backref.c 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30 31 32 33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
39
	u64 offset = 0;
40 41
	struct extent_inode_elem *e;

42 43 44 45 46
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
47

48 49 50 51 52 53 54 55
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
56 57 58 59 60 61 62

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
63
	e->offset = key->offset + offset;
64 65 66 67 68
	*eie = e;

	return 0;
}

69 70 71 72 73 74 75 76 77 78
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

118 119 120 121 122 123
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
124
	struct btrfs_key key_for_search;
125 126
	int level;
	int count;
127
	struct extent_inode_elem *inode_list;
128 129 130 131
	u64 parent;
	u64 wanted_disk_byte;
};

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

191
static int __add_prelim_ref(struct list_head *head, u64 root_id,
192
			    struct btrfs_key *key, int level,
193 194
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
195 196 197
{
	struct __prelim_ref *ref;

198 199 200
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

201
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
202 203 204 205 206
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
207
		ref->key_for_search = *key;
208
	else
209
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
210

211
	ref->inode_list = NULL;
212 213 214 215 216 217 218 219 220 221
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
222 223
			   struct ulist *parents, struct __prelim_ref *ref,
			   int level, u64 time_seq, const u64 *extent_item_pos)
224
{
225 226 227 228
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
229
	struct btrfs_key *key_for_search = &ref->key_for_search;
230
	struct btrfs_file_extent_item *fi;
231
	struct extent_inode_elem *eie = NULL, *old = NULL;
232
	u64 disk_byte;
233 234
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
235

236 237 238
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
239 240
		if (ret < 0)
			return ret;
241
		return 0;
242
	}
243 244

	/*
245 246 247
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
248
	 */
249
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
250
		ret = btrfs_next_old_leaf(root, path, time_seq);
251

252
	while (!ret && count < ref->count) {
253
		eb = path->nodes[0];
254 255 256 257 258 259 260 261 262 263 264 265 266
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
267
			old = NULL;
268
			count++;
269 270 271 272 273 274 275
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
276 277 278 279 280 281 282 283 284 285 286
			if (ret > 0)
				goto next;
			ret = ulist_add_merge(parents, eb->start,
					      (uintptr_t)eie,
					      (u64 *)&old, GFP_NOFS);
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
287
			}
288
			eie = NULL;
289
		}
290
next:
291
		ret = btrfs_next_old_item(root, path, time_seq);
292 293
	}

294 295
	if (ret > 0)
		ret = 0;
296 297
	else if (ret < 0)
		free_inode_elem_list(eie);
298
	return ret;
299 300 301 302 303 304 305
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
306 307 308 309
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
				  const u64 *extent_item_pos)
310 311 312 313 314 315 316
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
317
	int index;
318 319 320 321

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
322 323 324

	index = srcu_read_lock(&fs_info->subvol_srcu);

325 326
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
327
		srcu_read_unlock(&fs_info->subvol_srcu, index);
328 329 330 331
		ret = PTR_ERR(root);
		goto out;
	}

J
Jan Schmidt 已提交
332
	root_level = btrfs_old_root_level(root, time_seq);
333

334 335
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
336
		goto out;
337
	}
338 339

	path->lowest_level = level;
340
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
341 342 343 344

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

345 346
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
347 348 349
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
350 351 352 353
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
354
	while (!eb) {
355
		if (WARN_ON(!level)) {
356 357 358 359 360
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
361 362
	}

363 364
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
			      extent_item_pos);
365
out:
366 367
	path->lowest_level = 0;
	btrfs_release_path(path);
368 369 370 371 372 373 374
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
375
				   struct btrfs_path *path, u64 time_seq,
376 377
				   struct list_head *head,
				   const u64 *extent_item_pos)
378 379 380 381 382 383 384 385
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
386
	struct ulist_iterator uiter;
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
402 403
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
					     parents, extent_item_pos);
404 405 406 407 408
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
409
			continue;
410 411 412 413
		} else if (err) {
			ret = err;
			goto out;
		}
414 415

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
416 417
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
418
		ref->parent = node ? node->val : 0;
419
		ref->inode_list = node ?
420
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
421 422

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
423
		while ((node = ulist_next(parents, &uiter))) {
424 425
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
426 427
			if (!new_ref) {
				ret = -ENOMEM;
428
				goto out;
429 430 431
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
432 433
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
434 435 436 437
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
438
out:
439 440 441 442
	ulist_free(parents);
	return ret;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
482 483 484 485
		if (!eb || !extent_buffer_uptodate(eb)) {
			free_extent_buffer(eb);
			return -EIO;
		}
486 487 488 489 490 491 492 493 494 495 496
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

