backref.c 58.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/mm.h>
20
#include <linux/rbtree.h>
21
#include <trace/events/btrfs.h>
22 23 24
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
25 26 27
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
28
#include "locking.h"
29

30 31 32
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

39 40 41 42 43
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
			      struct extent_inode_elem **eie)
44
{
45
	u64 offset = 0;
46 47
	struct extent_inode_elem *e;

48 49 50 51 52
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
53

54 55 56 57 58 59 60 61
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
62 63 64 65 66 67 68

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
69
	e->offset = key->offset + offset;
70 71 72 73 74
	*eie = e;

	return 0;
}

75 76 77 78 79 80 81 82 83 84
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

85 86 87
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
			     struct extent_inode_elem **eie)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

124 125
struct preftree {
	struct rb_root root;
126
	unsigned int count;
127 128
};

129
#define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
130 131 132 133 134 135 136

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * Checks for a shared extent during backref search.
 *
 * The share_count tracks prelim_refs (direct and indirect) having a
 * ref->count >0:
 *  - incremented when a ref->count transitions to >0
 *  - decremented when a ref->count transitions to <1
 */
struct share_check {
	u64 root_objectid;
	u64 inum;
	int share_count;
};

static inline int extent_is_shared(struct share_check *sc)
{
	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
}

156 157 158 159 160
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
161
					sizeof(struct prelim_ref),
162
					0,
163
					SLAB_MEM_SPREAD,
164 165 166 167 168 169 170 171
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
172
	kmem_cache_destroy(btrfs_prelim_ref_cache);
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

216 217 218 219 220 221 222 223 224 225 226
void update_share_count(struct share_check *sc, int oldcount, int newcount)
{
	if ((!sc) || (oldcount == 0 && newcount < 1))
		return;

	if (oldcount > 0 && newcount < 1)
		sc->share_count--;
	else if (oldcount < 1 && newcount > 0)
		sc->share_count++;
}

227 228 229
/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
230
 * Callers should assume that newref has been freed after calling.
231
 */
232 233
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
			      struct preftree *preftree,
234 235
			      struct prelim_ref *newref,
			      struct share_check *sc)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
{
	struct rb_root *root;
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;

	root = &preftree->root;
	p = &root->rb_node;

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
265 266
			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
						     preftree->count);
267 268 269 270 271 272 273
			/*
			 * A delayed ref can have newref->count < 0.
			 * The ref->count is updated to follow any
			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
			 */
			update_share_count(sc, ref->count,
					   ref->count + newref->count);
274 275 276 277 278 279
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

280
	update_share_count(sc, 0, newref->count);
281
	preftree->count++;
282
	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	rb_link_node(&newref->rbnode, parent, p);
	rb_insert_color(&newref->rbnode, root);
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
					     rbnode)
		free_pref(ref);

	preftree->root = RB_ROOT;
300
	preftree->count = 0;
301 302
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
335
 *                (see add_missing_keys)
336 337 338 339 340
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
341 342
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
			  struct preftree *preftree, u64 root_id,
343
			  const struct btrfs_key *key, int level, u64 parent,
344 345
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
346
{
347
	struct prelim_ref *ref;
348

349 350 351
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

352
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
353 354 355 356
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
357
	if (key) {
358
		ref->key_for_search = *key;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
382
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
383
	}
384

385
	ref->inode_list = NULL;
386 387 388 389
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
390 391
	prelim_ref_insert(fs_info, preftree, ref, sc);
	return extent_is_shared(sc);
392 393
}

394
/* direct refs use root == 0, key == NULL */
395 396
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
			  struct preftrees *preftrees, int level, u64 parent,
397 398
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
399
{
400
	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
401
			      parent, wanted_disk_byte, count, sc, gfp_mask);
402 403 404
}

/* indirect refs use parent == 0 */
405 406
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
			    struct preftrees *preftrees, u64 root_id,
407
			    const struct btrfs_key *key, int level,
408 409
			    u64 wanted_disk_byte, int count,
			    struct share_check *sc, gfp_t gfp_mask)
410 411 412 413 414
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
415
	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
416
			      wanted_disk_byte, count, sc, gfp_mask);
417 418
}

