backref.c 56.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/mm.h>
20
#include <linux/rbtree.h>
21
#include <trace/events/btrfs.h>
22 23 24
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
25 26 27
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
28
#include "locking.h"
29

30 31 32
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

39 40 41 42 43
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
			      struct extent_inode_elem **eie)
44
{
45
	u64 offset = 0;
46 47
	struct extent_inode_elem *e;

48 49 50 51 52
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
53

54 55 56 57 58 59 60 61
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
62 63 64 65 66 67 68

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
69
	e->offset = key->offset + offset;
70 71 72 73 74
	*eie = e;

	return 0;
}

75 76 77 78 79 80 81 82 83 84
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

85 86 87
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
			     struct extent_inode_elem **eie)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

124 125
struct preftree {
	struct rb_root root;
126
	unsigned int count;
127 128
};

129
#define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
130 131 132 133 134 135 136

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

137 138 139 140 141
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
142
					sizeof(struct prelim_ref),
143
					0,
144
					SLAB_MEM_SPREAD,
145 146 147 148 149 150 151 152
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
153
	kmem_cache_destroy(btrfs_prelim_ref_cache);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
 * Callers should assumed that newref has been freed after calling.
 */
202 203
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
			      struct preftree *preftree,
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
			      struct prelim_ref *newref)
{
	struct rb_root *root;
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;

	root = &preftree->root;
	p = &root->rb_node;

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
234 235
			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
						     preftree->count);
236 237 238 239 240 241
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

242
	preftree->count++;
243
	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	rb_link_node(&newref->rbnode, parent, p);
	rb_insert_color(&newref->rbnode, root);
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
					     rbnode)
		free_pref(ref);

	preftree->root = RB_ROOT;
261
	preftree->count = 0;
262 263
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
296
 *                (see add_missing_keys)
297 298 299 300 301
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
302 303
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
			  struct preftree *preftree, u64 root_id,
304 305
			  const struct btrfs_key *key, int level, u64 parent,
			  u64 wanted_disk_byte, int count, gfp_t gfp_mask)
306
{
307
	struct prelim_ref *ref;
308

309 310 311
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

312
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
313 314 315 316
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
317
	if (key) {
318
		ref->key_for_search = *key;
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
342
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
343
	}
344

345
	ref->inode_list = NULL;
346 347 348 349
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
350
	prelim_ref_insert(fs_info, preftree, ref);
351 352 353 354

	return 0;
}

355
/* direct refs use root == 0, key == NULL */
356 357
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
			  struct preftrees *preftrees, int level, u64 parent,
358 359
			  u64 wanted_disk_byte, int count, gfp_t gfp_mask)
{
360 361
	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
			      parent, wanted_disk_byte, count, gfp_mask);
362 363 364
}

/* indirect refs use parent == 0 */
365 366
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
			    struct preftrees *preftrees, u64 root_id,
367 368 369 370 371 372 373
			    const struct btrfs_key *key, int level,
			    u64 wanted_disk_byte, int count, gfp_t gfp_mask)
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
374
	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
375 376 377
			      wanted_disk_byte, count, gfp_mask);
}

378
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
379
			   struct ulist *parents, struct prelim_ref *ref,
380 381
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
382
{
383 384 385 386
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
387
	struct btrfs_key *key_for_search = &ref->key_for_search;
388
	struct btrfs_file_extent_item *fi;
389
	struct extent_inode_elem *eie = NULL, *old = NULL;
390
	u64 disk_byte;
391 392
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
393

394 395 396
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
397 398
		if (ret < 0)
			return ret;
399
		return 0;
400
	}
401 402

	/*
403 404 405
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
406
	 */
407
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
408
		if (time_seq == SEQ_LAST)
409 410 411 412
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
413

414
	while (!ret && count < total_refs) {
415
		eb = path->nodes[0];
416 417 418 419 420 421 422 423 424 425 426 427 428
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
429
			old = NULL;
430
			count++;
431 432 433 434 435 436 437
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
438 439
			if (ret > 0)
				goto next;
440 441
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
442 443 444 445 446 447
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
448
			}
449
			eie = NULL;
450
		}
451
next:
452
		if (time_seq == SEQ_LAST)
453 454 455
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
456 457
	}

458 459
	if (ret > 0)
		ret = 0;
460 461
	else if (ret < 0)
		free_inode_elem_list(eie);
462
	return ret;
463 464 465 466 467 468
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
469 470 471 472
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
				struct prelim_ref *ref, struct ulist *parents,
				const u64 *extent_item_pos, u64 total_refs)
473 474 475 476 477 478 479
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
480
	int index;
481 482 483 484

