317 1318 1319
{
	int ret;
	u64 flags;
1320
	u64 size = 0;
1321 1322 1323 1324 1325
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1326 1327 1328 1329
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1330 1331 1332 1333 1334 1335 1336
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1337 1338 1339 1340 1341
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1342
	}
1343
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1344 1345 1346 1347 1348
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
		size = fs_info->extent_root->leafsize;
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1349
	if (found_key->objectid > logical ||
1350
	    found_key->objectid + size <= logical) {
1351
		pr_debug("logical %llu is not within any extent\n", logical);
1352
		return -ENOENT;
J
Jan Schmidt 已提交
1353
	}
1354 1355 1356 1357 1358 1359 1360 1361

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1362 1363
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1364 1365
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1469 1470
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1471
				iterate_extent_inodes_t *iterate, void *ctx)
1472
{
1473
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1474 1475
	int ret = 0;

1476
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1477
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1478 1479 1480
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1481
		if (ret) {
1482 1483
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1484 1485
			break;
		}
1486 1487 1488 1489 1490 1491 1492
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1493
 * the given parameters.
1494 1495 1496
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1497
				u64 extent_item_objectid, u64 extent_item_pos,
1498
				int search_commit_root,
1499 1500 1501
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1502
	struct btrfs_trans_handle *trans = NULL;
1503 1504
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1505 1506
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1507
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1508 1509
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1510

J
Jan Schmidt 已提交
1511 1512
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1513

1514
	if (!search_commit_root) {
1515 1516 1517
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1518
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1519
	}
1520

J
Jan Schmidt 已提交
1521
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1522
				   tree_mod_seq_elem.seq, &refs,
1523
				   &extent_item_pos);
J
Jan Schmidt 已提交
1524 1525
	if (ret)
		goto out;
1526

J
Jan Schmidt 已提交
1527 1528
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1529
		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1530
					   tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1531 1532
		if (ret)
			break;
J
Jan Schmidt 已提交
1533 1534
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1535
			pr_debug("root %llu references leaf %llu, data list "
1536
				 "%#llx\n", root_node->val, ref_node->val,
1537
				 ref_node->aux);
1538 1539 1540 1541 1542
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1543
		}
1544
		ulist_free(roots);
1545 1546
	}

1547
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1548
out:
1549
	if (!search_commit_root) {
1550
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1551 1552 1553
		btrfs_end_transaction(trans, fs_info->extent_root);
	}

1554 1555 1556 1557 1558 1559 1560 1561
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1562
	u64 extent_item_pos;
1563
	u64 flags = 0;
1564
	struct btrfs_key found_key;
1565
	int search_commit_root = path->search_commit_root;
1566

1567
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1568
	btrfs_release_path(path);
1569 1570
	if (ret < 0)
		return ret;
1571
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1572
		return -EINVAL;
1573

J
Jan Schmidt 已提交
1574
	extent_item_pos = logical - found_key.objectid;
1575 1576 1577
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1578 1579 1580 1581

	return ret;
}

M
Mark Fasheh 已提交
1582 1583 1584 1585 1586 1587
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1588
{
1589
	int ret = 0;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1601
	while (!ret) {
1602
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1603
				     &found_key);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1614 1615 1616 1617 1618 1619
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1620 1621
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1622 1623
		btrfs_release_path(path);

1624
		item = btrfs_item_nr(slot);
1625 1626 1627 1628 1629
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1630
			pr_debug("following ref at offset %u for inode %llu in "
1631 1632
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1633 1634
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1635
			if (ret)
1636 1637 1638 1639
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1640
		btrfs_tree_read_unlock_blocking(eb);
1641 1642 1643 1644 1645 1646 1647 1648
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1677 1678 1679 1680 1681 1682
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1683 1684 1685 1686 1687 1688

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
1689 1690
		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
M
Mark Fasheh 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1738 1739 1740 1741
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1742 1743
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1755
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1756 1757
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1758 1759 1760 1761
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1762
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1777
 * from ipath->fspath->val[i].
1778
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1779
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1780 1781 1782 1783 1784 1785 1786
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1787
			     inode_to_path, ipath);
1788 1789 1790 1791 1792 1793 1794 1795
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1796
	data = vmalloc(alloc_bytes);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1845 1846
	if (!ipath)
		return;
1847
	vfree(ipath->fspath);
1848 1849
	kfree(ipath);
}