419
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
420
			   struct ulist *parents, struct prelim_ref *ref,
421 422
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
423
{
424 425 426 427
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
428
	struct btrfs_key *key_for_search = &ref->key_for_search;
429
	struct btrfs_file_extent_item *fi;
430
	struct extent_inode_elem *eie = NULL, *old = NULL;
431
	u64 disk_byte;
432 433
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
434

435 436 437
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
438 439
		if (ret < 0)
			return ret;
440
		return 0;
441
	}
442 443

	/*
444 445 446
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
447
	 */
448
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
449
		if (time_seq == SEQ_LAST)
450 451 452 453
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
454

455
	while (!ret && count < total_refs) {
456
		eb = path->nodes[0];
457 458 459 460 461 462 463 464 465 466 467 468 469
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
470
			old = NULL;
471
			count++;
472 473 474 475 476 477 478
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
479 480
			if (ret > 0)
				goto next;
481 482
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
483 484 485 486 487 488
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
489
			}
490
			eie = NULL;
491
		}
492
next:
493
		if (time_seq == SEQ_LAST)
494 495 496
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
497 498
	}

499 500
	if (ret > 0)
		ret = 0;
501 502
	else if (ret < 0)
		free_inode_elem_list(eie);
503
	return ret;
504 505 506 507 508 509
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
510 511 512 513
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
				struct prelim_ref *ref, struct ulist *parents,
				const u64 *extent_item_pos, u64 total_refs)
514 515 516 517 518 519 520
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
521
	int index;
522 523 524 525

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
526 527 528

	index = srcu_read_lock(&fs_info->subvol_srcu);

529
	root = btrfs_get_fs_root(fs_info, &root_key, false);
530
	if (IS_ERR(root)) {
531
		srcu_read_unlock(&fs_info->subvol_srcu, index);
532 533 534 535
		ret = PTR_ERR(root);
		goto out;
	}

536
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
537 538 539 540 541
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

542 543
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
544
	else if (time_seq == SEQ_LAST)
545
		root_level = btrfs_header_level(root->node);
546 547
	else
		root_level = btrfs_old_root_level(root, time_seq);
548

549 550
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
551
		goto out;
552
	}
553 554

	path->lowest_level = level;
555
	if (time_seq == SEQ_LAST)
556 557 558 559 560
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
561 562 563 564

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

565 566
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
567 568 569
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
570 571 572 573
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
574
	while (!eb) {
575
		if (WARN_ON(!level)) {
576 577 578 579 580
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
581 582
	}

583
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
584
			      extent_item_pos, total_refs);
585
out:
586 587
	path->lowest_level = 0;
	btrfs_release_path(path);
588 589 590
	return ret;
}

591 592 593 594 595 596 597 598
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

599
/*
600 601 602 603 604 605 606 607 608 609 610 611 612 613
 * We maintain three seperate rbtrees: one for direct refs, one for
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
614
 */
615 616
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
617
				 struct preftrees *preftrees,
618
				 const u64 *extent_item_pos, u64 total_refs,
619
				 struct share_check *sc)
620 621 622 623 624
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
625
	struct ulist_iterator uiter;
626
	struct rb_node *rnode;
627 628 629 630 631 632

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
633 634 635 636
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
637
	 */
638 639 640 641 642 643 644 645 646 647 648
	while ((rnode = rb_first(&preftrees->indirect.root))) {
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

		rb_erase(&ref->rbnode, &preftrees->indirect.root);
649
		preftrees->indirect.count--;
650 651 652

		if (ref->count == 0) {
			free_pref(ref);
653
			continue;
654 655
		}

656 657
		if (sc && sc->root_objectid &&
		    ref->root_id != sc->root_objectid) {
658
			free_pref(ref);
659 660 661
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
662 663 664
		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
					   parents, extent_item_pos,
					   total_refs);
665 666 667 668 669
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
670 671
			prelim_ref_insert(fs_info, &preftrees->direct, ref,
					  NULL);
672
			continue;
673
		} else if (err) {
674
			free_pref(ref);
675 676 677
			ret = err;
			goto out;
		}
678 679

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
680 681
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
682
		ref->parent = node ? node->val : 0;
683
		ref->inode_list = unode_aux_to_inode_list(node);
684

