backref.c 50.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

31 32 33 34 35 36 37 38 39 40 41
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
42
	u64 offset = 0;
43 44
	struct extent_inode_elem *e;

45 46 47 48 49
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
50

51 52 53 54 55 56 57 58
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
59 60 61 62 63 64 65

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
66
	e->offset = key->offset + offset;
67 68 69 70 71
	*eie = e;

	return 0;
}

72 73 74 75 76 77 78 79 80 81
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

121 122 123 124 125 126
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
127
	struct btrfs_key key_for_search;
128 129
	int level;
	int count;
130
	struct extent_inode_elem *inode_list;
131 132 133 134
	u64 parent;
	u64 wanted_disk_byte;
};

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

194
static int __add_prelim_ref(struct list_head *head, u64 root_id,
195
			    struct btrfs_key *key, int level,
196 197
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
198 199 200
{
	struct __prelim_ref *ref;

201 202 203
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

204
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 206 207 208 209
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
210
		ref->key_for_search = *key;
211
	else
212
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
213

214
	ref->inode_list = NULL;
215 216 217 218 219 220 221 222 223 224
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
225
			   struct ulist *parents, struct __prelim_ref *ref,
226 227
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
228
{
229 230 231 232
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
233
	struct btrfs_key *key_for_search = &ref->key_for_search;
234
	struct btrfs_file_extent_item *fi;
235
	struct extent_inode_elem *eie = NULL, *old = NULL;
236
	u64 disk_byte;
237 238
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
239

240 241 242
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
243 244
		if (ret < 0)
			return ret;
245
		return 0;
246
	}
247 248

	/*
249 250 251
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
252
	 */
253
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
254
		ret = btrfs_next_old_leaf(root, path, time_seq);
255

256
	while (!ret && count < total_refs) {
257
		eb = path->nodes[0];
258 259 260 261 262 263 264 265 266 267 268 269 270
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
271
			old = NULL;
272
			count++;
273 274 275 276 277 278 279
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
280 281
			if (ret > 0)
				goto next;
282 283
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
284 285 286 287 288 289
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
290
			}
291
			eie = NULL;
292
		}
293
next:
294
		ret = btrfs_next_old_item(root, path, time_seq);
295 296
	}

297 298
	if (ret > 0)
		ret = 0;
299 300
	else if (ret < 0)
		free_inode_elem_list(eie);
301
	return ret;
302 303 304 305 306 307 308
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
309 310 311
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
312
				  const u64 *extent_item_pos, u64 total_refs)
313 314 315 316 317 318 319
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
320
	int index;
321 322 323 324

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
325 326 327

	index = srcu_read_lock(&fs_info->subvol_srcu);

328 329
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
330
		srcu_read_unlock(&fs_info->subvol_srcu, index);
331 332 333 334
		ret = PTR_ERR(root);
		goto out;
	}

335 336 337 338
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
	else
		root_level = btrfs_old_root_level(root, time_seq);
339

340 341
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
342
		goto out;
343
	}
344 345

	path->lowest_level = level;
346
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
347 348 349 350

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

351 352
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
353 354 355
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
356 357 358 359
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
360
	while (!eb) {
361
		if (WARN_ON(!level)) {
362 363 364 365 366
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
367 368
	}

369
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
370
			      extent_item_pos, total_refs);
371
out:
372 373
	path->lowest_level = 0;
	btrfs_release_path(path);
374 375 376 377 378 379 380
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
381
				   struct btrfs_path *path, u64 time_seq,
382
				   struct list_head *head,
383 384
				   const u64 *extent_item_pos, u64 total_refs,
				   u64 root_objectid)
385 386 387 388 389 390 391 392
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
393
	struct ulist_iterator uiter;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
409 410 411 412
		if (root_objectid && ref->root_id != root_objectid) {
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
413
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
414 415
					     parents, extent_item_pos,
					     total_refs);
416 417 418 419 420
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
421
			continue;
422 423 424 425
		} else if (err) {
			ret = err;
			goto out;
		}
426 427

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
428 429
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
430
		ref->parent = node ? node->val : 0;
431
		ref->inode_list = node ?
432
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
433 434

