ste_dma40.c 95.8 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17
#include <linux/log2.h>
18 19
#include <linux/pm.h>
#include <linux/pm_runtime.h>
20
#include <linux/err.h>
21
#include <linux/of.h>
22
#include <linux/of_dma.h>
23
#include <linux/amba/bus.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/platform_data/dma-ste-dma40.h>
26

27
#include "dmaengine.h"
28 29 30 31 32 33 34 35 36 37 38 39 40
#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

41 42 43
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

44 45
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
46 47 48 49 50

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

51 52 53
/* Max number of logical channels per physical channel */
#define D40_MAX_LOG_CHAN_PER_PHY 32

54 55 56 57
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
58 59
#define D40_ALLOC_FREE		BIT(31)
#define D40_ALLOC_PHY		BIT(30)
60 61
#define D40_ALLOC_LOG_FREE	0

62 63
#define D40_MEMCPY_MAX_CHANS	8

64
/* Reserved event lines for memcpy only. */
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define DB8500_DMA_MEMCPY_EV_0	51
#define DB8500_DMA_MEMCPY_EV_1	56
#define DB8500_DMA_MEMCPY_EV_2	57
#define DB8500_DMA_MEMCPY_EV_3	58
#define DB8500_DMA_MEMCPY_EV_4	59
#define DB8500_DMA_MEMCPY_EV_5	60

static int dma40_memcpy_channels[] = {
	DB8500_DMA_MEMCPY_EV_0,
	DB8500_DMA_MEMCPY_EV_1,
	DB8500_DMA_MEMCPY_EV_2,
	DB8500_DMA_MEMCPY_EV_3,
	DB8500_DMA_MEMCPY_EV_4,
	DB8500_DMA_MEMCPY_EV_5,
};
80

81
/* Default configuration for physcial memcpy */
82
static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83
	.mode = STEDMA40_MODE_PHYSICAL,
84
	.dir = DMA_MEM_TO_MEM,
85

86
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 88 89
	.src_info.psize = STEDMA40_PSIZE_PHY_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

90
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 92 93 94 95
	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

/* Default configuration for logical memcpy */
96
static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97
	.mode = STEDMA40_MODE_LOGICAL,
98
	.dir = DMA_MEM_TO_MEM,
99

100
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 102 103
	.src_info.psize = STEDMA40_PSIZE_LOG_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

104
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 106 107 108
	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * enum d40_events - The different Event Enables for the event lines.
 *
 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 * @D40_ROUND_EVENTLINE: Status check for event line.
 */

enum d40_events {
	D40_DEACTIVATE_EVENTLINE	= 0,
	D40_ACTIVATE_EVENTLINE		= 1,
	D40_SUSPEND_REQ_EVENTLINE	= 2,
	D40_ROUND_EVENTLINE		= 3
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * since 9540 and 8540 has the same HW revision
 * use v4a for 9540 or ealier
 * use v4b for 8540 or later
 * HW revision:
 * DB8500ed has revision 0
 * DB8500v1 has revision 2
 * DB8500v2 has revision 3
 * AP9540v1 has revision 4
 * DB8540v1 has revision 4
 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 */
static u32 d40_backup_regs_v4a[] = {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)

static u32 d40_backup_regs_v4b[] = {
	D40_DREG_CPSEG1,
	D40_DREG_CPSEG2,
	D40_DREG_CPSEG3,
	D40_DREG_CPSEG4,
	D40_DREG_CPSEG5,
	D40_DREG_CPCEG1,
	D40_DREG_CPCEG2,
	D40_DREG_CPCEG3,
	D40_DREG_CPCEG4,
	D40_DREG_CPCEG5,
	D40_DREG_CRSEG1,
	D40_DREG_CRSEG2,
	D40_DREG_CRSEG3,
	D40_DREG_CRSEG4,
	D40_DREG_CRSEG5,
	D40_DREG_CRCEG1,
	D40_DREG_CRCEG2,
	D40_DREG_CRCEG3,
	D40_DREG_CRCEG4,
	D40_DREG_CRCEG5,
};

#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 214 215 216 217 218 219 220 221 222 223 224

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

225 226 227
#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};


static struct d40_interrupt_lookup il_v4a[] = {
	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
};

static struct d40_interrupt_lookup il_v4b[] = {
	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
};