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
485 486 487

	index = srcu_read_lock(&fs_info->subvol_srcu);

488
	root = btrfs_get_fs_root(fs_info, &root_key, false);
489
	if (IS_ERR(root)) {
490
		srcu_read_unlock(&fs_info->subvol_srcu, index);
491 492 493 494
		ret = PTR_ERR(root);
		goto out;
	}

495
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
496 497 498 499 500
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

501 502
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
503
	else if (time_seq == SEQ_LAST)
504
		root_level = btrfs_header_level(root->node);
505 506
	else
		root_level = btrfs_old_root_level(root, time_seq);
507

508 509
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
510
		goto out;
511
	}
512 513

	path->lowest_level = level;
514
	if (time_seq == SEQ_LAST)
515 516 517 518 519
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
520 521 522 523

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

524 525
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
526 527 528
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
529 530 531 532
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
533
	while (!eb) {
534
		if (WARN_ON(!level)) {
535 536 537 538 539
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
540 541
	}

542
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
543
			      extent_item_pos, total_refs);
544
out:
545 546
	path->lowest_level = 0;
	btrfs_release_path(path);
547 548 549
	return ret;
}

550 551 552 553 554 555 556 557
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

558
/*
559 560 561 562 563 564 565 566 567 568 569 570 571 572
 * We maintain three seperate rbtrees: one for direct refs, one for
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
573
 */
574 575
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
576
				 struct preftrees *preftrees,
577 578
				 const u64 *extent_item_pos, u64 total_refs,
				 u64 root_objectid)
579 580 581 582 583
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
584
	struct ulist_iterator uiter;
585
	struct rb_node *rnode;
586 587 588 589 590 591

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
592 593 594 595
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
596
	 */
597 598 599 600 601 602 603 604 605 606 607
	while ((rnode = rb_first(&preftrees->indirect.root))) {
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

		rb_erase(&ref->rbnode, &preftrees->indirect.root);
608
		preftrees->indirect.count--;
609 610 611

		if (ref->count == 0) {
			free_pref(ref);
612
			continue;
613 614
		}

615
		if (root_objectid && ref->root_id != root_objectid) {
616
			free_pref(ref);
617 618 619
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
620 621 622
		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
					   parents, extent_item_pos,
					   total_refs);
623 624 625 626 627
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
628
			prelim_ref_insert(fs_info, &preftrees->direct, ref);
629
			continue;
630
		} else if (err) {
631
			free_pref(ref);
632 633 634
			ret = err;
			goto out;
		}
635 636

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
637 638
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
639
		ref->parent = node ? node->val : 0;
640
		ref->inode_list = unode_aux_to_inode_list(node);
641

642
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
643
		while ((node = ulist_next(parents, &uiter))) {
644 645
			struct prelim_ref *new_ref;

646 647
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
648
			if (!new_ref) {
649
				free_pref(ref);
650
				ret = -ENOMEM;
651
				goto out;
652 653 654
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
655
			new_ref->inode_list = unode_aux_to_inode_list(node);
656
			prelim_ref_insert(fs_info, &preftrees->direct, new_ref);
657
		}
658 659

		/* Now it's a direct ref, put it in the the direct tree */
660
		prelim_ref_insert(fs_info, &preftrees->direct, ref);
661

662
		ulist_reinit(parents);
663
		cond_resched();
664
	}
665
out:
666 667 668 669
	ulist_free(parents);
	return ret;
}

670 671 672
/*
 * read tree blocks and add keys where required.
 */
673
static int add_missing_keys(struct btrfs_fs_info *fs_info,
674
			    struct preftrees *preftrees)
675
{
676
	struct prelim_ref *ref;
677
	struct extent_buffer *eb;
678 679
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
680

681 682 683 684 685 686
	while ((node = rb_first(&tree->root))) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		rb_erase(node, &tree->root);

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
687
		BUG_ON(!ref->wanted_disk_byte);
688

689
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
690
		if (IS_ERR(eb)) {
691
			free_pref(ref);
692 693
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
694
			free_pref(ref);
695 696 697
			free_extent_buffer(eb);
			return -EIO;
		}
698 699 700 701 702 703 704
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
705
		prelim_ref_insert(fs_info, &preftrees->indirect, ref);
706
		cond_resched();
707 708 709 710
	}
	return 0;
}