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
435
		while ((node = ulist_next(parents, &uiter))) {
436 437
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
438 439
			if (!new_ref) {
				ret = -ENOMEM;
440
				goto out;
441 442 443
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
444 445
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
446 447 448 449
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
450
out:
451 452 453 454
	ulist_free(parents);
	return ret;
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
493
				     0);
494 495 496 497
		if (!eb || !extent_buffer_uptodate(eb)) {
			free_extent_buffer(eb);
			return -EIO;
		}
498 499 500 501 502 503 504 505 506 507 508
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

509 510 511 512
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
513 514 515 516
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
517 518
 * mode = 2: merge identical parents
 */
519
static void __merge_refs(struct list_head *head, int mode)
520 521 522 523 524 525 526 527 528 529 530 531 532
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
533
			struct __prelim_ref *xchg;
534
			struct extent_inode_elem *eie;
535 536 537 538

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
539
				if (!ref_for_same_block(ref1, ref2))
540
					continue;
541 542 543 544 545
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
546 547 548 549
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
550 551 552 553 554 555 556 557 558 559

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

560
			list_del(&ref2->list);
561
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
562 563 564 565 566 567 568 569 570 571
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
572 573
			      struct list_head *prefs, u64 *total_refs,
			      u64 inum)
574 575 576
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
577 578
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
579
	int sgn;
580
	int ret = 0;
581 582

	if (extent_op && extent_op->update_key)
583
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
584

585 586 587
	spin_lock(&head->lock);
	n = rb_first(&head->ref_root);
	while (n) {
588 589 590
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
591
		n = rb_next(n);
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
609
		*total_refs += (node->ref_mod * sgn);
610 611 612 613 614
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
615
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
616
					       ref->level + 1, 0, node->bytenr,
617
					       node->ref_mod * sgn, GFP_ATOMIC);
618 619 620 621 622 623
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
624
			ret = __add_prelim_ref(prefs, ref->root, NULL,
625 626
					       ref->level + 1, ref->parent,
					       node->bytenr,
627
					       node->ref_mod * sgn, GFP_ATOMIC);
628 629 630 631 632 633 634 635 636
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
637 638 639 640 641 642 643 644 645 646

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
			if (inum && ref->objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

647 648
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
649
					       node->ref_mod * sgn, GFP_ATOMIC);
650 651 652 653 654 655 656 657 658 659 660 661
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
662
					       node->ref_mod * sgn, GFP_ATOMIC);
663 664 665 666 667
			break;
		}
		default:
			WARN_ON(1);
		}
668
		if (ret)
669
			break;
670
	}
671 672
	spin_unlock(&head->lock);
	return ret;
673 674 675 676 677 678 679
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
680
			     int *info_level, struct list_head *prefs,
681
			     u64 *total_refs, u64 inum)
682
{
683
	int ret = 0;
684 685 686
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
687
	struct btrfs_key found_key;
688 689 690 691 692 693 694 695 696 697
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
698
	slot = path->slots[0];
699 700 701 702 703 704

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
705
	*total_refs += btrfs_extent_refs(leaf, ei);
706
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
707 708 709 710

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

711 712
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
713 714 715 716 717 718
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
719 720
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
736
			ret = __add_prelim_ref(prefs, 0, NULL,
737
						*info_level + 1, offset,
738
						bytenr, 1, GFP_NOFS);
739 740 741 742 743 744 745 746
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
747
					       bytenr, count, GFP_NOFS);
748 749 750
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
751 752
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
753
					       bytenr, 1, GFP_NOFS);
754 755 756 757 758 759 760 761 762 763 764 765
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
766 767 768 769 770 771

