backref.c 52.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

31 32 33 34 35 36 37 38 39 40 41
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
42
	u64 offset = 0;
43 44
	struct extent_inode_elem *e;

45 46 47 48 49
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
50

51 52 53 54 55 56 57 58
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
59 60 61 62 63 64 65

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
66
	e->offset = key->offset + offset;
67 68 69 70 71
	*eie = e;

	return 0;
}

72 73 74 75 76 77 78 79 80 81
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

121 122 123 124 125 126
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
127
	struct btrfs_key key_for_search;
128 129
	int level;
	int count;
130
	struct extent_inode_elem *inode_list;
131 132 133 134
	u64 parent;
	u64 wanted_disk_byte;
};

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

194
static int __add_prelim_ref(struct list_head *head, u64 root_id,
195
			    struct btrfs_key *key, int level,
196 197
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
198 199 200
{
	struct __prelim_ref *ref;

201 202 203
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

204
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 206 207 208
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
209
	if (key) {
210
		ref->key_for_search = *key;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
234
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
235
	}
236

237
	ref->inode_list = NULL;
238 239 240 241 242 243 244 245 246 247
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
248
			   struct ulist *parents, struct __prelim_ref *ref,
249 250
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
251
{
252 253 254 255
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
256
	struct btrfs_key *key_for_search = &ref->key_for_search;
257
	struct btrfs_file_extent_item *fi;
258
	struct extent_inode_elem *eie = NULL, *old = NULL;
259
	u64 disk_byte;
260 261
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
262

263 264 265
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
266 267
		if (ret < 0)
			return ret;
268
		return 0;
269
	}
270 271

	/*
272 273 274
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
275
	 */
276 277 278 279 280 281
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		if (time_seq == (u64)-1)
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
282

283
	while (!ret && count < total_refs) {
284
		eb = path->nodes[0];
285 286 287 288 289 290 291 292 293 294 295 296 297
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
298
			old = NULL;
299
			count++;
300 301 302 303 304 305 306
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
307 308
			if (ret > 0)
				goto next;
309 310
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
311 312 313 314 315 316
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
317
			}
318
			eie = NULL;
319
		}
320
next:
321 322 323 324
		if (time_seq == (u64)-1)
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
325 326
	}

327 328
	if (ret > 0)
		ret = 0;
329 330
	else if (ret < 0)
		free_inode_elem_list(eie);
331
	return ret;
332 333 334 335 336 337 338
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
339 340 341
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
342
				  const u64 *extent_item_pos, u64 total_refs)
343 344 345 346 347 348 349
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
350
	int index;
351 352 353 354

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
355 356 357

	index = srcu_read_lock(&fs_info->subvol_srcu);

358
	root = btrfs_get_fs_root(fs_info, &root_key, false);
359
	if (IS_ERR(root)) {
360
		srcu_read_unlock(&fs_info->subvol_srcu, index);
361 362 363 364
		ret = PTR_ERR(root);
		goto out;
	}

J
Josef Bacik 已提交
365 366 367 368 369 370
	if (btrfs_test_is_dummy_root(root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

371 372
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
373 374
	else if (time_seq == (u64)-1)
		root_level = btrfs_header_level(root->node);
375 376
	else
		root_level = btrfs_old_root_level(root, time_seq);
377

378 379
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
380
		goto out;
381
	}
382 383

	path->lowest_level = level;
384 385 386 387 388 389
	if (time_seq == (u64)-1)
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
390 391 392 393

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

394 395
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
396 397 398
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
399 400 401 402
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
403
	while (!eb) {
404
		if (WARN_ON(!level)) {
405 406 407 408 409
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
410 411
	}

412
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
413
			      extent_item_pos, total_refs);
414
out:
415 416
	path->lowest_level = 0;
	btrfs_release_path(path);
417 418 419 420 421 422 423
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
424
				   struct btrfs_path *path, u64 time_seq,
425
				   struct list_head *head,
426 427
				   const u64 *extent_item_pos, u64 total_refs,
				   u64 root_objectid)
428 429 430 431 432 433 434 435
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
436
	struct ulist_iterator uiter;
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
452 453 454 455
		if (root_objectid && ref->root_id != root_objectid) {
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
456
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
457 458
					     parents, extent_item_pos,
					     total_refs);
459 460 461 462 463
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
464
			continue;
465 466 467 468
		} else if (err) {
			ret = err;
			goto out;
		}
469 470

