amd_iommu.c 64.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
21
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
22
#include <linux/bitmap.h>
23
#include <linux/slab.h>
24
#include <linux/debugfs.h>
25
#include <linux/scatterlist.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/iommu-helper.h>
28
#include <linux/iommu.h>
29
#include <linux/delay.h>
30
#include <linux/amd-iommu.h>
31
#include <asm/msidef.h>
32
#include <asm/proto.h>
33
#include <asm/iommu.h>
34
#include <asm/gart.h>
35
#include <asm/dma.h>
36 37 38

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
39 40 41

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

42
#define LOOP_TIMEOUT	100000
43

44 45
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

46 47 48 49
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

50 51 52 53
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

54 55 56 57 58 59
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

60 61
static struct iommu_ops amd_iommu_ops;

62 63 64
/*
 * general struct to manage commands send to an IOMMU
 */
65
struct iommu_cmd {
66 67 68
	u32 data[4];
};

69
static void update_domain(struct protection_domain *domain);
70

71 72 73 74 75 76
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

77
static struct iommu_dev_data *alloc_dev_data(u16 devid)
78 79 80 81 82 83 84 85
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

86
	dev_data->devid = devid;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

138 139 140 141 142 143 144
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

145 146 147 148 149
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

178 179 180 181 182 183 184 185 186 187 188 189
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
190
	if (dev->bus != &pci_bus_type)
191 192 193 194 195 196 197 198 199 200 201 202 203 204
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

205 206 207
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
208
	u16 alias;
209 210 211 212

	if (dev->archdata.iommu)
		return 0;

213
	dev_data = find_dev_data(get_device_id(dev));
214 215 216
	if (!dev_data)
		return -ENOMEM;

217
	alias = amd_iommu_alias_table[dev_data->devid];
218
	if (alias != dev_data->devid) {
219
		struct iommu_dev_data *alias_data;
220

221 222 223 224
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
225 226 227
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
228
		dev_data->alias_data = alias_data;
229
	}
230 231 232 233 234 235

	dev->archdata.iommu = dev_data;

	return 0;
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

250 251
static void iommu_uninit_device(struct device *dev)
{
252 253 254 255 256
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
257
}
J
Joerg Roedel 已提交
258 259 260

void __init amd_iommu_uninit_devices(void)
{
261
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
262 263 264 265 266 267 268 269 270
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
271 272 273 274

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
288 289 290
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
291 292 293 294 295 296 297 298 299 300 301
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
302 303 304 305 306 307
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

308
DECLARE_STATS_COUNTER(compl_wait);
309
DECLARE_STATS_COUNTER(cnt_map_single);
310
DECLARE_STATS_COUNTER(cnt_unmap_single);
311
DECLARE_STATS_COUNTER(cnt_map_sg);
312
DECLARE_STATS_COUNTER(cnt_unmap_sg);
313
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
314
DECLARE_STATS_COUNTER(cnt_free_coherent);
315
DECLARE_STATS_COUNTER(cross_page);
316
DECLARE_STATS_COUNTER(domain_flush_single);
317
DECLARE_STATS_COUNTER(domain_flush_all);
318
DECLARE_STATS_COUNTER(alloced_io_mem);
319
DECLARE_STATS_COUNTER(total_map_requests);
320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
341 342

	amd_iommu_stats_add(&compl_wait);
343
	amd_iommu_stats_add(&cnt_map_single);
344
	amd_iommu_stats_add(&cnt_unmap_single);
345
	amd_iommu_stats_add(&cnt_map_sg);
346
	amd_iommu_stats_add(&cnt_unmap_sg);
347
	amd_iommu_stats_add(&cnt_alloc_coherent);
348
	amd_iommu_stats_add(&cnt_free_coherent);
349
	amd_iommu_stats_add(&cross_page);
350
	amd_iommu_stats_add(&domain_flush_single);
351
	amd_iommu_stats_add(&domain_flush_all);
352
	amd_iommu_stats_add(&alloced_io_mem);
353
	amd_iommu_stats_add(&total_map_requests);
354 355 356 357
}

#endif

358 359 360 361 362 363
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

364 365 366 367 368 369 370 371 372
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

373 374 375 376 377 378 379 380 381
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

382
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
383 384 385 386 387 388 389 390
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

391
	printk(KERN_ERR "AMD-Vi: Event logged [");
392 393 394 395 396 397 398

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
399
		dump_dte_entry(devid);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
421
		dump_command(address);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
455
		iommu_print_event(iommu, iommu->evt_buf + head);
456 457 458 459 460 461 462 463
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