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

772
			root = btrfs_extent_data_ref_root(leaf, dref);
773
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
774
					       bytenr, count, GFP_NOFS);
775 776 777 778 779
			break;
		}
		default:
			WARN_ON(1);
		}
780 781
		if (ret)
			return ret;
782 783 784 785 786 787 788 789 790 791 792
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
793
			    int info_level, struct list_head *prefs, u64 inum)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
823
			ret = __add_prelim_ref(prefs, 0, NULL,
824
						info_level + 1, key.offset,
825
						bytenr, 1, GFP_NOFS);
826 827 828 829 830 831 832 833 834
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
835
						bytenr, count, GFP_NOFS);
836 837 838
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
839 840
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
841
					       bytenr, 1, GFP_NOFS);
842 843 844 845 846 847 848 849 850 851 852 853 854
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
855 856 857 858 859 860

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

861 862
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
863
					       bytenr, count, GFP_NOFS);
864 865 866 867 868
			break;
		}
		default:
			WARN_ON(1);
		}
869 870 871
		if (ret)
			return ret;

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
887
			     u64 time_seq, struct ulist *refs,
888 889
			     struct ulist *roots, const u64 *extent_item_pos,
			     u64 root_objectid, u64 inum)
890 891 892 893
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
894
	struct btrfs_delayed_ref_head *head;
895 896 897 898 899
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
900
	struct extent_inode_elem *eie = NULL;
901
	u64 total_refs = 0;
902 903 904 905 906 907

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
908 909 910 911
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
912 913 914 915

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
916
	if (!trans) {
917
		path->search_commit_root = 1;
918 919
		path->skip_locking = 1;
	}
920 921 922 923 924 925 926

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
927 928
	head = NULL;

929 930 931 932 933
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

934 935 936
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	if (trans && likely(trans->type != __TRANS_DUMMY)) {
#else
937
	if (trans) {
938
#endif
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
962
			spin_unlock(&delayed_refs->lock);
963
			ret = __add_delayed_refs(head, time_seq,
964 965
						 &prefs_delayed, &total_refs,
						 inum);
966
			mutex_unlock(&head->mutex);
967
			if (ret)
968
				goto out;
969 970
		} else {
			spin_unlock(&delayed_refs->lock);
971
		}
972 973 974 975 976 977
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

978
		path->slots[0]--;
979
		leaf = path->nodes[0];
980
		slot = path->slots[0];
981 982
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
983 984
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
985
			ret = __add_inline_refs(fs_info, path, bytenr,
986
						&info_level, &prefs,
987
						&total_refs, inum);
988 989
			if (ret)
				goto out;
990
			ret = __add_keyed_refs(fs_info, path, bytenr,
991
					       info_level, &prefs, inum);
992 993 994 995 996 997 998 999
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

1000 1001 1002 1003
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

1004
	__merge_refs(&prefs, 1);
1005

1006
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1007 1008
				      extent_item_pos, total_refs,
				      root_objectid);
1009 1010 1011
	if (ret)
		goto out;

1012
	__merge_refs(&prefs, 2);
1013 1014 1015

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
1016
		WARN_ON(ref->count < 0);
1017
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1018 1019 1020 1021 1022
			if (root_objectid && ref->root_id != root_objectid) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1023 1024
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1025 1026
			if (ret < 0)
				goto out;
1027 1028
		}
		if (ref->count && ref->parent) {
1029 1030
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1031
				struct extent_buffer *eb;
1032

1033
				eb = read_tree_block(fs_info->extent_root,
1034
							   ref->parent, 0);
1035 1036
				if (!eb || !extent_buffer_uptodate(eb)) {
					free_extent_buffer(eb);
1037 1038
					ret = -EIO;
					goto out;
1039
				}
1040 1041
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1042 1043
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1044
				btrfs_tree_read_unlock_blocking(eb);
1045
				free_extent_buffer(eb);
1046 1047 1048
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1049
			}
1050 1051 1052
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1053 1054
			if (ret < 0)
				goto out;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1065
			eie = NULL;
1066
		}
1067
		list_del(&ref->list);
1068
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1069 1070 1071 1072 1073 1074 1075
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1076
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1077 1078 1079 1080 1081
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1082
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1083
	}
1084 1085
	if (ret < 0)
		free_inode_elem_list(eie);
1086 1087 1088
	return ret;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1099
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1100
		free_inode_elem_list(eie);
1101 1102 1103 1104 1105 1106
		node->aux = 0;
	}

	ulist_free(blocks);
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1117
				u64 time_seq, struct ulist **leafs,
1118
				const u64 *extent_item_pos)
1119 1120 1121 1122
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1123
	if (!*leafs)
1124 1125
		return -ENOMEM;