711 712 713 714
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
715 716
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
			    struct btrfs_delayed_ref_head *head, u64 seq,
717
			    struct preftrees *preftrees, u64 *total_refs,
718
			    u64 inum)
719
{
720
	struct btrfs_delayed_ref_node *node;
721
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
722
	struct btrfs_key key;
723 724
	struct btrfs_key tmp_op_key;
	struct btrfs_key *op_key = NULL;
725
	int sgn;
726
	int ret = 0;
727

728 729 730 731
	if (extent_op && extent_op->update_key) {
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
		op_key = &tmp_op_key;
	}
732

733
	spin_lock(&head->lock);
734
	list_for_each_entry(node, &head->ref_list, list) {
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
752
		*total_refs += (node->ref_mod * sgn);
753 754
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
755
			/* NORMAL INDIRECT METADATA backref */
756 757 758
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
759 760 761
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &tmp_op_key, ref->level + 1,
					       node->bytenr,
762 763
					       node->ref_mod * sgn,
					       GFP_ATOMIC);
764 765 766
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
767
			/* SHARED DIRECT METADATA backref */
768 769 770
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
771

772 773 774
			ret = add_direct_ref(fs_info, preftrees,
					     ref->level + 1, ref->parent,
					     node->bytenr, node->ref_mod * sgn,
775
					     GFP_ATOMIC);
776 777 778
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
779
			/* NORMAL INDIRECT DATA backref */
780 781 782 783 784 785
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
786 787 788 789 790 791 792 793 794 795

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
			if (inum && ref->objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

796 797
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &key, 0, node->bytenr,
798 799
					       node->ref_mod * sgn,
					       GFP_ATOMIC);
800 801 802
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
803
			/* SHARED DIRECT FULL backref */
804 805 806
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
807

808 809
			ret = add_direct_ref(fs_info, preftrees, 0,
					     ref->parent, node->bytenr,
810
					     node->ref_mod * sgn,
811
					     GFP_ATOMIC);
812 813 814 815 816
			break;
		}
		default:
			WARN_ON(1);
		}
817
		if (ret)
818
			break;
819
	}
820 821
	spin_unlock(&head->lock);
	return ret;
822 823 824 825 826
}

/*
 * add all inline backrefs for bytenr to the list
 */
827 828
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path, u64 bytenr,
829
			   int *info_level, struct preftrees *preftrees,
830
			   u64 *total_refs, u64 inum)
831
{
832
	int ret = 0;
833 834 835
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
836
	struct btrfs_key found_key;
837 838 839 840 841 842 843 844 845 846
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
847
	slot = path->slots[0];
848 849 850 851 852 853

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
854
	*total_refs += btrfs_extent_refs(leaf, ei);
855
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
856 857 858 859

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

860 861
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
862 863 864 865 866 867
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
868 869
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
885 886
			ret = add_direct_ref(fs_info, preftrees,
					     *info_level + 1, offset,
887
					     bytenr, 1, GFP_NOFS);
888 889 890 891 892 893 894
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
895

896
			ret = add_direct_ref(fs_info, preftrees, 0, offset,
897
					     bytenr, count, GFP_NOFS);
898 899 900
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
901 902 903
			ret = add_indirect_ref(fs_info, preftrees, offset,
					       NULL, *info_level + 1,
					       bytenr, 1, GFP_NOFS);
904 905 906 907 908 909 910 911 912 913 914 915
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
916 917 918 919 920 921

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

922
			root = btrfs_extent_data_ref_root(leaf, dref);
923

924 925 926
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
					       GFP_NOFS);
927 928 929 930 931
			break;
		}
		default:
			WARN_ON(1);
		}
932 933
		if (ret)
			return ret;
934 935 936 937 938 939 940 941 942
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
943 944
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
945 946
			  int info_level, struct preftrees *preftrees,
			  u64 inum)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
976
			/* SHARED DIRECT METADATA backref */
977 978 979
			ret = add_direct_ref(fs_info, preftrees,
					     info_level + 1, key.offset,
					     bytenr, 1, GFP_NOFS);
980 981
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
982
			/* SHARED DIRECT FULL backref */
983 984 985 986 987 988
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
989 990 991
			ret = add_direct_ref(fs_info, preftrees, 0,
					     key.offset, bytenr, count,
					     GFP_NOFS);
992 993 994
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
995
			/* NORMAL INDIRECT METADATA backref */
996 997 998
			ret = add_indirect_ref(fs_info, preftrees, key.offset,
					       NULL, info_level + 1, bytenr,
					       1, GFP_NOFS);
999 1000
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
1001
			/* NORMAL INDIRECT DATA backref */
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1013 1014 1015 1016 1017 1018