685
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
686
		while ((node = ulist_next(parents, &uiter))) {
687 688
			struct prelim_ref *new_ref;

689 690
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
691
			if (!new_ref) {
692
				free_pref(ref);
693
				ret = -ENOMEM;
694
				goto out;
695 696 697
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
698
			new_ref->inode_list = unode_aux_to_inode_list(node);
699 700
			prelim_ref_insert(fs_info, &preftrees->direct,
					  new_ref, NULL);
701
		}
702

703 704 705 706 707
		/*
		 * Now it's a direct ref, put it in the the direct tree. We must
		 * do this last because the ref could be merged/freed here.
		 */
		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
708

709
		ulist_reinit(parents);
710
		cond_resched();
711
	}
712
out:
713 714 715 716
	ulist_free(parents);
	return ret;
}

717 718 719
/*
 * read tree blocks and add keys where required.
 */
720
static int add_missing_keys(struct btrfs_fs_info *fs_info,
721
			    struct preftrees *preftrees)
722
{
723
	struct prelim_ref *ref;
724
	struct extent_buffer *eb;
725 726
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
727

728 729 730 731 732 733
	while ((node = rb_first(&tree->root))) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		rb_erase(node, &tree->root);

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
734
		BUG_ON(!ref->wanted_disk_byte);
735

736
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
737
		if (IS_ERR(eb)) {
738
			free_pref(ref);
739 740
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
741
			free_pref(ref);
742 743 744
			free_extent_buffer(eb);
			return -EIO;
		}
745 746 747 748 749 750 751
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
752
		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
753
		cond_resched();
754 755 756 757
	}
	return 0;
}

758 759 760 761
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
762 763
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
			    struct btrfs_delayed_ref_head *head, u64 seq,
764
			    struct preftrees *preftrees, u64 *total_refs,
765
			    struct share_check *sc)
766
{
767
	struct btrfs_delayed_ref_node *node;
768
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
769
	struct btrfs_key key;
770 771
	struct btrfs_key tmp_op_key;
	struct btrfs_key *op_key = NULL;
772
	int count;
773
	int ret = 0;
774

775 776 777 778
	if (extent_op && extent_op->update_key) {
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
		op_key = &tmp_op_key;
	}
779

780
	spin_lock(&head->lock);
781
	list_for_each_entry(node, &head->ref_list, list) {
782 783 784 785 786 787 788 789 790
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
791
			count = node->ref_mod;
792 793
			break;
		case BTRFS_DROP_DELAYED_REF:
794
			count = node->ref_mod * -1;
795 796 797 798
			break;
		default:
			BUG_ON(1);
		}
799
		*total_refs += count;
800 801
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
802
			/* NORMAL INDIRECT METADATA backref */
803 804 805
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
806 807
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &tmp_op_key, ref->level + 1,
808 809
					       node->bytenr, count, sc,
					       GFP_ATOMIC);
810 811 812
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
813
			/* SHARED DIRECT METADATA backref */
814 815 816
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
817

818 819
			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
					     ref->parent, node->bytenr, count,
820
					     sc, GFP_ATOMIC);
821 822 823
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
824
			/* NORMAL INDIRECT DATA backref */
825 826 827 828 829 830
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
831 832 833 834 835

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
836
			if (sc && sc->inum && ref->objectid != sc->inum) {
837
				ret = BACKREF_FOUND_SHARED;
838
				goto out;
839 840
			}

841
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
842 843
					       &key, 0, node->bytenr, count, sc,
					       GFP_ATOMIC);
844 845 846
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
847
			/* SHARED DIRECT FULL backref */
848 849 850
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
851

852 853 854
			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
					     node->bytenr, count, sc,
					     GFP_ATOMIC);
855 856 857 858 859
			break;
		}
		default:
			WARN_ON(1);
		}
860 861 862 863 864
		/*
		 * We must ignore BACKREF_FOUND_SHARED until all delayed
		 * refs have been checked.
		 */
		if (ret && (ret != BACKREF_FOUND_SHARED))
865
			break;
866
	}
867 868 869
	if (!ret)
		ret = extent_is_shared(sc);
out:
870 871
	spin_unlock(&head->lock);
	return ret;
872 873 874 875
}