1126
	ret = find_parent_nodes(trans, fs_info, bytenr,
1127
				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1128
	if (ret < 0 && ret != -ENOENT) {
1129
		free_leaf_list(*leafs);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1149 1150 1151
static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				  struct btrfs_fs_info *fs_info, u64 bytenr,
				  u64 time_seq, struct ulist **roots)
1152 1153 1154
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1155
	struct ulist_iterator uiter;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1167
	ULIST_ITER_INIT(&uiter);
1168
	while (1) {
1169
		ret = find_parent_nodes(trans, fs_info, bytenr,
1170
					time_seq, tmp, *roots, NULL, 0, 0);
1171 1172 1173 1174 1175
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1176
		node = ulist_next(tmp, &uiter);
1177 1178 1179
		if (!node)
			break;
		bytenr = node->val;
1180
		cond_resched();
1181 1182 1183 1184 1185 1186
	}

	ulist_free(tmp);
	return 0;
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
int btrfs_check_shared(struct btrfs_trans_handle *trans,
		       struct btrfs_fs_info *fs_info, u64 root_objectid,
		       u64 inum, u64 bytenr)
{
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
	struct seq_list elem = {};
	int ret = 0;

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

	if (trans)
		btrfs_get_tree_mod_seq(fs_info, &elem);
	else
		down_read(&fs_info->commit_root_sem);
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
					roots, NULL, root_objectid, inum);
		if (ret == BACKREF_FOUND_SHARED) {
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
	if (trans)
		btrfs_put_tree_mod_seq(fs_info, &elem);
	else
		up_read(&fs_info->commit_root_sem);
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

1249 1250 1251 1252 1253 1254 1255
/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
1256 1257
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_ITEM_KEY, &key);
1258 1259 1260 1261 1262 1263
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
1264 1265
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_REF_KEY, found_key);
1266 1267
}

M
Mark Fasheh 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
1281
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1321
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1350 1351 1352 1353
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1354 1355 1356 1357
{
	int slot;
	u64 next_inum;
	int ret;
1358
	s64 bytes_left = ((s64)size) - 1;
1359 1360
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1361
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1362
	struct btrfs_inode_ref *iref;
1363 1364 1365 1366

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1367
	path->leave_spinning = 1;
1368
	while (1) {
M
Mark Fasheh 已提交
1369
		bytes_left -= name_len;
1370 1371
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1372
					   name_off, name_len);
1373 1374
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1375
			free_extent_buffer(eb);
1376
		}
1377
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1378 1379
		if (ret > 0)
			ret = -ENOENT;
1380 1381
		if (ret)
			break;
M
Mark Fasheh 已提交
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1392
		if (eb != eb_in) {
1393
			atomic_inc(&eb->refs);
1394 1395 1396
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1397 1398
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1399 1400 1401 1402

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1403 1404 1405 1406 1407 1408 1409
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1410
	path->leave_spinning = leave_spinning;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1424 1425
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1426 1427 1428
{
	int ret;
	u64 flags;
1429
	u64 size = 0;
1430 1431 1432 1433 1434
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1435 1436 1437 1438
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1439 1440 1441 1442 1443 1444 1445
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1446 1447 1448 1449 1450
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1451
	}
1452
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1453
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1454
		size = fs_info->extent_root->nodesize;
1455 1456 1457
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1458
	if (found_key->objectid > logical ||
1459
	    found_key->objectid + size <= logical) {
1460
		pr_debug("logical %llu is not within any extent\n", logical);
1461
		return -ENOENT;
J
Jan Schmidt 已提交
1462
	}
1463 1464 1465 1466 1467 1468 1469 1470