324 325 326 327 328 329
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
330
 * @dma_addr: DMA address, if mapped
331 332 333 334 335 336
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
337
	int	 size;
338
	dma_addr_t	dma_addr;
339
	/* Space for dst and src, plus an extra for padding */
340
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 342 343 344 345 346 347 348 349 350
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
351
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
352
 * @lli_current: Number of transferred llis.
353
 * @lcla_alloc: Number of LCLA entries allocated.
354 355 356 357
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
358
 * @cyclic: true if this is a cyclic job
359 360 361 362 363 364 365 366 367 368
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
369
	int				 lli_len;
370 371
	int				 lli_current;
	int				 lcla_alloc;
372 373 374 375 376

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
377
	bool				 cyclic;
378 379 380 381 382
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
383 384 385 386 387
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
388
 * @lock: Lock to protect the content in this struct.
389
 * @alloc_map: big map over which LCLA entry is own by which job.
390 391 392
 */
struct d40_lcla_pool {
	void		*base;
393
	dma_addr_t	dma_addr;
394 395
	void		*base_unaligned;
	int		 pages;
396
	spinlock_t	 lock;
397
	struct d40_desc	**alloc_map;
398 399 400 401 402 403 404
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
405
 * @reserved: True if used by secure world or otherwise.
406 407 408 409 410
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411
 * event line number.
412
 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 414 415
 */
struct d40_phy_res {
	spinlock_t lock;
416
	bool	   reserved;
417 418 419
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
420
	bool	   use_soft_lli;
421 422 423 424 425 426 427 428 429 430 431 432
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
433 434
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
435 436 437 438
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
439
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440
 * @active: Active descriptor.
441
 * @done: Completed jobs
442
 * @queue: Queued jobs.
443
 * @prepare_queue: Prepared jobs.
444
 * @dma_cfg: The client configuration of this dma channel.
445
 * @configured: whether the dma_cfg configuration is valid
446 447 448 449 450
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
451 452
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
453 454 455 456 457 458 459 460 461 462 463 464
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
465
	struct list_head		 pending_queue;
466
	struct list_head		 active;
467
	struct list_head		 done;
468
	struct list_head		 queue;
469
	struct list_head		 prepare_queue;
470
	struct stedma40_chan_cfg	 dma_cfg;
471
	bool				 configured;
472 473 474 475 476 477
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
478 479
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
480
	enum dma_transfer_direction	runtime_direction;
481 482
};

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 * controller
 *
 * @backup: the pointer to the registers address array for backup
 * @backup_size: the size of the registers address array for backup
 * @realtime_en: the realtime enable register
 * @realtime_clear: the realtime clear register
 * @high_prio_en: the high priority enable register
 * @high_prio_clear: the high priority clear register
 * @interrupt_en: the interrupt enable register
 * @interrupt_clear: the interrupt clear register
 * @il: the pointer to struct d40_interrupt_lookup
 * @il_size: the size of d40_interrupt_lookup array
 * @init_reg: the pointer to the struct d40_reg_val
 * @init_reg_size: the size of d40_reg_val array
 */
struct d40_gen_dmac {
	u32				*backup;
	u32				 backup_size;
	u32				 realtime_en;
	u32				 realtime_clear;
	u32				 high_prio_en;
	u32				 high_prio_clear;
	u32				 interrupt_en;
	u32				 interrupt_clear;
	struct d40_interrupt_lookup	*il;
	u32				 il_size;
	struct d40_reg_val		*init_reg;
	u32				 init_reg_size;
};

515 516 517 518 519 520 521 522
/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
523
 * @rev: silicon revision detected.
524 525 526 527
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
528 529
 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 * transfers).
530 531 532 533 534 535 536 537
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538
 * @phy_chans: Room for all possible physical channels in system.
539 540 541 542 543 544 545
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
546
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 548 549 550 551
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
552
 * @desc_slab: cache for descriptors.
553 554
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
555 556
 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 * later
557 558
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 560
 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 * DMA controller
561 562 563 564 565 566
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
567
	u8				  rev:4;
568 569 570 571
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
572
	int				  num_memcpy_chans;
573 574
	int				  num_phy_chans;
	int				  num_log_chans;
575
	struct device_dma_parameters	  dma_parms;
576 577 578 579 580 581 582 583
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
584
	struct regulator		 *lcpa_regulator;
585 586 587 588 589 590
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
591
	struct kmem_cache		 *desc_slab;
592
	u32				  reg_val_backup[BACKUP_REGS_SZ];
593
	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594 595
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
596
	struct d40_gen_dmac		  gen_dmac;
597 598
};