464
irqreturn_t amd_iommu_int_thread(int irq, void *data)
465
{
466 467
	struct amd_iommu *iommu;

468
	for_each_iommu(iommu)
469 470 471
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
472 473
}

474 475 476 477 478
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

479 480 481 482 483 484
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
505 506 507
{
	u8 *target;

508
	target = iommu->cmd_buf + tail;
509 510 511 512 513 514
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
515
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
516
}
517

518
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
519
{
520 521
	WARN_ON(address & 0x7ULL);

522
	memset(cmd, 0, sizeof(*cmd));
523 524 525
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
526 527 528
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

529 530 531 532 533 534 535
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

598 599 600 601
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
602 603
}

604 605
/*
 * Writes the command to the IOMMUs command buffer and informs the
606
 * hardware about the new command.
607
 */
608 609 610
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
611
{
612
	u32 left, tail, head, next_tail;
613 614
	unsigned long flags;

615
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
616 617

again:
618 619
	spin_lock_irqsave(&iommu->lock, flags);

620 621 622 623
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
624

625 626 627 628
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
629

630 631
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
632

633 634 635 636 637 638
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
639 640
	}

641 642 643
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
644
	iommu->need_sync = sync;
645

646
	spin_unlock_irqrestore(&iommu->lock, flags);
647

648
	return 0;
649 650
}

651 652 653 654 655
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

656 657 658 659
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
660
static int iommu_completion_wait(struct amd_iommu *iommu)
661 662
{
	struct iommu_cmd cmd;
663
	volatile u64 sem = 0;
664
	int ret;
665

666
	if (!iommu->need_sync)
667
		return 0;
668

669
	build_completion_wait(&cmd, (u64)&sem);
670

671
	ret = iommu_queue_command_sync(iommu, &cmd, false);
672
	if (ret)
673
		return ret;
674

675
	return wait_on_sem(&sem);
676 677
}

678
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
679
{
680
	struct iommu_cmd cmd;
681

682
	build_inv_dte(&cmd, devid);
683

684 685
	return iommu_queue_command(iommu, &cmd);
}
686

687 688 689
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
690

691 692
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
693

694 695
	iommu_completion_wait(iommu);
}
696

697 698 699 700 701 702 703
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
704

705 706 707 708 709 710
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
711

712
	iommu_completion_wait(iommu);
713 714
}

715
static void iommu_flush_all(struct amd_iommu *iommu)
716
{
717
	struct iommu_cmd cmd;
718

719
	build_inv_all(&cmd);
720

721 722 723 724
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

725 726
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
727 728 729 730 731
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
732 733 734
	}
}

735
/*
736
 * Command send function for flushing on-device TLB
737
 */
738 739
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
740 741
{
	struct amd_iommu *iommu;
742
	struct iommu_cmd cmd;
743
	int qdep;
744

745 746
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
747

748
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
749 750

	return iommu_queue_command(iommu, &cmd);
751 752
}

753 754 755
/*
 * Command send function for invalidating a device table entry
 */
756
static int device_flush_dte(struct iommu_dev_data *dev_data)
757
{
758
	struct amd_iommu *iommu;
759
	int ret;
760

761
	iommu = amd_iommu_rlookup_table[dev_data->devid];
762

763
	ret = iommu_flush_dte(iommu, dev_data->devid);
764 765 766
	if (ret)
		return ret;

767
	if (dev_data->ats.enabled)
768
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
769 770

	return ret;
771 772
}

773 774 775 776 777
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
778 779
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
780
{
781
	struct iommu_dev_data *dev_data;
782 783
	struct iommu_cmd cmd;
	int ret = 0, i;
784

785
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
786

787 788 789 790 791 792 793 794
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
795
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
796 797
	}

798 799
	list_for_each_entry(dev_data, &domain->dev_list, list) {

800
		if (!dev_data->ats.enabled)
801 802
			continue;

803
		ret |= device_flush_iotlb(dev_data, address, size);
804 805
	}

806
	WARN_ON(ret);
807 808
}

809 810
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
811
{
812
	__domain_flush_pages(domain, address, size, 0);
813
}
814

815
/* Flush the whole IO/TLB for a given protection domain */
816
static void domain_flush_tlb(struct protection_domain *domain)
817
{
818
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
819 820
}

821
/* Flush the whole IO/TLB for a given protection domain - including PDE */
822
static void domain_flush_tlb_pde(struct protection_domain *domain)
823
{
824
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
825 826
}

827
static void domain_flush_complete(struct protection_domain *domain)
828
{
829
	int i;
830