497 498 499 500
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
501 502 503 504
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
505 506
 * mode = 2: merge identical parents
 */
507
static void __merge_refs(struct list_head *head, int mode)
508 509 510 511 512 513 514 515 516 517 518 519 520
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
521
			struct __prelim_ref *xchg;
522
			struct extent_inode_elem *eie;
523 524 525 526

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
527
				if (!ref_for_same_block(ref1, ref2))
528
					continue;
529 530 531 532 533
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
534 535 536 537
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
538 539 540 541 542 543 544 545 546 547

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

548
			list_del(&ref2->list);
549
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
550 551 552 553 554 555 556 557 558 559 560 561 562 563
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
			      struct list_head *prefs)
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
564 565
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
566
	int sgn;
567
	int ret = 0;
568 569

	if (extent_op && extent_op->update_key)
570
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
571

572 573 574
	spin_lock(&head->lock);
	n = rb_first(&head->ref_root);
	while (n) {
575 576 577
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
578
		n = rb_next(n);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
601
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
602
					       ref->level + 1, 0, node->bytenr,
603
					       node->ref_mod * sgn, GFP_ATOMIC);
604 605 606 607 608 609
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
610
			ret = __add_prelim_ref(prefs, ref->root, NULL,
611 612
					       ref->level + 1, ref->parent,
					       node->bytenr,
613
					       node->ref_mod * sgn, GFP_ATOMIC);
614 615 616 617 618 619 620 621 622 623 624
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
625
					       node->ref_mod * sgn, GFP_ATOMIC);
626 627 628 629 630 631 632 633 634 635 636 637
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
638
					       node->ref_mod * sgn, GFP_ATOMIC);
639 640 641 642 643
			break;
		}
		default:
			WARN_ON(1);
		}
644
		if (ret)
645
			break;
646
	}
647 648
	spin_unlock(&head->lock);
	return ret;
649 650 651 652 653 654 655
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
656
			     int *info_level, struct list_head *prefs)
657
{
658
	int ret = 0;
659 660 661
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
662
	struct btrfs_key found_key;
663 664 665 666 667 668 669 670 671 672
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
673
	slot = path->slots[0];
674 675 676 677 678 679

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
680
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
681 682 683 684

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

685 686
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
687 688 689 690 691 692
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
693 694
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
710
			ret = __add_prelim_ref(prefs, 0, NULL,
711
						*info_level + 1, offset,
712
						bytenr, 1, GFP_NOFS);
713 714 715 716 717 718 719 720
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
721
					       bytenr, count, GFP_NOFS);
722 723 724
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
725 726
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
727
					       bytenr, 1, GFP_NOFS);
728 729 730 731 732 733 734 735 736 737 738 739 740
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
741
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742
					       bytenr, count, GFP_NOFS);
743 744 745 746 747
			break;
		}
		default:
			WARN_ON(1);
		}
748 749
		if (ret)
			return ret;
750 751 752 753 754 755 756 757 758 759 760
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
761
			    int info_level, struct list_head *prefs)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
791
			ret = __add_prelim_ref(prefs, 0, NULL,
792
						info_level + 1, key.offset,
793
						bytenr, 1, GFP_NOFS);
794 795 796 797 798 799 800 801 802
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
803
						bytenr, count, GFP_NOFS);
804 805 806
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
807 808
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
809
					       bytenr, 1, GFP_NOFS);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
825
					       bytenr, count, GFP_NOFS);
826 827 828 829 830
			break;
		}
		default:
			WARN_ON(1);
		}
831 832 833
		if (ret)
			return ret;

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
849 850
			     u64 time_seq, struct ulist *refs,
			     struct ulist *roots, const u64 *extent_item_pos)
851 852 853 854
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
855
	struct btrfs_delayed_ref_head *head;
856 857 858 859 860
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
861
	struct extent_inode_elem *eie = NULL;
862 863 864 865 866 867

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
868 869 870 871
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
872 873 874 875

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
876 877
	if (!trans)
		path->search_commit_root = 1;
878 879 880 881 882 883 884

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
885 886
	head = NULL;