/*
 * add all inline backrefs for bytenr to the list
876 877
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
878
 */
879 880
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path, u64 bytenr,
881
			   int *info_level, struct preftrees *preftrees,
882
			   u64 *total_refs, struct share_check *sc)
883
{
884
	int ret = 0;
885 886 887
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
888
	struct btrfs_key found_key;
889 890 891 892 893 894 895 896 897 898
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
899
	slot = path->slots[0];
900 901 902 903 904 905

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
906
	*total_refs += btrfs_extent_refs(leaf, ei);
907
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
908 909 910 911

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

912 913
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
914 915 916 917 918 919
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
920 921
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
922 923 924 925 926 927 928 929 930 931
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
932 933 934 935 936
		type = btrfs_get_extent_inline_ref_type(leaf, iref,
							BTRFS_REF_TYPE_ANY);
		if (type == BTRFS_REF_TYPE_INVALID)
			return -EINVAL;

937 938 939 940
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
941 942
			ret = add_direct_ref(fs_info, preftrees,
					     *info_level + 1, offset,
943
					     bytenr, 1, NULL, GFP_NOFS);
944 945 946 947 948 949 950
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
951

952
			ret = add_direct_ref(fs_info, preftrees, 0, offset,
953
					     bytenr, count, sc, GFP_NOFS);
954 955 956
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
957 958
			ret = add_indirect_ref(fs_info, preftrees, offset,
					       NULL, *info_level + 1,
959
					       bytenr, 1, NULL, GFP_NOFS);
960 961 962 963 964 965 966 967 968 969 970 971
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
972

973
			if (sc && sc->inum && key.objectid != sc->inum) {
974 975 976 977
				ret = BACKREF_FOUND_SHARED;
				break;
			}

978
			root = btrfs_extent_data_ref_root(leaf, dref);
979

980 981
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
982
					       sc, GFP_NOFS);
983 984 985 986 987
			break;
		}
		default:
			WARN_ON(1);
		}
988 989
		if (ret)
			return ret;
990 991 992 993 994 995 996 997
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
998 999
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1000
 */
1001 1002
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
1003
			  int info_level, struct preftrees *preftrees,
1004
			  struct share_check *sc)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1034
			/* SHARED DIRECT METADATA backref */
1035 1036
			ret = add_direct_ref(fs_info, preftrees,
					     info_level + 1, key.offset,
1037
					     bytenr, 1, NULL, GFP_NOFS);
1038 1039
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
1040
			/* SHARED DIRECT FULL backref */
1041 1042 1043 1044 1045 1046
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1047 1048
			ret = add_direct_ref(fs_info, preftrees, 0,
					     key.offset, bytenr, count,
1049
					     sc, GFP_NOFS);
1050 1051 1052
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1053
			/* NORMAL INDIRECT METADATA backref */
1054 1055
			ret = add_indirect_ref(fs_info, preftrees, key.offset,
					       NULL, info_level + 1, bytenr,
1056
					       1, NULL, GFP_NOFS);
1057 1058
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
1059
			/* NORMAL INDIRECT DATA backref */
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1071

1072
			if (sc && sc->inum && key.objectid != sc->inum) {
1073 1074 1075 1076
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1077
			root = btrfs_extent_data_ref_root(leaf, dref);
1078 1079
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1080
					       sc, GFP_NOFS);
1081 1082 1083 1084 1085
			break;
		}
		default:
			WARN_ON(1);
		}
1086 1087 1088
		if (ret)
			return ret;

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1100
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1101 1102 1103 1104
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1105 1106 1107 1108 1109
 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
 * shared extent is detected.
 *
 * Otherwise this returns 0 for success and <0 for an error.
 *
1110 1111 1112 1113
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1114
			     u64 time_seq, struct ulist *refs,
1115
			     struct ulist *roots, const u64 *extent_item_pos,
1116
			     struct share_check *sc)
1117 1118 1119 1120
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1121
	struct btrfs_delayed_ref_head *head;
1122 1123
	int info_level = 0;
	int ret;
1124
	struct prelim_ref *ref;
1125
	struct rb_node *node;
1126
	struct extent_inode_elem *eie = NULL;
1127
	/* total of both direct AND indirect refs! */
1128
	u64 total_refs = 0;
1129 1130 1131 1132 1133
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1134 1135 1136

	key.objectid = bytenr;
	key.offset = (u64)-1;
1137 1138 1139 1140
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1141 1142 1143 1144