831 832 833
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
834

835 836 837 838 839
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
840
	}
841 842
}

843

844
/*
845
 * This function flushes the DTEs for all devices in domain
846
 */
847
static void domain_flush_devices(struct protection_domain *domain)
848
{
849
	struct iommu_dev_data *dev_data;
850

851
	list_for_each_entry(dev_data, &domain->dev_list, list)
852
		device_flush_dte(dev_data);
853 854
}

855 856 857 858 859 860 861
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
891
		      unsigned long page_size,
892 893 894
		      u64 **pte_page,
		      gfp_t gfp)
{
895
	int level, end_lvl;
896
	u64 *pte, *page;
897 898

	BUG_ON(!is_power_of_2(page_size));
899 900 901 902

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

903 904 905 906
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
907 908 909 910 911 912 913 914 915

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

916 917 918 919
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
937
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
938 939 940 941
{
	int level;
	u64 *pte;

942 943 944 945 946
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
947

948 949 950
	while (level > 0) {

		/* Not Present */
951 952 953
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

973 974
		level -= 1;

975
		/* Walk to the next level */
976 977 978 979 980 981 982
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

983 984 985 986 987 988 989
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
990 991 992
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
993
			  int prot,
994
			  unsigned long page_size)
995
{
996
	u64 __pte, *pte;
997
	int i, count;
998

999
	if (!(prot & IOMMU_PROT_MASK))
1000 1001
		return -EINVAL;

1002 1003 1004 1005 1006 1007 1008 1009
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1010

1011 1012 1013 1014 1015
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1016 1017 1018 1019 1020 1021

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1022 1023
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1024

1025 1026
	update_domain(dom);

1027 1028 1029
	return 0;
}

1030 1031 1032
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1033
{
1034 1035 1036 1037 1038 1039
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1070

1071
	return unmapped;
1072 1073
}

1074 1075 1076 1077
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1092 1093 1094 1095
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1096 1097 1098 1099 1100 1101 1102 1103
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1104
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1105
				     PAGE_SIZE);
1106 1107 1108 1109 1110 1111 1112
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1113
			__set_bit(addr >> PAGE_SHIFT,
1114
				  dma_dom->aperture[0]->bitmap);
1115 1116 1117 1118 1119
	}

	return 0;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1142 1143 1144
/*
 * Inits the unity mappings required for a specific device
 */
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1162 1163 1164 1165 1166 1167 1168 1169 1170
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1171

1172
/*
1173
 * The address allocator core functions.
1174 1175 1176
 *
 * called with domain->lock held
 */
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1198 1199 1200 1201 1202
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1203
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1204 1205 1206
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1207
	struct amd_iommu *iommu;
1208
	unsigned long i, old_size;
1209

1210 1211 1212 1213
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1233
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1244
	old_size                = dma_dom->aperture_size;
1245 1246
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1259
	/* Initialize the exclusion range if necessary */
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1282
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1283 1284 1285 1286 1287 1288
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1289 1290
	update_domain(&dma_dom->domain);

1291 1292 1293
	return 0;

out_free:
1294 1295
	update_domain(&dma_dom->domain);

1296 1297 1298 1299 1300 1301 1302 1303
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1304 1305 1306 1307 1308 1309 1310
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1311
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1312 1313 1314 1315 1316 1317
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1318 1319
	next_bit >>= PAGE_SHIFT;

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1338
			dom->next_address = address + (pages << PAGE_SHIFT);
1339 1340 1341 1342 1343 1344 1345 1346 1347
			break;
		}

		next_bit = 0;
	}

	return address;
}

1348 1349
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1350
					     unsigned int pages,
1351 1352
					     unsigned long align_mask,
					     u64 dma_mask)
1353 1354 1355
{
	unsigned long address;

1356 1357 1358 1359
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1360

1361
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1362
				     dma_mask, dom->next_address);
1363

1364
	if (address == -1) {
1365
		dom->next_address = 0;
1366 1367
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1368 1369
		dom->need_flush = true;
	}
1370

1371
	if (unlikely(address == -1))
1372
		address = DMA_ERROR_CODE;
1373 1374 1375 1376 1377 1378

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1379 1380 1381 1382 1383
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1384 1385 1386 1387
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1388 1389
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1390

1391 1392
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1393 1394 1395 1396
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1397

1398
	if (address >= dom->next_address)
1399
		dom->need_flush = true;
1400 1401

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1402

A
Akinobu Mita 已提交
1403
	bitmap_clear(range->bitmap, address, pages);
1404

1405 1406
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1469
static void free_pagetable(struct protection_domain *domain)
1470 1471 1472 1473
{
	int i, j;
	u64 *p1, *p2, *p3;