887 888 889 890 891
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

892
	if (trans) {
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
916
			spin_unlock(&delayed_refs->lock);
917
			ret = __add_delayed_refs(head, time_seq,
918
						 &prefs_delayed);
919
			mutex_unlock(&head->mutex);
920
			if (ret)
921
				goto out;
922 923
		} else {
			spin_unlock(&delayed_refs->lock);
924
		}
925 926 927 928 929 930
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

931
		path->slots[0]--;
932
		leaf = path->nodes[0];
933
		slot = path->slots[0];
934 935
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
936 937
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
938
			ret = __add_inline_refs(fs_info, path, bytenr,
939
						&info_level, &prefs);
940 941
			if (ret)
				goto out;
942
			ret = __add_keyed_refs(fs_info, path, bytenr,
943 944 945 946 947 948 949 950 951
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

952 953 954 955
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

956
	__merge_refs(&prefs, 1);
957

958 959
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
				      extent_item_pos);
960 961 962
	if (ret)
		goto out;

963
	__merge_refs(&prefs, 2);
964 965 966

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
967
		WARN_ON(ref->count < 0);
968
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
969 970
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
971 972
			if (ret < 0)
				goto out;
973 974
		}
		if (ref->count && ref->parent) {
975
			if (extent_item_pos && !ref->inode_list) {
976 977 978 979 980 981
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
982 983
				if (!eb || !extent_buffer_uptodate(eb)) {
					free_extent_buffer(eb);
984 985
					ret = -EIO;
					goto out;
986
				}
987 988 989
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
				free_extent_buffer(eb);
990 991 992
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
993
			}
994
			ret = ulist_add_merge(refs, ref->parent,
995
					      (uintptr_t)ref->inode_list,
996
					      (u64 *)&eie, GFP_NOFS);
997 998
			if (ret < 0)
				goto out;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1009
			eie = NULL;
1010
		}
1011
		list_del(&ref->list);
1012
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1013 1014 1015 1016 1017 1018 1019
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1020
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1021 1022 1023 1024 1025
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1026
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1027
	}
1028 1029
	if (ret < 0)
		free_inode_elem_list(eie);
1030 1031 1032
	return ret;
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1043
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1044
		free_inode_elem_list(eie);
1045 1046 1047 1048 1049 1050
		node->aux = 0;
	}

	ulist_free(blocks);
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1061
				u64 time_seq, struct ulist **leafs,
1062
				const u64 *extent_item_pos)
1063 1064 1065 1066
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1067
	if (!*leafs)
1068 1069
		return -ENOMEM;

1070
	ret = find_parent_nodes(trans, fs_info, bytenr,
1071
				time_seq, *leafs, NULL, extent_item_pos);
1072
	if (ret < 0 && ret != -ENOENT) {
1073
		free_leaf_list(*leafs);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1095
				u64 time_seq, struct ulist **roots)
1096 1097 1098
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1099
	struct ulist_iterator uiter;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1111
	ULIST_ITER_INIT(&uiter);
1112
	while (1) {
1113
		ret = find_parent_nodes(trans, fs_info, bytenr,
1114
					time_seq, tmp, *roots, NULL);
1115 1116 1117 1118 1119
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1120
		node = ulist_next(tmp, &uiter);
1121 1122 1123
		if (!node)
			break;
		bytenr = node->val;
1124
		cond_resched();
1125 1126 1127 1128 1129 1130
	}

	ulist_free(tmp);
	return 0;
}

1131 1132 1133 1134 1135 1136 1137
/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
1138 1139
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_ITEM_KEY, &key);
1140 1141 1142 1143 1144 1145
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
1146 1147
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_REF_KEY, found_key);
1148 1149
}

M
Mark Fasheh 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1232 1233 1234 1235
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1236 1237 1238 1239
{
	int slot;
	u64 next_inum;
	int ret;
1240
	s64 bytes_left = ((s64)size) - 1;
1241 1242
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1243
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1244
	struct btrfs_inode_ref *iref;
1245 1246 1247 1248

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1249
	path->leave_spinning = 1;
1250
	while (1) {
M
Mark Fasheh 已提交
1251
		bytes_left -= name_len;
1252 1253
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1254
					   name_off, name_len);
1255 1256
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1257
			free_extent_buffer(eb);
1258
		}
1259
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1260 1261
		if (ret > 0)
			ret = -ENOENT;
1262 1263
		if (ret)
			break;
M
Mark Fasheh 已提交
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1274
		if (eb != eb_in) {
1275
			atomic_inc(&eb->refs);
1276 1277 1278
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1279 1280
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1281 1282 1283 1284