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1471 1472
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1473 1474
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1499 1500 1501 1502
				   struct btrfs_key *key,
				   struct btrfs_extent_item *ei, u32 item_size,
				   struct btrfs_extent_inline_ref **out_eiref,
				   int *out_type)
1503 1504 1505 1506 1507 1508 1509 1510 1511
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1522 1523 1524 1525
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1526
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1527 1528 1529 1530
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1531
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1550 1551
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1562 1563
		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
					      &eiref, &type);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1586 1587
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1588
				iterate_extent_inodes_t *iterate, void *ctx)
1589
{
1590
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1591 1592
	int ret = 0;

1593
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1594
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1595 1596 1597
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1598
		if (ret) {
1599 1600
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1601 1602
			break;
		}
1603 1604 1605 1606 1607 1608 1609
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1610
 * the given parameters.
1611 1612 1613
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1614
				u64 extent_item_objectid, u64 extent_item_pos,
1615
				int search_commit_root,
1616 1617 1618
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1619
	struct btrfs_trans_handle *trans = NULL;
1620 1621
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1622 1623
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1624
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1625 1626
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1627

J
Jan Schmidt 已提交
1628 1629
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1630

1631
	if (!search_commit_root) {
1632 1633 1634
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1635
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1636 1637
	} else {
		down_read(&fs_info->commit_root_sem);
1638
	}
1639

J
Jan Schmidt 已提交
1640
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1641
				   tree_mod_seq_elem.seq, &refs,
1642
				   &extent_item_pos);
J
Jan Schmidt 已提交
1643 1644
	if (ret)
		goto out;
1645

J
Jan Schmidt 已提交
1646 1647
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1648 1649
		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
					     tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1650 1651
		if (ret)
			break;
J
Jan Schmidt 已提交
1652 1653
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1654
			pr_debug("root %llu references leaf %llu, data list "
1655
				 "%#llx\n", root_node->val, ref_node->val,
1656
				 ref_node->aux);
1657 1658 1659 1660 1661
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1662
		}
1663
		ulist_free(roots);
1664 1665
	}

1666
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1667
out:
1668
	if (!search_commit_root) {
1669
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1670
		btrfs_end_transaction(trans, fs_info->extent_root);
1671 1672
	} else {
		up_read(&fs_info->commit_root_sem);
1673 1674
	}

1675 1676 1677 1678 1679 1680 1681 1682
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1683
	u64 extent_item_pos;
1684
	u64 flags = 0;
1685
	struct btrfs_key found_key;
1686
	int search_commit_root = path->search_commit_root;
1687

1688
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1689
	btrfs_release_path(path);
1690 1691
	if (ret < 0)
		return ret;
1692
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1693
		return -EINVAL;
1694

J
Jan Schmidt 已提交
1695
	extent_item_pos = logical - found_key.objectid;
1696 1697 1698
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1699 1700 1701 1702

	return ret;
}

M
Mark Fasheh 已提交
1703 1704 1705 1706 1707 1708
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1709
{
1710
	int ret = 0;
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1722
	while (!ret) {
1723
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1724
				     &found_key);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1735 1736 1737 1738 1739 1740
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1741 1742
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1743 1744
		btrfs_release_path(path);

1745
		item = btrfs_item_nr(slot);
1746 1747 1748 1749 1750
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1751
			pr_debug("following ref at offset %u for inode %llu in "
1752 1753
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1754 1755
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1756
			if (ret)
1757 1758 1759 1760
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1761
		btrfs_tree_read_unlock_blocking(eb);
1762 1763 1764 1765 1766 1767 1768 1769
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1798 1799 1800 1801 1802 1803
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1804 1805 1806 1807 1808 1809

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
1810 1811
		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
M
Mark Fasheh 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1859 1860 1861 1862
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1863 1864
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1876
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1877 1878
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1879 1880 1881 1882
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1883
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1898
 * from ipath->fspath->val[i].
1899
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1900
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1901 1902 1903 1904 1905 1906 1907
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1908
			     inode_to_path, ipath);
1909 1910 1911 1912 1913 1914 1915 1916
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1917
	data = vmalloc(alloc_bytes);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1966 1967
	if (!ipath)
		return;
1968
	vfree(ipath->fspath);
1969 1970
	kfree(ipath);
}