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
471 472
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
473
		ref->parent = node ? node->val : 0;
474
		ref->inode_list = node ?
475
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
476 477

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
478
		while ((node = ulist_next(parents, &uiter))) {
479 480
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
481 482
			if (!new_ref) {
				ret = -ENOMEM;
483
				goto out;
484 485 486
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
487 488
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
489 490 491 492
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
493
out:
494 495 496 497
	ulist_free(parents);
	return ret;
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
523
	struct __prelim_ref *ref;
524 525
	struct extent_buffer *eb;

526
	list_for_each_entry(ref, head, list) {
527 528 529 530 531 532
		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
533
				     0);
534 535 536
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
537 538 539
			free_extent_buffer(eb);
			return -EIO;
		}
540 541 542 543 544 545 546 547 548 549 550
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

551
/*
552
 * merge backrefs and adjust counts accordingly
553 554
 *
 * mode = 1: merge identical keys, if key is set
555 556 557 558
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
559 560
 * mode = 2: merge identical parents
 */
561
static void __merge_refs(struct list_head *head, int mode)
562
{
563
	struct __prelim_ref *pos1;
564

565 566
	list_for_each_entry(pos1, head, list) {
		struct __prelim_ref *pos2 = pos1, *tmp;
567

568 569
		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
			struct __prelim_ref *xchg, *ref1 = pos1, *ref2 = pos2;
570
			struct extent_inode_elem *eie;
571

572 573
			if (!ref_for_same_block(ref1, ref2))
				continue;
574
			if (mode == 1) {
575 576 577 578 579
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
580 581 582 583
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
584 585 586 587 588 589 590 591 592 593

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

594
			list_del(&ref2->list);
595
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
596 597 598 599 600 601 602 603 604 605
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
606 607
			      struct list_head *prefs, u64 *total_refs,
			      u64 inum)
608
{
609
	struct btrfs_delayed_ref_node *node;
610
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
611 612
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
613
	int sgn;
614
	int ret = 0;
615 616

	if (extent_op && extent_op->update_key)
617
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
618

619
	spin_lock(&head->lock);
620
	list_for_each_entry(node, &head->ref_list, list) {
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
638
		*total_refs += (node->ref_mod * sgn);
639 640 641 642 643
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
644
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
645
					       ref->level + 1, 0, node->bytenr,
646
					       node->ref_mod * sgn, GFP_ATOMIC);
647 648 649 650 651 652
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
L
Liu Bo 已提交
653
			ret = __add_prelim_ref(prefs, 0, NULL,
654 655
					       ref->level + 1, ref->parent,
					       node->bytenr,
656
					       node->ref_mod * sgn, GFP_ATOMIC);
657 658 659 660 661 662 663 664 665
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
666 667 668 669 670 671 672 673 674 675

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
			if (inum && ref->objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

676 677
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
678
					       node->ref_mod * sgn, GFP_ATOMIC);
679 680 681 682 683 684
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
L
Liu Bo 已提交
685
			ret = __add_prelim_ref(prefs, 0, NULL, 0,
686
					       ref->parent, node->bytenr,
687
					       node->ref_mod * sgn, GFP_ATOMIC);
688 689 690 691 692
			break;
		}
		default:
			WARN_ON(1);
		}
693
		if (ret)
694
			break;
695
	}
696 697
	spin_unlock(&head->lock);
	return ret;
698 699 700 701 702 703 704
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
705
			     int *info_level, struct list_head *prefs,
706
			     u64 *total_refs, u64 inum)
707
{
708
	int ret = 0;
709 710 711
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
712
	struct btrfs_key found_key;
713 714 715 716 717 718 719 720 721 722
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
723
	slot = path->slots[0];
724 725 726 727 728 729

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
730
	*total_refs += btrfs_extent_refs(leaf, ei);
731
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
732 733 734 735

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

736 737
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
738 739 740 741 742 743
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
744 745
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
761
			ret = __add_prelim_ref(prefs, 0, NULL,
762
						*info_level + 1, offset,
763
						bytenr, 1, GFP_NOFS);
764 765 766 767 768 769 770 771
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
772
					       bytenr, count, GFP_NOFS);
773 774 775
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
776 777
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
778
					       bytenr, 1, GFP_NOFS);
779 780 781 782 783 784 785 786 787 788 789 790
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
791 792 793 794 795 796