599 600 601 602 603
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

604 605 606 607 608 609 610 611 612 613
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

614 615 616 617 618 619
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

620 621 622 623 624 625
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

626
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627
			      int lli_len)
628
{
629
	bool is_log = chan_is_logical(d40c);
630 631 632 633 634 635 636 637 638 639 640 641 642
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
643
		d40d->lli_pool.size = lli_len * 2 * align;
644 645 646 647 648 649 650 651 652

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
653
		d40d->lli_log.src = PTR_ALIGN(base, align);
654
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655 656

		d40d->lli_pool.dma_addr = 0;
657
	} else {
R
Rabin Vincent 已提交
658
		d40d->lli_phy.src = PTR_ALIGN(base, align);
659
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660 661 662 663 664 665 666 667 668 669 670 671 672

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
673 674 675 676 677
	}

	return 0;
}

678
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679
{
680 681 682 683
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

684 685 686 687 688 689 690 691 692
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707 708 709 710
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (!d40c->base->lcla_pool.alloc_map[idx]) {
			d40c->base->lcla_pool.alloc_map[idx] = d40d;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

729
	if (chan_is_physical(d40c))
730 731 732 733 734
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735 736 737 738
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
			d40c->base->lcla_pool.alloc_map[idx] = NULL;
739 740 741 742 743 744 745 746 747 748 749 750 751 752
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

753 754 755 756 757 758 759
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
760
	struct d40_desc *desc = NULL;
761 762

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
763 764 765
		struct d40_desc *d;
		struct d40_desc *_d;

766
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
767 768
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
769 770
				desc = d;
				memset(desc, 0, sizeof(*desc));
771
				break;
772
			}
773
		}
774
	}
R
Rabin Vincent 已提交
775 776 777 778 779 780 781 782

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
783 784 785 786
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
787

788
	d40_pool_lli_free(d40c, d40d);
789
	d40_lcla_free_all(d40c, d40d);
790
	kmem_cache_free(d40c->base->desc_slab, d40d);
791 792 793 794 795 796 797
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

815 816 817 818 819
static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->done);
}

820
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821
{
822 823 824 825
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
826
	bool cyclic = desc->cyclic;
827
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
828
	int first_lcla = 0;
829
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
830
	bool linkback;
831

R
Rabin Vincent 已提交
832 833 834 835 836 837 838 839 840 841 842
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
843 844 845 846 847 848 849
		/*
		 * If the channel is expected to use only soft_lli don't
		 * allocate a lcla. This is to avoid a HW issue that exists
		 * in some controller during a peripheral to memory transfer
		 * that uses linked lists.
		 */
		if (!(chan->phy_chan->use_soft_lli &&
850
			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851 852
			curr_lcla = d40_lcla_alloc_one(chan, desc);

R
Rabin Vincent 已提交
853 854 855 856 857 858 859 860 861 862 863
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
864

R
Rabin Vincent 已提交
865 866
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
867

R
Rabin Vincent 已提交
868 869 870 871 872 873 874
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
875 876 877 878

	if (curr_lcla < 0)
		goto out;

879 880 881 882
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
883
		unsigned int flags = 0;
884 885 886 887 888
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
889 890 891 892
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
893

R
Rabin Vincent 已提交
894 895 896 897 898 899 900 901 902 903 904 905
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
906 907 908
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
909
				       next_lcla, flags);
910

911 912 913 914 915 916 917 918 919 920
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
921 922
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
923
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924 925 926 927 928
			lli_current++;
			break;
		}
	}

929
out:
930 931
	desc->lli_current = lli_current;
}
932

933 934
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
935
	if (chan_is_physical(d40c)) {
936
		d40_phy_lli_load(d40c, d40d);
937
		d40d->lli_current = d40d->lli_len;
938 939
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
940 941
}

942 943
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
944
	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
945 946
}

947
/* remove desc from current queue and add it to the pending_queue */
948 949
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
950 951
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
952 953 954 955 956
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
957 958
	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
					node);
959 960 961 962
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
963
	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
964 965
}