1474
	p1 = domain->pt_root;
1475 1476 1477 1478 1479 1480 1481 1482 1483

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1484
		for (j = 0; j < 512; ++j) {
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1495 1496

	domain->pt_root = NULL;
1497 1498
}

1499 1500 1501 1502
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1503 1504
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1505 1506
	int i;

1507 1508 1509
	if (!dom)
		return;

1510 1511
	del_domain_from_list(&dom->domain);

1512
	free_pagetable(&dom->domain);
1513

1514 1515 1516 1517 1518 1519
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1520 1521 1522 1523

	kfree(dom);
}

1524 1525
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1526
 * It also initializes the page table and the address allocator data
1527 1528
 * structures required for the dma_ops interface
 */
1529
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1542
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1543
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1544
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1545
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1546 1547 1548 1549
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1550
	dma_dom->need_flush = false;
1551
	dma_dom->target_dev = 0xffff;
1552

1553 1554
	add_domain_to_list(&dma_dom->domain);

1555
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1556 1557
		goto free_dma_dom;

1558
	/*
1559 1560
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1561
	 */
1562
	dma_dom->aperture[0]->bitmap[0] = 1;
1563
	dma_dom->next_address = 0;
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1583
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1584 1585
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1586
	u32 flags = 0;
1587

1588 1589 1590
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1591

1592 1593 1594 1595 1596 1597 1598
	if (ats)
		flags |= DTE_FLAG_IOTLB;

	amd_iommu_dev_table[devid].data[3] |= flags;
	amd_iommu_dev_table[devid].data[2]  = domain->id;
	amd_iommu_dev_table[devid].data[1]  = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0]  = lower_32_bits(pte_root);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1609 1610
}

1611 1612
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1613 1614
{
	struct amd_iommu *iommu;
1615
	bool ats;
1616

1617 1618
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1619 1620 1621 1622

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1623
	set_dte_entry(dev_data->devid, domain, ats);
1624 1625 1626 1627 1628 1629

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1630
	device_flush_dte(dev_data);
1631 1632
}

1633
static void do_detach(struct iommu_dev_data *dev_data)
1634 1635 1636
{
	struct amd_iommu *iommu;

1637
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1638 1639

	/* decrease reference counters */
1640 1641 1642 1643 1644 1645
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1646
	clear_dte_entry(dev_data->devid);
1647

1648
	/* Flush the DTE entry */
1649
	device_flush_dte(dev_data);
1650 1651 1652 1653 1654 1655
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1656
static int __attach_device(struct iommu_dev_data *dev_data,
1657
			   struct protection_domain *domain)
1658
{
1659
	int ret;
1660

1661 1662 1663
	/* lock domain */
	spin_lock(&domain->lock);

1664 1665
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1666

1667 1668 1669 1670 1671
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
1672

1673 1674 1675
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
1676

1677
		/* Do real assignment */
1678
		if (alias_data->domain == NULL)
1679
			do_attach(alias_data, domain);
1680 1681

		atomic_inc(&alias_data->bind);
1682
	}
1683

1684
	if (dev_data->domain == NULL)
1685
		do_attach(dev_data, domain);
1686

1687 1688
	atomic_inc(&dev_data->bind);

1689 1690 1691 1692
	ret = 0;

out_unlock:

1693 1694
	/* ready */
	spin_unlock(&domain->lock);
1695

1696
	return ret;
1697
}
1698

1699 1700 1701 1702
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1703 1704
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1705
{
1706
	struct pci_dev *pdev = to_pci_dev(dev);
1707
	struct iommu_dev_data *dev_data;
1708
	unsigned long flags;
1709
	int ret;
1710

1711 1712 1713 1714 1715 1716
	dev_data = get_dev_data(dev);

	if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
1717

1718
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1719
	ret = __attach_device(dev_data, domain);
1720 1721
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1722 1723 1724 1725 1726
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1727
	domain_flush_tlb_pde(domain);
1728 1729

	return ret;
1730 1731
}

1732 1733 1734
/*
 * Removes a device from a protection domain (unlocked)
 */
1735
static void __detach_device(struct iommu_dev_data *dev_data)
1736
{
1737
	struct protection_domain *domain;
1738
	unsigned long flags;
1739

1740
	BUG_ON(!dev_data->domain);
1741

1742 1743 1744
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1745

1746 1747 1748
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

1749
		if (atomic_dec_and_test(&alias_data->bind))
1750
			do_detach(alias_data);
1751 1752
	}