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1019
			root = btrfs_extent_data_ref_root(leaf, dref);
1020 1021 1022
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
					       GFP_NOFS);
1023 1024 1025 1026 1027
			break;
		}
		default:
			WARN_ON(1);
		}
1028 1029 1030
		if (ret)
			return ret;

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1042 1043
 * NOTE: This can return values > 0
 *
1044
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1045 1046 1047 1048
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1049 1050 1051 1052
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1053
			     u64 time_seq, struct ulist *refs,
1054
			     struct ulist *roots, const u64 *extent_item_pos,
1055
			     u64 root_objectid, u64 inum)
1056 1057 1058 1059
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1060
	struct btrfs_delayed_ref_head *head;
1061 1062
	int info_level = 0;
	int ret;
1063
	struct prelim_ref *ref;
1064
	struct rb_node *node;
1065
	struct extent_inode_elem *eie = NULL;
1066
	/* total of both direct AND indirect refs! */
1067
	u64 total_refs = 0;
1068 1069 1070 1071 1072
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1073 1074 1075

	key.objectid = bytenr;
	key.offset = (u64)-1;
1076 1077 1078 1079
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1080 1081 1082 1083

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1084
	if (!trans) {
1085
		path->search_commit_root = 1;
1086 1087
		path->skip_locking = 1;
	}
1088

1089
	if (time_seq == SEQ_LAST)
1090 1091
		path->skip_locking = 1;

1092 1093 1094 1095 1096 1097
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1098 1099
	head = NULL;

1100 1101 1102 1103 1104
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1105
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1106
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1107
	    time_seq != SEQ_LAST) {
1108
#else
1109
	if (trans && time_seq != SEQ_LAST) {
1110
#endif
1111 1112 1113 1114 1115 1116
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1117
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1118 1119
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1120
				refcount_inc(&head->node.refs);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
1134
			spin_unlock(&delayed_refs->lock);
1135 1136
			ret = add_delayed_refs(fs_info, head, time_seq,
					       &preftrees, &total_refs, inum);
1137
			mutex_unlock(&head->mutex);
1138
			if (ret)
1139
				goto out;
1140 1141
		} else {
			spin_unlock(&delayed_refs->lock);
1142
		}
1143 1144 1145 1146 1147 1148
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1149
		path->slots[0]--;
1150
		leaf = path->nodes[0];
1151
		slot = path->slots[0];
1152 1153
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1154 1155
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1156 1157 1158
			ret = add_inline_refs(fs_info, path, bytenr,
					      &info_level, &preftrees,
					      &total_refs, inum);
1159 1160
			if (ret)
				goto out;
1161
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1162
					     &preftrees, inum);
1163 1164 1165 1166 1167
			if (ret)
				goto out;
		}
	}

1168
	btrfs_release_path(path);
1169

1170
	ret = add_missing_keys(fs_info, &preftrees);
1171 1172 1173
	if (ret)
		goto out;

1174
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1175

1176
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1177 1178
				    extent_item_pos, total_refs,
				    root_objectid);
1179 1180 1181
	if (ret)
		goto out;

1182
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
	node = rb_first(&preftrees.direct.root);
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
J
Julia Lawall 已提交
1195
		WARN_ON(ref->count < 0);
1196
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1197 1198 1199 1200 1201
			if (root_objectid && ref->root_id != root_objectid) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1202 1203
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1204 1205
			if (ret < 0)
				goto out;
1206 1207
		}
		if (ref->count && ref->parent) {
1208 1209
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1210
				struct extent_buffer *eb;
1211