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1145
	if (!trans) {
1146
		path->search_commit_root = 1;
1147 1148
		path->skip_locking = 1;
	}
1149

1150
	if (time_seq == SEQ_LAST)
1151 1152
		path->skip_locking = 1;

1153 1154 1155 1156 1157 1158
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1159 1160
	head = NULL;

1161 1162 1163 1164 1165
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1166
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1168
	    time_seq != SEQ_LAST) {
1169
#else
1170
	if (trans && time_seq != SEQ_LAST) {
1171
#endif
1172 1173 1174 1175 1176 1177
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1178
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1179 1180
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1181
				refcount_inc(&head->refs);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
1192
				btrfs_put_delayed_ref_head(head);
1193 1194
				goto again;
			}
1195
			spin_unlock(&delayed_refs->lock);
1196
			ret = add_delayed_refs(fs_info, head, time_seq,
1197
					       &preftrees, &total_refs, sc);
1198
			mutex_unlock(&head->mutex);
1199
			if (ret)
1200
				goto out;
1201 1202
		} else {
			spin_unlock(&delayed_refs->lock);
1203
		}
1204 1205 1206 1207 1208 1209
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1210
		path->slots[0]--;
1211
		leaf = path->nodes[0];
1212
		slot = path->slots[0];
1213 1214
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1215 1216
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1217 1218
			ret = add_inline_refs(fs_info, path, bytenr,
					      &info_level, &preftrees,
1219
					      &total_refs, sc);
1220 1221
			if (ret)
				goto out;
1222
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1223
					     &preftrees, sc);
1224 1225 1226 1227 1228
			if (ret)
				goto out;
		}
	}

1229
	btrfs_release_path(path);
1230

1231
	ret = add_missing_keys(fs_info, &preftrees);
1232 1233 1234
	if (ret)
		goto out;

1235
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1236

1237
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1238
				    extent_item_pos, total_refs, sc);
1239 1240 1241
	if (ret)
		goto out;

1242
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
	node = rb_first(&preftrees.direct.root);
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
J
Julia Lawall 已提交
1255
		WARN_ON(ref->count < 0);
1256
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1257 1258
			if (sc && sc->root_objectid &&
			    ref->root_id != sc->root_objectid) {
1259 1260 1261 1262
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1263 1264
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1265 1266
			if (ret < 0)
				goto out;
1267 1268
		}
		if (ref->count && ref->parent) {
1269 1270
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1271
				struct extent_buffer *eb;
1272

1273
				eb = read_tree_block(fs_info, ref->parent, 0);
1274 1275 1276 1277
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1278
					free_extent_buffer(eb);
1279 1280
					ret = -EIO;
					goto out;
1281
				}
1282 1283
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1284 1285
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1286
				btrfs_tree_read_unlock_blocking(eb);
1287
				free_extent_buffer(eb);
1288 1289 1290
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1291
			}
1292 1293 1294
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1295 1296
			if (ret < 0)
				goto out;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1307
			eie = NULL;
1308
		}
1309
		cond_resched();
1310 1311 1312 1313
	}

out:
	btrfs_free_path(path);
1314 1315 1316 1317 1318

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1319 1320
	if (ret < 0)
		free_inode_elem_list(eie);
1321 1322 1323
	return ret;
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1334
		eie = unode_aux_to_inode_list(node);
1335
		free_inode_elem_list(eie);
1336 1337 1338 1339 1340 1341
		node->aux = 0;
	}

	ulist_free(blocks);
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1352
				u64 time_seq, struct ulist **leafs,
1353
				const u64 *extent_item_pos)
1354 1355 1356 1357
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1358
	if (!*leafs)
1359 1360
		return -ENOMEM;