966 967
static struct d40_desc *d40_first_done(struct d40_chan *d40c)
{
968
	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
969 970
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
986 987 988
 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 *
 * Calculate the total number of dma elements required to send the entire sg list.
989 990 991 992 993 994
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
995
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
996 997

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
998
		seg_max -= max_w;
999

1000
	if (!IS_ALIGNED(size, max_w))
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
1030

1031 1032
static int __d40_execute_command_phy(struct d40_chan *d40c,
				     enum d40_command command)
1033
{
1034 1035
	u32 status;
	int i;
1036 1037 1038
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
1039
	u32 wmask;
1040

1041 1042 1043 1044 1045 1046
	if (command == D40_DMA_STOP) {
		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
		if (ret)
			return ret;
	}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

1063 1064 1065
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
1087 1088 1089
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
1104
	struct d40_desc *_d;
1105

1106 1107 1108 1109 1110 1111
	/* Release completed descriptors */
	while ((d40d = d40_first_done(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1124 1125 1126 1127 1128
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
1129

1130 1131 1132 1133 1134 1135 1136
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

1137 1138 1139 1140 1141 1142 1143
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
1144

1145 1146 1147
	d40c->pending_tx = 0;
}

1148 1149 1150
static void __d40_config_set_event(struct d40_chan *d40c,
				   enum d40_events event_type, u32 event,
				   int reg)
1151
{
1152
	void __iomem *addr = chan_base(d40c) + reg;
1153
	int tries;
1154 1155 1156 1157 1158
	u32 status;

	switch (event_type) {

	case D40_DEACTIVATE_EVENTLINE:
1159 1160 1161

		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
1162 1163 1164 1165 1166 1167 1168 1169 1170
		break;

	case D40_SUSPEND_REQ_EVENTLINE:
		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
			  D40_EVENTLINE_POS(event);

		if (status == D40_DEACTIVATE_EVENTLINE ||
		    status == D40_SUSPEND_REQ_EVENTLINE)
			break;
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {

			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
				  D40_EVENTLINE_POS(event);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DEACTIVATE_EVENTLINE)
				break;
		}

		if (tries == D40_SUSPEND_MAX_IT) {
			chan_err(d40c,
				"unable to stop the event_line chl %d (log: %d)"
				"status %x\n", d40c->phy_chan->num,
				 d40c->log_num, status);
		}
		break;

	case D40_ACTIVATE_EVENTLINE:
1200 1201 1202 1203 1204
	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
1205 1206 1207 1208 1209
		tries = 100;
		while (--tries) {
			writel((D40_ACTIVATE_EVENTLINE <<
				D40_EVENTLINE_POS(event)) |
				~D40_EVENTLINE_MASK(event), addr);
1210

1211 1212 1213
			if (readl(addr) & D40_EVENTLINE_MASK(event))
				break;
		}
1214

1215 1216 1217 1218 1219
		if (tries != 99)
			dev_dbg(chan2dev(d40c),
				"[%s] workaround enable S%cLNK (%d tries)\n",
				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
				100 - tries);
1220

1221 1222
		WARN_ON(!tries);
		break;
1223

1224 1225 1226
	case D40_ROUND_EVENTLINE:
		BUG();
		break;
1227

1228 1229
	}
}
1230

1231 1232 1233
static void d40_config_set_event(struct d40_chan *d40c,
				 enum d40_events event_type)
{
1234 1235
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);

1236
	/* Enable event line connected to device (or memcpy) */
1237 1238
	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1239
		__d40_config_set_event(d40c, event_type, event,
1240
				       D40_CHAN_REG_SSLNK);
1241

1242
	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1243
		__d40_config_set_event(d40c, event_type, event,
1244
				       D40_CHAN_REG_SDLNK);
1245 1246
}

1247
static u32 d40_chan_has_events(struct d40_chan *d40c)
1248
{
1249
	void __iomem *chanbase = chan_base(d40c);
1250
	u32 val;
1251

1252 1253
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1254

1255
	return val;
1256 1257
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
	unsigned long flags;
	int ret = 0;
	u32 active_status;
	void __iomem *active_reg;

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;


	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	switch (command) {
	case D40_DMA_STOP:
	case D40_DMA_SUSPEND_REQ:

		active_status = (readl(active_reg) &
				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				 D40_CHAN_POS(d40c->phy_chan->num);

		if (active_status == D40_DMA_RUN)
			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
		else
			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);