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1285 1286 1287 1288 1289 1290 1291
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1292
	path->leave_spinning = leave_spinning;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1306 1307
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1308 1309 1310
{
	int ret;
	u64 flags;
1311
	u64 size = 0;
1312 1313 1314 1315 1316
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1317 1318 1319 1320
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1321 1322 1323 1324 1325 1326 1327
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1328 1329 1330 1331 1332
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1333
	}
1334
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1335 1336 1337 1338 1339
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
		size = fs_info->extent_root->leafsize;
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1340
	if (found_key->objectid > logical ||
1341
	    found_key->objectid + size <= logical) {
1342
		pr_debug("logical %llu is not within any extent\n", logical);
1343
		return -ENOENT;
J
Jan Schmidt 已提交
1344
	}
1345 1346 1347 1348 1349 1350 1351 1352

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1353 1354
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1355 1356
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1460 1461
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1462
				iterate_extent_inodes_t *iterate, void *ctx)
1463
{
1464
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1465 1466
	int ret = 0;

1467
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1468
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1469 1470 1471
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1472
		if (ret) {
1473 1474
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1475 1476
			break;
		}
1477 1478 1479 1480 1481 1482 1483
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1484
 * the given parameters.
1485 1486 1487
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1488
				u64 extent_item_objectid, u64 extent_item_pos,
1489
				int search_commit_root,
1490 1491 1492
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1493
	struct btrfs_trans_handle *trans = NULL;
1494 1495
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1496 1497
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1498
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1499 1500
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1501

J
Jan Schmidt 已提交
1502 1503
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1504

1505
	if (!search_commit_root) {
1506 1507 1508
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1509
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1510
	}
1511

J
Jan Schmidt 已提交
1512
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1513
				   tree_mod_seq_elem.seq, &refs,
1514
				   &extent_item_pos);
J
Jan Schmidt 已提交
1515 1516
	if (ret)
		goto out;
1517

J
Jan Schmidt 已提交
1518 1519
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1520
		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1521
					   tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1522 1523
		if (ret)
			break;
J
Jan Schmidt 已提交
1524 1525
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1526
			pr_debug("root %llu references leaf %llu, data list "
1527
				 "%#llx\n", root_node->val, ref_node->val,
1528
				 ref_node->aux);
1529 1530 1531 1532 1533
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1534
		}
1535
		ulist_free(roots);
1536 1537
	}

1538
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1539
out:
1540
	if (!search_commit_root) {
1541
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1542 1543 1544
		btrfs_end_transaction(trans, fs_info->extent_root);
	}

1545 1546 1547 1548 1549 1550 1551 1552
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1553
	u64 extent_item_pos;
1554
	u64 flags = 0;
1555
	struct btrfs_key found_key;
1556
	int search_commit_root = path->search_commit_root;
1557

1558
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1559
	btrfs_release_path(path);
1560 1561
	if (ret < 0)
		return ret;
1562
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1563
		return -EINVAL;
1564

J
Jan Schmidt 已提交
1565
	extent_item_pos = logical - found_key.objectid;
1566 1567 1568
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1569 1570 1571 1572

	return ret;
}

M
Mark Fasheh 已提交
1573 1574 1575 1576 1577 1578
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1579
{
1580
	int ret = 0;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1592
	while (!ret) {
1593
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1594
				     &found_key);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1605 1606 1607 1608 1609 1610
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1611 1612
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1613 1614
		btrfs_release_path(path);

1615
		item = btrfs_item_nr(slot);
1616 1617 1618 1619 1620
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1621
			pr_debug("following ref at offset %u for inode %llu in "
1622 1623
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1624 1625
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1626
			if (ret)
1627 1628 1629 1630
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1631
		btrfs_tree_read_unlock_blocking(eb);
1632 1633 1634 1635 1636 1637 1638 1639
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1668 1669 1670 1671 1672 1673
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1674 1675 1676 1677 1678 1679

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
1680 1681
		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
M
Mark Fasheh 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1729 1730 1731 1732
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1733 1734
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1746
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1747 1748
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1749 1750 1751 1752
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1753
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1768
 * from ipath->fspath->val[i].
1769
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1770
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1771 1772 1773 1774 1775 1776 1777
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1778
			     inode_to_path, ipath);
1779 1780 1781 1782 1783 1784 1785 1786
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1787
	data = vmalloc(alloc_bytes);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1836 1837
	if (!ipath)
		return;
1838
	vfree(ipath->fspath);
1839 1840
	kfree(ipath);
}