1361
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1362
				*leafs, NULL, extent_item_pos, NULL);
1363
	if (ret < 0 && ret != -ENOENT) {
1364
		free_leaf_list(*leafs);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1384 1385 1386
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
				     u64 time_seq, struct ulist **roots)
1387 1388 1389
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1390
	struct ulist_iterator uiter;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1402
	ULIST_ITER_INIT(&uiter);
1403
	while (1) {
1404
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1405
					tmp, *roots, NULL, NULL);
1406 1407 1408 1409 1410
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1411
		node = ulist_next(tmp, &uiter);
1412 1413 1414
		if (!node)
			break;
		bytenr = node->val;
1415
		cond_resched();
1416 1417 1418 1419 1420 1421
	}

	ulist_free(tmp);
	return 0;
}

1422 1423 1424 1425 1426 1427 1428 1429
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1430 1431
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
					time_seq, roots);
1432 1433 1434 1435 1436
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1437 1438 1439 1440 1441 1442 1443 1444 1445
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1446 1447 1448
 * This attempts to allocate a transaction in order to account for
 * delayed refs, but continues on even when the alloc fails.
 *
1449 1450
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1451
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1452
{
1453 1454
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1455 1456 1457 1458
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1459
	struct seq_list elem = SEQ_LIST_INIT(elem);
1460
	int ret = 0;
1461 1462 1463 1464 1465
	struct share_check shared = {
		.root_objectid = root->objectid,
		.inum = inum,
		.share_count = 0,
	};
1466 1467 1468 1469 1470 1471 1472 1473 1474

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

1475 1476 1477
	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		trans = NULL;
1478
		down_read(&fs_info->commit_root_sem);
1479 1480 1481 1482
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1483 1484 1485
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1486
					roots, NULL, &shared);
1487
		if (ret == BACKREF_FOUND_SHARED) {
1488
			/* this is the only condition under which we return 1 */
1489 1490 1491 1492 1493
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1494
		ret = 0;
1495 1496 1497 1498 1499 1500
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
1501 1502

	if (trans) {
1503
		btrfs_put_tree_mod_seq(fs_info, &elem);
1504 1505
		btrfs_end_transaction(trans);
	} else {
1506
		up_read(&fs_info->commit_root_sem);
1507
	}
1508 1509 1510 1511 1512
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1522
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1523 1524 1525
	unsigned long ptr;

	key.objectid = inode_objectid;
1526
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1566
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1595 1596 1597 1598
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1599 1600 1601 1602
{
	int slot;
	u64 next_inum;
	int ret;
1603
	s64 bytes_left = ((s64)size) - 1;
1604 1605
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1606
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1607
	struct btrfs_inode_ref *iref;
1608 1609 1610 1611

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1612
	path->leave_spinning = 1;
1613
	while (1) {
M
Mark Fasheh 已提交
1614
		bytes_left -= name_len;
1615 1616
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1617
					   name_off, name_len);
1618
		if (eb != eb_in) {
1619 1620
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1621
			free_extent_buffer(eb);
1622
		}
1623 1624
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1625 1626
		if (ret > 0)
			ret = -ENOENT;
1627 1628
		if (ret)
			break;
M
Mark Fasheh 已提交
1629

1630 1631 1632 1633 1634 1635 1636 1637 1638
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1639
		if (eb != eb_in) {
1640 1641 1642 1643
			if (!path->skip_locking)
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1644
		}
1645 1646
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1647 1648 1649 1650

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1651 1652 1653 1654 1655 1656 1657
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1658
	path->leave_spinning = leave_spinning;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1672 1673
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1674 1675 1676
{
	int ret;
	u64 flags;
1677
	u64 size = 0;
1678
	u32 item_size;
1679
	const struct extent_buffer *eb;
1680 1681 1682
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1683 1684 1685 1686
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1687 1688 1689 1690 1691 1692 1693
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1694 1695 1696 1697 1698
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1699
	}
1700
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1701
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1702
		size = fs_info->nodesize;
1703 1704 1705
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1706
	if (found_key->objectid > logical ||
1707
	    found_key->objectid + size <= logical) {
1708 1709
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1710
		return -ENOENT;
J
Jan Schmidt 已提交
1711
	}
1712 1713 1714 1715 1716 1717 1718 1719

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1720 1721
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1722 1723
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1735 1736 1737 1738 1739 1740 1741 1742