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

797
			root = btrfs_extent_data_ref_root(leaf, dref);
798
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
799
					       bytenr, count, GFP_NOFS);
800 801 802 803 804
			break;
		}
		default:
			WARN_ON(1);
		}
805 806
		if (ret)
			return ret;
807 808 809 810 811 812 813 814 815 816 817
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
818
			    int info_level, struct list_head *prefs, u64 inum)
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
848
			ret = __add_prelim_ref(prefs, 0, NULL,
849
						info_level + 1, key.offset,
850
						bytenr, 1, GFP_NOFS);
851 852 853 854 855 856 857 858 859
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
860
						bytenr, count, GFP_NOFS);
861 862 863
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
864 865
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
866
					       bytenr, 1, GFP_NOFS);
867 868 869 870 871 872 873 874 875 876 877 878 879
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
880 881 882 883 884 885

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

886 887
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
888
					       bytenr, count, GFP_NOFS);
889 890 891 892 893
			break;
		}
		default:
			WARN_ON(1);
		}
894 895 896
		if (ret)
			return ret;

897 898 899 900 901 902 903 904 905 906 907
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
908 909
 * NOTE: This can return values > 0
 *
910 911 912 913 914
 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
915 916 917 918
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
919
			     u64 time_seq, struct ulist *refs,
920 921
			     struct ulist *roots, const u64 *extent_item_pos,
			     u64 root_objectid, u64 inum)
922 923 924 925
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
926
	struct btrfs_delayed_ref_head *head;
927 928 929 930 931
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
932
	struct extent_inode_elem *eie = NULL;
933
	u64 total_refs = 0;
934 935 936 937 938 939

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
940 941 942 943
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
944 945 946 947

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
948
	if (!trans) {
949
		path->search_commit_root = 1;
950 951
		path->skip_locking = 1;
	}
952

953 954 955
	if (time_seq == (u64)-1)
		path->skip_locking = 1;

956 957 958 959 960 961
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
962 963
	head = NULL;

964 965 966 967 968
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

969
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
970 971
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
	    time_seq != (u64)-1) {
972
#else
973
	if (trans && time_seq != (u64)-1) {
974
#endif
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
998
			spin_unlock(&delayed_refs->lock);
999
			ret = __add_delayed_refs(head, time_seq,
1000 1001
						 &prefs_delayed, &total_refs,
						 inum);
1002
			mutex_unlock(&head->mutex);
1003
			if (ret)
1004
				goto out;
1005 1006
		} else {
			spin_unlock(&delayed_refs->lock);
1007
		}
1008 1009 1010 1011 1012 1013
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1014
		path->slots[0]--;
1015
		leaf = path->nodes[0];
1016
		slot = path->slots[0];
1017 1018
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1019 1020
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1021
			ret = __add_inline_refs(fs_info, path, bytenr,
1022
						&info_level, &prefs,
1023
						&total_refs, inum);
1024 1025
			if (ret)
				goto out;
1026
			ret = __add_keyed_refs(fs_info, path, bytenr,
1027
					       info_level, &prefs, inum);
1028 1029 1030 1031 1032 1033 1034 1035
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

1036 1037 1038 1039
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

1040
	__merge_refs(&prefs, 1);
1041

1042
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1043 1044
				      extent_item_pos, total_refs,
				      root_objectid);
1045 1046 1047
	if (ret)
		goto out;

1048
	__merge_refs(&prefs, 2);
1049 1050 1051

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
1052
		WARN_ON(ref->count < 0);
1053
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1054 1055 1056 1057 1058
			if (root_objectid && ref->root_id != root_objectid) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1059 1060
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1061 1062
			if (ret < 0)
				goto out;
1063 1064
		}
		if (ref->count && ref->parent) {
1065 1066
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1067
				struct extent_buffer *eb;
1068