1753
	if (atomic_dec_and_test(&dev_data->bind))
1754
		do_detach(dev_data);
1755

1756
	spin_unlock_irqrestore(&domain->lock, flags);
1757 1758 1759

	/*
	 * If we run in passthrough mode the device must be assigned to the
1760 1761
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1762
	 */
1763 1764
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1765
		__attach_device(dev_data, pt_domain);
1766 1767 1768 1769 1770
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1771
static void detach_device(struct device *dev)
1772
{
1773
	struct iommu_dev_data *dev_data;
1774 1775
	unsigned long flags;

1776 1777
	dev_data = get_dev_data(dev);

1778 1779
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1780
	__detach_device(dev_data);
1781
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1782

1783 1784 1785 1786
	if (dev_data->ats.enabled) {
		pci_disable_ats(to_pci_dev(dev));
		dev_data->ats.enabled = false;
	}
1787
}
1788

1789 1790 1791 1792 1793 1794
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
1795
	struct iommu_dev_data *dev_data;
1796
	struct protection_domain *dom = NULL;
1797 1798
	unsigned long flags;

1799
	dev_data   = get_dev_data(dev);
1800

1801 1802
	if (dev_data->domain)
		return dev_data->domain;
1803

1804 1805
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1806 1807 1808 1809 1810 1811 1812 1813

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
1814 1815 1816 1817

	return dom;
}

1818 1819 1820 1821
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1822
	u16 devid;
1823 1824 1825
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1826
	unsigned long flags;
1827

1828 1829
	if (!check_device(dev))
		return 0;
1830

1831 1832
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1833 1834

	switch (action) {
1835
	case BUS_NOTIFY_UNBOUND_DRIVER:
1836 1837 1838

		domain = domain_for_device(dev);

1839 1840
		if (!domain)
			goto out;
1841 1842
		if (iommu_pass_through)
			break;
1843
		detach_device(dev);
1844 1845
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1846 1847 1848 1849 1850

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1851 1852 1853 1854
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1855
		dma_domain = dma_ops_domain_alloc();
1856 1857 1858 1859 1860 1861 1862 1863
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1864
		break;
1865 1866 1867 1868
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

1879
static struct notifier_block device_nb = {
1880 1881
	.notifier_call = device_change_notifier,
};
1882

1883 1884 1885 1886 1887
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1901
static struct protection_domain *get_domain(struct device *dev)
1902
{
1903
	struct protection_domain *domain;
1904
	struct dma_ops_domain *dma_dom;
1905
	u16 devid = get_device_id(dev);
1906

1907
	if (!check_device(dev))
1908
		return ERR_PTR(-EINVAL);
1909

1910 1911 1912
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1913

1914 1915
	if (domain != NULL)
		return domain;
1916

1917
	/* Device not bount yet - bind it */
1918
	dma_dom = find_protection_domain(devid);
1919
	if (!dma_dom)
1920 1921
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1922
	DUMP_printk("Using protection domain %d for device %s\n",
1923
		    dma_dom->domain.id, dev_name(dev));
1924

1925
	return &dma_dom->domain;
1926 1927
}

1928 1929
static void update_device_table(struct protection_domain *domain)
{
1930
	struct iommu_dev_data *dev_data;
1931

1932 1933
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1934 1935 1936 1937 1938 1939 1940 1941
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1942 1943 1944

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
1945 1946 1947 1948

	domain->updated = false;
}

1949 1950 1951 1952 1953 1954
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1955
	struct aperture_range *aperture;
1956 1957
	u64 *pte, *pte_page;

1958 1959 1960 1961 1962
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1963
	if (!pte) {
1964
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1965
				GFP_ATOMIC);
1966 1967
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1968
		pte += PM_LEVEL_INDEX(0, address);
1969

1970
	update_domain(&dom->domain);
1971 1972 1973 1974

	return pte;
}

1975 1976 1977 1978
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1979
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1990
	pte  = dma_ops_get_pte(dom, address);
1991
	if (!pte)
1992
		return DMA_ERROR_CODE;
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2010 2011 2012
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2013
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2014 2015
				 unsigned long address)
{
2016
	struct aperture_range *aperture;
2017 2018 2019 2020 2021
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2022 2023 2024 2025 2026 2027 2028
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2029