1212
				eb = read_tree_block(fs_info, ref->parent, 0);
1213 1214 1215 1216
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1217
					free_extent_buffer(eb);
1218 1219
					ret = -EIO;
					goto out;
1220
				}
1221 1222
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1223 1224
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1225
				btrfs_tree_read_unlock_blocking(eb);
1226
				free_extent_buffer(eb);
1227 1228 1229
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1230
			}
1231 1232 1233
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1234 1235
			if (ret < 0)
				goto out;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1246
			eie = NULL;
1247
		}
1248
		cond_resched();
1249 1250 1251 1252
	}

out:
	btrfs_free_path(path);
1253 1254 1255 1256 1257

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1258 1259
	if (ret < 0)
		free_inode_elem_list(eie);
1260 1261 1262
	return ret;
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1273
		eie = unode_aux_to_inode_list(node);
1274
		free_inode_elem_list(eie);
1275 1276 1277 1278 1279 1280
		node->aux = 0;
	}

	ulist_free(blocks);
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1291
				u64 time_seq, struct ulist **leafs,
1292
				const u64 *extent_item_pos)
1293 1294 1295 1296
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1297
	if (!*leafs)
1298 1299
		return -ENOMEM;

1300
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1301
				*leafs, NULL, extent_item_pos, 0, 0);
1302
	if (ret < 0 && ret != -ENOENT) {
1303
		free_leaf_list(*leafs);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1323 1324 1325
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
				     u64 time_seq, struct ulist **roots)
1326 1327 1328
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1329
	struct ulist_iterator uiter;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1341
	ULIST_ITER_INIT(&uiter);
1342
	while (1) {
1343
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1344
					tmp, *roots, NULL, 0, 0);
1345 1346 1347 1348 1349
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1350
		node = ulist_next(tmp, &uiter);
1351 1352 1353
		if (!node)
			break;
		bytenr = node->val;
1354
		cond_resched();
1355 1356 1357 1358 1359 1360
	}

	ulist_free(tmp);
	return 0;
}

1361 1362 1363 1364 1365 1366 1367 1368
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1369 1370
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
					time_seq, roots);
1371 1372 1373 1374 1375
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1385 1386 1387
 * This attempts to allocate a transaction in order to account for
 * delayed refs, but continues on even when the alloc fails.
 *
1388 1389
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1390
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1391
{
1392 1393
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1394 1395 1396 1397
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1398
	struct seq_list elem = SEQ_LIST_INIT(elem);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	int ret = 0;

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

1409 1410 1411
	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		trans = NULL;
1412
		down_read(&fs_info->commit_root_sem);
1413 1414 1415 1416
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1417 1418 1419
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1420
					roots, NULL, root->objectid, inum);
1421
		if (ret == BACKREF_FOUND_SHARED) {
1422
			/* this is the only condition under which we return 1 */
1423 1424 1425 1426 1427
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1428
		ret = 0;
1429 1430 1431 1432 1433 1434
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
1435 1436

	if (trans) {
1437
		btrfs_put_tree_mod_seq(fs_info, &elem);
1438 1439
		btrfs_end_transaction(trans);
	} else {
1440
		up_read(&fs_info->commit_root_sem);
1441
	}
1442 1443 1444 1445 1446
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1456
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1457 1458 1459
	unsigned long ptr;

	key.objectid = inode_objectid;
1460
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1500
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1529 1530 1531 1532
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1533 1534 1535 1536
{
	int slot;
	u64 next_inum;
	int ret;
1537
	s64 bytes_left = ((s64)size) - 1;
1538 1539
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1540
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1541
	struct btrfs_inode_ref *iref;
1542 1543 1544 1545

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1546
	path->leave_spinning = 1;
1547
	while (1) {
M
Mark Fasheh 已提交
1548
		bytes_left -= name_len;
1549 1550
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1551
					   name_off, name_len);
1552
		if (eb != eb_in) {
1553 1554
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1555
			free_extent_buffer(eb);
1556
		}
1557 1558
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1559 1560
		if (ret > 0)
			ret = -ENOENT;
1561 1562
		if (ret)
			break;
M
Mark Fasheh 已提交
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1573
		if (eb != eb_in) {
1574 1575 1576 1577
			if (!path->skip_locking)
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1578
		}
1579 1580
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1581 1582 1583 1584

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1585 1586 1587 1588 1589 1590 1591
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1592
	path->leave_spinning = leave_spinning;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1606 1607
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1608 1609 1610
{
	int ret;
	u64 flags;
1611
	u64 size = 0;
1612
	u32 item_size;
1613
	const struct extent_buffer *eb;
1614 1615 1616
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1617 1618 1619 1620
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1621 1622 1623 1624 1625 1626 1627
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1628 1629 1630 1631 1632
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1633
	}
1634
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1635
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1636
		size = fs_info->nodesize;
1637 1638 1639
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1640
	if (found_key->objectid > logical ||
1641
	    found_key->objectid + size <= logical) {
1642 1643
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1644
		return -ENOENT;
J
Jan Schmidt 已提交
1645
	}
1646 1647 1648 1649 1650 1651 1652 1653