1069
				eb = read_tree_block(fs_info->extent_root,
1070
							   ref->parent, 0);
1071 1072 1073 1074
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1075
					free_extent_buffer(eb);
1076 1077
					ret = -EIO;
					goto out;
1078
				}
1079 1080
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1081 1082
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1083
				btrfs_tree_read_unlock_blocking(eb);
1084
				free_extent_buffer(eb);
1085 1086 1087
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1088
			}
1089 1090 1091
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1092 1093
			if (ret < 0)
				goto out;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1104
			eie = NULL;
1105
		}
1106
		list_del(&ref->list);
1107
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1108 1109 1110 1111 1112 1113 1114
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1115
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1116 1117 1118 1119 1120
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1121
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1122
	}
1123 1124
	if (ret < 0)
		free_inode_elem_list(eie);
1125 1126 1127
	return ret;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1138
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1139
		free_inode_elem_list(eie);
1140 1141 1142 1143 1144 1145
		node->aux = 0;
	}

	ulist_free(blocks);
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1156
				u64 time_seq, struct ulist **leafs,
1157
				const u64 *extent_item_pos)
1158 1159 1160 1161
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1162
	if (!*leafs)
1163 1164
		return -ENOMEM;

1165
	ret = find_parent_nodes(trans, fs_info, bytenr,
1166
				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1167
	if (ret < 0 && ret != -ENOENT) {
1168
		free_leaf_list(*leafs);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1188 1189 1190
static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				  struct btrfs_fs_info *fs_info, u64 bytenr,
				  u64 time_seq, struct ulist **roots)
1191 1192 1193
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1194
	struct ulist_iterator uiter;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1206
	ULIST_ITER_INIT(&uiter);
1207
	while (1) {
1208
		ret = find_parent_nodes(trans, fs_info, bytenr,
1209
					time_seq, tmp, *roots, NULL, 0, 0);
1210 1211 1212 1213 1214
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1215
		node = ulist_next(tmp, &uiter);
1216 1217 1218
		if (!node)
			break;
		bytenr = node->val;
1219
		cond_resched();
1220 1221 1222 1223 1224 1225
	}

	ulist_free(tmp);
	return 0;
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * @trans: optional trans handle
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1253 1254 1255 1256 1257 1258 1259 1260
int btrfs_check_shared(struct btrfs_trans_handle *trans,
		       struct btrfs_fs_info *fs_info, u64 root_objectid,
		       u64 inum, u64 bytenr)
{
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1261
	struct seq_list elem = SEQ_LIST_INIT(elem);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	int ret = 0;

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

	if (trans)
		btrfs_get_tree_mod_seq(fs_info, &elem);
	else
		down_read(&fs_info->commit_root_sem);
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
					roots, NULL, root_objectid, inum);
		if (ret == BACKREF_FOUND_SHARED) {
1281
			/* this is the only condition under which we return 1 */
1282 1283 1284 1285 1286
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1287
		ret = 0;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
	if (trans)
		btrfs_put_tree_mod_seq(fs_info, &elem);
	else
		up_read(&fs_info->commit_root_sem);
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
1316
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1356
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1385 1386 1387 1388
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1389 1390 1391 1392
{
	int slot;
	u64 next_inum;
	int ret;
1393
	s64 bytes_left = ((s64)size) - 1;
1394 1395
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1396
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1397
	struct btrfs_inode_ref *iref;
1398 1399 1400 1401

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1402
	path->leave_spinning = 1;
1403
	while (1) {
M
Mark Fasheh 已提交
1404
		bytes_left -= name_len;
1405 1406
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1407
					   name_off, name_len);
1408 1409
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1410
			free_extent_buffer(eb);
1411
		}
1412 1413
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1414 1415
		if (ret > 0)
			ret = -ENOENT;
1416 1417
		if (ret)
			break;
M
Mark Fasheh 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1428
		if (eb != eb_in) {
1429
			atomic_inc(&eb->refs);
1430 1431 1432
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1433 1434
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1435 1436 1437 1438

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1439 1440 1441 1442 1443 1444 1445
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1446
	path->leave_spinning = leave_spinning;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1460 1461
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1462 1463 1464
{
	int ret;
	u64 flags;
1465
	u64 size = 0;
1466 1467 1468 1469 1470
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1471 1472 1473 1474
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1475 1476 1477 1478 1479 1480 1481
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1482 1483 1484 1485 1486
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1487
	}
1488
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1489
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1490
		size = fs_info->extent_root->nodesize;
1491 1492 1493
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1494
	if (found_key->objectid > logical ||
1495
	    found_key->objectid + size <= logical) {
1496
		pr_debug("logical %llu is not within any extent\n", logical);
1497
		return -ENOENT;
J
Jan Schmidt 已提交
1498
	}
1499 1500 1501 1502 1503 1504 1505 1506