2030
	pte += PM_LEVEL_INDEX(0, address);
2031 2032 2033 2034 2035 2036

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2037 2038
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2039 2040
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2041 2042
 * Must be called with the domain lock held.
 */
2043 2044 2045 2046
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2047
			       int dir,
2048 2049
			       bool align,
			       u64 dma_mask)
2050 2051
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2052
	dma_addr_t address, start, ret;
2053
	unsigned int pages;
2054
	unsigned long align_mask = 0;
2055 2056
	int i;

2057
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2058 2059
	paddr &= PAGE_MASK;

2060 2061
	INC_STATS_COUNTER(total_map_requests);

2062 2063 2064
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2065 2066 2067
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2068
retry:
2069 2070
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2071
	if (unlikely(address == DMA_ERROR_CODE)) {
2072 2073 2074 2075 2076 2077 2078
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2079
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2080 2081 2082
			goto out;

		/*
2083
		 * aperture was successfully enlarged by 128 MB, try
2084 2085 2086 2087
		 * allocation again
		 */
		goto retry;
	}
2088 2089 2090

	start = address;
	for (i = 0; i < pages; ++i) {
2091
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2092
		if (ret == DMA_ERROR_CODE)
2093 2094
			goto out_unmap;

2095 2096 2097 2098 2099
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2100 2101
	ADD_STATS_COUNTER(alloced_io_mem, size);

2102
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2103
		domain_flush_tlb(&dma_dom->domain);
2104
		dma_dom->need_flush = false;
2105
	} else if (unlikely(amd_iommu_np_cache))
2106
		domain_flush_pages(&dma_dom->domain, address, size);
2107

2108 2109
out:
	return address;
2110 2111 2112 2113 2114

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2115
		dma_ops_domain_unmap(dma_dom, start);
2116 2117 2118 2119
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2120
	return DMA_ERROR_CODE;
2121 2122
}

2123 2124 2125 2126
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2127
static void __unmap_single(struct dma_ops_domain *dma_dom,
2128 2129 2130 2131
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2132
	dma_addr_t flush_addr;
2133 2134 2135
	dma_addr_t i, start;
	unsigned int pages;

2136
	if ((dma_addr == DMA_ERROR_CODE) ||
2137
	    (dma_addr + size > dma_dom->aperture_size))
2138 2139
		return;

2140
	flush_addr = dma_addr;
2141
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2142 2143 2144 2145
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2146
		dma_ops_domain_unmap(dma_dom, start);
2147 2148 2149
		start += PAGE_SIZE;
	}

2150 2151
	SUB_STATS_COUNTER(alloced_io_mem, size);

2152
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2153

2154
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2155
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2156 2157
		dma_dom->need_flush = false;
	}
2158 2159
}

2160 2161 2162
/*
 * The exported map_single function for dma_ops.
 */
2163 2164 2165 2166
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2167 2168 2169 2170
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2171
	u64 dma_mask;
2172
	phys_addr_t paddr = page_to_phys(page) + offset;
2173

2174 2175
	INC_STATS_COUNTER(cnt_map_single);

2176 2177
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2178
		return (dma_addr_t)paddr;
2179 2180
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2181

2182 2183
	dma_mask = *dev->dma_mask;

2184
	spin_lock_irqsave(&domain->lock, flags);
2185

2186
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2187
			    dma_mask);
2188
	if (addr == DMA_ERROR_CODE)
2189 2190
		goto out;

2191
	domain_flush_complete(domain);
2192 2193 2194 2195 2196 2197 2198

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2199 2200 2201
/*
 * The exported unmap_single function for dma_ops.
 */
2202 2203
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2204 2205 2206 2207
{
	unsigned long flags;
	struct protection_domain *domain;

2208 2209
	INC_STATS_COUNTER(cnt_unmap_single);

2210 2211
	domain = get_domain(dev);
	if (IS_ERR(domain))
2212 2213
		return;

2214 2215
	spin_lock_irqsave(&domain->lock, flags);

2216
	__unmap_single(domain->priv, dma_addr, size, dir);
2217

2218
	domain_flush_complete(domain);
2219 2220 2221 2222

	spin_unlock_irqrestore(&domain->lock, flags);
}

2223 2224 2225 2226
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2241 2242 2243 2244
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2245
static int map_sg(struct device *dev, struct scatterlist *sglist,
2246 2247
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2248 2249 2250 2251 2252 2253 2254
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2255
	u64 dma_mask;
2256

2257 2258
	INC_STATS_COUNTER(cnt_map_sg);

2259 2260
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2261
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2262 2263
	else if (IS_ERR(domain))
		return 0;
2264