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1743
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1744 1745 1746
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1747 1748 1749 1750 1751 1752 1753
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1754 1755 1756 1757 1758 1759 1760 1761 1762
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1773 1774 1775 1776
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1777
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1778 1779 1780 1781
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1782
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1783 1784 1785 1786
	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
						     BTRFS_REF_TYPE_ANY);
	if (*out_type == BTRFS_REF_TYPE_INVALID)
		return -EINVAL;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1799
 * call and may be modified (see get_extent_inline_ref comment).
1800 1801 1802 1803
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1804 1805
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1806 1807 1808 1809 1810 1811 1812 1813 1814
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1815
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1816
					      &eiref, &type);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1840 1841 1842 1843 1844 1845 1846

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1847 1848 1849 1850
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1851
{
1852
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1853 1854
	int ret = 0;

1855
	for (eie = inode_list; eie; eie = eie->next) {
1856 1857 1858 1859
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1860
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1861
		if (ret) {
1862 1863 1864
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1865 1866
			break;
		}
1867 1868 1869 1870 1871 1872 1873
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1874
 * the given parameters.
1875 1876 1877
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1878
				u64 extent_item_objectid, u64 extent_item_pos,
1879
				int search_commit_root,
1880 1881 1882
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1883
	struct btrfs_trans_handle *trans = NULL;
1884 1885
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1886 1887
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1888
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1889 1890
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1891

1892
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1893
			extent_item_objectid);
1894

1895
	if (!search_commit_root) {
1896 1897 1898
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1899
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1900 1901
	} else {
		down_read(&fs_info->commit_root_sem);
1902
	}
1903

J
Jan Schmidt 已提交
1904
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1905
				   tree_mod_seq_elem.seq, &refs,
1906
				   &extent_item_pos);
J
Jan Schmidt 已提交
1907 1908
	if (ret)
		goto out;
1909

J
Jan Schmidt 已提交
1910 1911
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1912 1913
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
						tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1914 1915
		if (ret)
			break;
J
Jan Schmidt 已提交
1916 1917
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1918 1919 1920 1921 1922 1923
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1924 1925 1926 1927
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1928
		}
1929
		ulist_free(roots);
1930 1931
	}

1932
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1933
out:
1934
	if (!search_commit_root) {
1935
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1936
		btrfs_end_transaction(trans);
1937 1938
	} else {
		up_read(&fs_info->commit_root_sem);
1939 1940
	}

1941 1942 1943 1944 1945 1946 1947 1948
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1949
	u64 extent_item_pos;
1950
	u64 flags = 0;
1951
	struct btrfs_key found_key;
1952
	int search_commit_root = path->search_commit_root;
1953

1954
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1955
	btrfs_release_path(path);
1956 1957
	if (ret < 0)
		return ret;
1958
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1959
		return -EINVAL;
1960

J
Jan Schmidt 已提交
1961
	extent_item_pos = logical - found_key.objectid;
1962 1963 1964
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1965 1966 1967 1968

	return ret;
}

M
Mark Fasheh 已提交
1969 1970 1971 1972 1973 1974
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1975
{
1976
	int ret = 0;
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1988
	while (!ret) {
1989 1990 1991 1992
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
2003 2004 2005 2006 2007 2008
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
2009 2010
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2011 2012
		btrfs_release_path(path);

2013
		item = btrfs_item_nr(slot);
2014 2015 2016 2017 2018
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
2019 2020 2021
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
				cur, found_key.objectid, fs_root->objectid);
M
Mark Fasheh 已提交
2022 2023
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
2024
			if (ret)
2025 2026 2027 2028
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
2029
		btrfs_tree_read_unlock_blocking(eb);
2030 2031 2032 2033 2034 2035 2036 2037
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
2065 2066 2067 2068 2069 2070
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
2071 2072 2073 2074 2075

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

2076 2077
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2091
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2125 2126 2127 2128
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2129 2130
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2142
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2143 2144
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2145 2146 2147 2148
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2149
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2164
 * from ipath->fspath->val[i].
2165
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2166
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2167
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2168 2169 2170 2171 2172 2173
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2174
			     inode_to_path, ipath);
2175 2176 2177 2178 2179 2180 2181 2182
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2183
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

2217
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2218
	if (!ifp) {
2219
		kvfree(fspath);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2232 2233
	if (!ipath)
		return;
2234
	kvfree(ipath->fspath);
2235 2236
	kfree(ipath);
}