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1507 1508
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1509 1510
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1535 1536 1537 1538
				   struct btrfs_key *key,
				   struct btrfs_extent_item *ei, u32 item_size,
				   struct btrfs_extent_inline_ref **out_eiref,
				   int *out_type)
1539 1540 1541 1542 1543 1544 1545 1546 1547
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1558 1559 1560 1561
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1562
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1563 1564 1565 1566
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1567
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1586 1587
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1588 1589 1590 1591 1592 1593 1594 1595 1596
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1597 1598
		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
					      &eiref, &type);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1622 1623 1624 1625 1626 1627 1628

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1629 1630
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1631
				iterate_extent_inodes_t *iterate, void *ctx)
1632
{
1633
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1634 1635
	int ret = 0;

1636
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1637
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1638 1639 1640
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1641
		if (ret) {
1642 1643
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1644 1645
			break;
		}
1646 1647 1648 1649 1650 1651 1652
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1653
 * the given parameters.
1654 1655 1656
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1657
				u64 extent_item_objectid, u64 extent_item_pos,
1658
				int search_commit_root,
1659 1660 1661
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1662
	struct btrfs_trans_handle *trans = NULL;
1663 1664
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1665 1666
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1667
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1668 1669
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1670

J
Jan Schmidt 已提交
1671 1672
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1673

1674
	if (!search_commit_root) {
1675 1676 1677
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1678
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1679 1680
	} else {
		down_read(&fs_info->commit_root_sem);
1681
	}
1682

J
Jan Schmidt 已提交
1683
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1684
				   tree_mod_seq_elem.seq, &refs,
1685
				   &extent_item_pos);
J
Jan Schmidt 已提交
1686 1687
	if (ret)
		goto out;
1688

J
Jan Schmidt 已提交
1689 1690
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1691 1692
		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
					     tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1693 1694
		if (ret)
			break;
J
Jan Schmidt 已提交
1695 1696
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1697
			pr_debug("root %llu references leaf %llu, data list "
1698
				 "%#llx\n", root_node->val, ref_node->val,
1699
				 ref_node->aux);
1700 1701 1702 1703 1704
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1705
		}
1706
		ulist_free(roots);
1707 1708
	}

1709
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1710
out:
1711
	if (!search_commit_root) {
1712
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1713
		btrfs_end_transaction(trans, fs_info->extent_root);
1714 1715
	} else {
		up_read(&fs_info->commit_root_sem);
1716 1717
	}

1718 1719 1720 1721 1722 1723 1724 1725
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1726
	u64 extent_item_pos;
1727
	u64 flags = 0;
1728
	struct btrfs_key found_key;
1729
	int search_commit_root = path->search_commit_root;
1730

1731
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1732
	btrfs_release_path(path);
1733 1734
	if (ret < 0)
		return ret;
1735
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1736
		return -EINVAL;
1737

J
Jan Schmidt 已提交
1738
	extent_item_pos = logical - found_key.objectid;
1739 1740 1741
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1742 1743 1744 1745

	return ret;
}

M
Mark Fasheh 已提交
1746 1747 1748 1749 1750 1751
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1752
{
1753
	int ret = 0;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1765
	while (!ret) {
1766 1767 1768 1769
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1780 1781 1782 1783 1784 1785
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1786 1787
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1788 1789
		btrfs_release_path(path);

1790
		item = btrfs_item_nr(slot);
1791 1792 1793 1794 1795
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1796
			pr_debug("following ref at offset %u for inode %llu in "
1797 1798
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1799 1800
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1801
			if (ret)
1802 1803 1804 1805
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1806
		btrfs_tree_read_unlock_blocking(eb);
1807 1808 1809 1810 1811 1812 1813 1814
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1842 1843 1844 1845 1846 1847
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1848 1849 1850 1851 1852

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

1853 1854
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

1868
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1902 1903 1904 1905
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1906 1907
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1919
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1920 1921
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1922 1923 1924 1925
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1926
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1941
 * from ipath->fspath->val[i].
1942
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1943
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1944 1945 1946 1947 1948 1949 1950
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1951
			     inode_to_path, ipath);
1952 1953 1954 1955 1956 1957 1958 1959
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1960
	data = vmalloc(alloc_bytes);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2009 2010
	if (!ipath)
		return;
2011
	vfree(ipath->fspath);
2012 2013
	kfree(ipath);
}