2265
	dma_mask = *dev->dma_mask;
2266 2267 2268 2269 2270 2271

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2272
		s->dma_address = __map_single(dev, domain->priv,
2273 2274
					      paddr, s->length, dir, false,
					      dma_mask);
2275 2276 2277 2278 2279 2280 2281 2282

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2283
	domain_flush_complete(domain);
2284 2285 2286 2287 2288 2289 2290 2291

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2292
			__unmap_single(domain->priv, s->dma_address,
2293 2294 2295 2296 2297 2298 2299 2300 2301
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2302 2303 2304 2305
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2306
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2307 2308
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2309 2310 2311 2312 2313 2314
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2315 2316
	INC_STATS_COUNTER(cnt_unmap_sg);

2317 2318
	domain = get_domain(dev);
	if (IS_ERR(domain))
2319 2320
		return;

2321 2322 2323
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2324
		__unmap_single(domain->priv, s->dma_address,
2325 2326 2327 2328
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2329
	domain_flush_complete(domain);
2330 2331 2332 2333

	spin_unlock_irqrestore(&domain->lock, flags);
}

2334 2335 2336
/*
 * The exported alloc_coherent function for dma_ops.
 */
2337 2338 2339 2340 2341 2342 2343
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2344
	u64 dma_mask = dev->coherent_dma_mask;
2345

2346 2347
	INC_STATS_COUNTER(cnt_alloc_coherent);

2348 2349
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2350 2351 2352
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2353 2354
	} else if (IS_ERR(domain))
		return NULL;
2355

2356 2357 2358
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2359 2360 2361

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2362
		return NULL;
2363 2364 2365

	paddr = virt_to_phys(virt_addr);

2366 2367 2368
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2369 2370
	spin_lock_irqsave(&domain->lock, flags);

2371
	*dma_addr = __map_single(dev, domain->priv, paddr,
2372
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2373

2374
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2375
		spin_unlock_irqrestore(&domain->lock, flags);
2376
		goto out_free;
J
Jiri Slaby 已提交
2377
	}
2378

2379
	domain_flush_complete(domain);
2380 2381 2382 2383

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2384 2385 2386 2387 2388 2389

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2390 2391
}

2392 2393 2394
/*
 * The exported free_coherent function for dma_ops.
 */
2395 2396 2397 2398 2399 2400
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2401 2402
	INC_STATS_COUNTER(cnt_free_coherent);

2403 2404
	domain = get_domain(dev);
	if (IS_ERR(domain))
2405 2406
		goto free_mem;

2407 2408
	spin_lock_irqsave(&domain->lock, flags);

2409
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2410

2411
	domain_flush_complete(domain);
2412 2413 2414 2415 2416 2417 2418

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2419 2420 2421 2422 2423 2424
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2425
	return check_device(dev);
2426 2427
}

2428
/*
2429 2430
 * The function for pre-allocating protection domains.
 *
2431 2432 2433 2434
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2435
static void prealloc_protection_domains(void)
2436 2437 2438
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2439
	u16 devid;
2440

2441
	for_each_pci_dev(dev) {
2442 2443 2444

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2445
			continue;
2446 2447

		/* Is there already any domain for it? */
2448
		if (domain_for_device(&dev->dev))
2449
			continue;
2450 2451 2452

		devid = get_device_id(&dev->dev);

2453
		dma_dom = dma_ops_domain_alloc();
2454 2455 2456
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2457 2458
		dma_dom->target_dev = devid;

2459
		attach_device(&dev->dev, &dma_dom->domain);
2460

2461
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2462 2463 2464
	}
}

2465
static struct dma_map_ops amd_iommu_dma_ops = {
2466 2467
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2468 2469
	.map_page = map_page,
	.unmap_page = unmap_page,
2470 2471
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2472
	.dma_supported = amd_iommu_dma_supported,
2473 2474
};

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
static unsigned device_dma_ops_init(void)
{
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
			unhandled += 1;
			continue;
		}

		pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
	}

	return unhandled;
}

2492 2493 2494
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2495 2496 2497 2498 2499 2500

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2501 2502 2503
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2504
	int ret, unhandled;
2505

2506 2507 2508 2509 2510
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2511
	for_each_iommu(iommu) {
2512
		iommu->default_dom = dma_ops_domain_alloc();
2513 2514
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2515
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2516 2517 2518 2519 2520
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2521
	/*
2522
	 * Pre-allocate the protection domains for each device.
2523
	 */
2524
	prealloc_protection_domains();
2525 2526

	iommu_detected = 1;
2527
	swiotlb = 0;
2528

2529
	/* Make the driver finally visible to the drivers */
2530 2531 2532 2533 2534
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2535