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1654 1655
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1656 1657
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1669 1670 1671 1672 1673 1674 1675 1676

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1677
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1678 1679 1680
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1681 1682 1683 1684 1685 1686 1687
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1688 1689 1690 1691 1692 1693 1694 1695 1696
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1707 1708 1709 1710
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1711
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1712 1713 1714 1715
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1716
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1730
 * call and may be modified (see get_extent_inline_ref comment).
1731 1732 1733 1734
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1735 1736
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1737 1738 1739 1740 1741 1742 1743 1744 1745
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1746
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1747
					      &eiref, &type);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1771 1772 1773 1774 1775 1776 1777

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1778 1779 1780 1781
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1782
{
1783
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1784 1785
	int ret = 0;

1786
	for (eie = inode_list; eie; eie = eie->next) {
1787 1788 1789 1790
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1791
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1792
		if (ret) {
1793 1794 1795
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1796 1797
			break;
		}
1798 1799 1800 1801 1802 1803 1804
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1805
 * the given parameters.
1806 1807 1808
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1809
				u64 extent_item_objectid, u64 extent_item_pos,
1810
				int search_commit_root,
1811 1812 1813
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1814
	struct btrfs_trans_handle *trans = NULL;
1815 1816
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1817 1818
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1819
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1820 1821
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1822

1823
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1824
			extent_item_objectid);
1825

1826
	if (!search_commit_root) {
1827 1828 1829
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1830
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1831 1832
	} else {
		down_read(&fs_info->commit_root_sem);
1833
	}
1834

J
Jan Schmidt 已提交
1835
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1836
				   tree_mod_seq_elem.seq, &refs,
1837
				   &extent_item_pos);
J
Jan Schmidt 已提交
1838 1839
	if (ret)
		goto out;
1840

J
Jan Schmidt 已提交
1841 1842
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1843 1844
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
						tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1845 1846
		if (ret)
			break;
J
Jan Schmidt 已提交
1847 1848
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1849 1850 1851 1852 1853 1854
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1855 1856 1857 1858
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1859
		}
1860
		ulist_free(roots);
1861 1862
	}

1863
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1864
out:
1865
	if (!search_commit_root) {
1866
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1867
		btrfs_end_transaction(trans);
1868 1869
	} else {
		up_read(&fs_info->commit_root_sem);
1870 1871
	}

1872 1873 1874 1875 1876 1877 1878 1879
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1880
	u64 extent_item_pos;
1881
	u64 flags = 0;
1882
	struct btrfs_key found_key;
1883
	int search_commit_root = path->search_commit_root;
1884

1885
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1886
	btrfs_release_path(path);
1887 1888
	if (ret < 0)
		return ret;
1889
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1890
		return -EINVAL;
1891

J
Jan Schmidt 已提交
1892
	extent_item_pos = logical - found_key.objectid;
1893 1894 1895
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1896 1897 1898 1899

	return ret;
}

M
Mark Fasheh 已提交
1900 1901 1902 1903 1904 1905
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1906
{
1907
	int ret = 0;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1919
	while (!ret) {
1920 1921 1922 1923
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1934 1935 1936 1937 1938 1939
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1940 1941
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1942 1943
		btrfs_release_path(path);

1944
		item = btrfs_item_nr(slot);
1945 1946 1947 1948 1949
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
1950 1951 1952
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
				cur, found_key.objectid, fs_root->objectid);
M
Mark Fasheh 已提交
1953 1954
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1955
			if (ret)
1956 1957 1958 1959
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1960
		btrfs_tree_read_unlock_blocking(eb);
1961 1962 1963 1964 1965 1966 1967 1968
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1996 1997 1998 1999 2000 2001
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
2002 2003 2004 2005 2006

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

2007 2008
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2022
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2056 2057 2058 2059
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2060 2061
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2073
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2074 2075
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2076 2077 2078 2079
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2080
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2095
 * from ipath->fspath->val[i].
2096
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2097
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2098
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2099 2100 2101 2102 2103 2104
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2105
			     inode_to_path, ipath);
2106 2107 2108 2109 2110 2111 2112 2113
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2114
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

2148
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2149
	if (!ifp) {
2150
		kvfree(fspath);
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2163 2164
	if (!ipath)
		return;
2165
	kvfree(ipath->fspath);
2166 2167
	kfree(ipath);
}