2536 2537
	amd_iommu_stats_init();

2538 2539 2540 2541
	return 0;

free_domains:

2542
	for_each_iommu(iommu) {
2543 2544 2545 2546 2547 2548
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2562
	struct iommu_dev_data *dev_data, *next;
2563 2564 2565 2566
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2567
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2568
		__detach_device(dev_data);
2569 2570
		atomic_set(&dev_data->bind, 0);
	}
2571 2572 2573 2574

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2575 2576 2577 2578 2579
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2580 2581
	del_domain_from_list(domain);

2582 2583 2584 2585 2586 2587 2588
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2589 2590 2591 2592 2593
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2594
		return NULL;
2595 2596

	spin_lock_init(&domain->lock);
2597
	mutex_init(&domain->api_lock);
2598 2599
	domain->id = domain_id_alloc();
	if (!domain->id)
2600
		goto out_err;
2601
	INIT_LIST_HEAD(&domain->dev_list);
2602

2603 2604
	add_domain_to_list(domain);

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2619
		goto out_free;
2620 2621

	domain->mode    = PAGE_MODE_3_LEVEL;
2622 2623 2624 2625 2626 2627 2628 2629 2630
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2631
	protection_domain_free(domain);
2632 2633 2634 2635

	return -ENOMEM;
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2650
	protection_domain_free(domain);
2651 2652 2653 2654

	dom->priv = NULL;
}

2655 2656 2657
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2658
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2659 2660 2661
	struct amd_iommu *iommu;
	u16 devid;

2662
	if (!check_device(dev))
2663 2664
		return;

2665
	devid = get_device_id(dev);
2666

2667
	if (dev_data->domain != NULL)
2668
		detach_device(dev);
2669 2670 2671 2672 2673 2674 2675 2676

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2677 2678 2679 2680
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2681
	struct iommu_dev_data *dev_data;
2682
	struct amd_iommu *iommu;
2683
	int ret;
2684

2685
	if (!check_device(dev))
2686 2687
		return -EINVAL;

2688 2689
	dev_data = dev->archdata.iommu;

2690
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2691 2692 2693
	if (!iommu)
		return -EINVAL;

2694
	if (dev_data->domain)
2695
		detach_device(dev);
2696

2697
	ret = attach_device(dev, domain);
2698 2699 2700

	iommu_completion_wait(iommu);

2701
	return ret;
2702 2703
}

2704 2705
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2706
{
2707
	unsigned long page_size = 0x1000UL << gfp_order;
2708 2709 2710 2711 2712 2713 2714 2715 2716
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2717
	mutex_lock(&domain->api_lock);
2718
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2719 2720
	mutex_unlock(&domain->api_lock);

2721
	return ret;
2722 2723
}

2724 2725
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2726 2727
{
	struct protection_domain *domain = dom->priv;
2728
	unsigned long page_size, unmap_size;
2729

2730
	page_size  = 0x1000UL << gfp_order;
2731

2732
	mutex_lock(&domain->api_lock);
2733
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2734
	mutex_unlock(&domain->api_lock);
2735

2736
	domain_flush_tlb_pde(domain);
2737

2738
	return get_order(unmap_size);
2739 2740
}

2741 2742 2743 2744
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2745
	unsigned long offset_mask;
2746
	phys_addr_t paddr;
2747
	u64 *pte, __pte;
2748

2749
	pte = fetch_pte(domain, iova);
2750

2751
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2752 2753
		return 0;

2754 2755 2756 2757 2758 2759 2760
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2761 2762 2763 2764

	return paddr;
}

S
Sheng Yang 已提交
2765 2766 2767
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2768 2769 2770 2771 2772
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2773 2774 2775
	return 0;
}

2776 2777 2778 2779 2780
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2781 2782
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2783
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2784
	.domain_has_cap = amd_iommu_domain_has_cap,
2785 2786
};

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2799
	struct amd_iommu *iommu;
2800
	struct pci_dev *dev = NULL;
2801
	u16 devid;
2802

2803
	/* allocate passthrough domain */
2804 2805 2806 2807 2808 2809
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

2810
	for_each_pci_dev(dev) {
2811
		if (!check_device(&dev->dev))
2812 2813
			continue;

2814 2815
		devid = get_device_id(&dev->dev);

2816
		iommu = amd_iommu_rlookup_table[devid];
2817 2818 2819
		if (!iommu)
			continue;

2820
		attach_device(&dev->dev, pt_domain);
2821 2822 2823 2824 2825 2826
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}