		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
			ret = __d40_execute_command_phy(d40c, command);

		break;

	case D40_DMA_RUN:

		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
		ret = __d40_execute_command_phy(d40c, command);
		break;

	case D40_DMA_SUSPENDED:
		BUG();
		break;
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
	return ret;
}

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
	if (chan_is_logical(d40c))
		return __d40_execute_command_log(d40c, command);
	else
		return __d40_execute_command_phy(d40c, command);
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1335
	if (chan_is_physical(d40c))
1336 1337 1338 1339 1340
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1341
static void d40_config_write(struct d40_chan *d40c)
1342 1343 1344 1345 1346 1347 1348
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1349
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1350 1351 1352 1353
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1354
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1355 1356 1357

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1358
	if (chan_is_logical(d40c)) {
1359 1360 1361 1362
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1363
		/* Set default config for CFG reg */
1364 1365
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1366

1367
		/* Set LIDX for lcla */
1368 1369
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1370 1371 1372 1373

		/* Clear LNK which will be used by d40_chan_has_events() */
		writel(0, chanbase + D40_CHAN_REG_SSLNK);
		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1374 1375 1376
	}
}

1377 1378 1379 1380
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1381
	if (chan_is_logical(d40c))
1382 1383
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1384 1385 1386 1387 1388 1389
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1390
	return num_elt * d40c->dma_cfg.dst_info.data_width;
1391 1392 1393 1394 1395 1396
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1397
	if (chan_is_logical(d40c))
1398 1399
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1400 1401 1402
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1403 1404 1405
	return is_link;
}

1406
static int d40_pause(struct dma_chan *chan)
1407
{
1408
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1409 1410 1411
	int res = 0;
	unsigned long flags;

1412 1413 1414 1415 1416
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

1417 1418 1419
	if (!d40c->busy)
		return 0;

1420
	spin_lock_irqsave(&d40c->lock, flags);
1421
	pm_runtime_get_sync(d40c->base->dev);
1422 1423

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1424

1425 1426
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1427 1428 1429 1430
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1431
static int d40_resume(struct dma_chan *chan)
1432
{
1433
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1434 1435 1436
	int res = 0;
	unsigned long flags;

1437 1438 1439 1440 1441
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

1442 1443 1444
	if (!d40c->busy)
		return 0;

1445
	spin_lock_irqsave(&d40c->lock, flags);
1446
	pm_runtime_get_sync(d40c->base->dev);
1447 1448

	/* If bytes left to transfer or linked tx resume job */
1449
	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1450 1451
		res = d40_channel_execute_command(d40c, D40_DMA_RUN);

1452 1453
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1454 1455 1456 1457
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1458 1459 1460 1461 1462 1463 1464
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;
1465
	dma_cookie_t cookie;
1466 1467

	spin_lock_irqsave(&d40c->lock, flags);
1468
	cookie = dma_cookie_assign(tx);
1469 1470 1471
	d40_desc_queue(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);

1472
	return cookie;
1473 1474 1475 1476
}

static int d40_start(struct d40_chan *d40c)
{
1477
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1489
		if (!d40c->busy) {
1490
			d40c->busy = true;
1491 1492
			pm_runtime_get_sync(d40c->base->dev);
		}
1493 1494 1495 1496 1497 1498 1499

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1500 1501
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1502

1503 1504
		/* Start dma job */
		err = d40_start(d40c);
1505

1506 1507
		if (err)
			return NULL;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1537

R
Rabin Vincent 已提交
1538 1539 1540 1541 1542
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1543

R
Rabin Vincent 已提交
1544 1545 1546 1547 1548 1549 1550
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

1551
		if (d40_queue_start(d40c) == NULL) {
R
Rabin Vincent 已提交
1552
			d40c->busy = false;
1553 1554 1555 1556

			pm_runtime_mark_last_busy(d40c->base->dev);
			pm_runtime_put_autosuspend(d40c->base->dev);
		}
1557

1558 1559 1560
		d40_desc_remove(d40d);
		d40_desc_done(d40c, d40d);
	}
1561

1562 1563 1564 1565 1566 1567 1568 1569
	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1570
	struct d40_desc *d40d;
1571
	unsigned long flags;
1572
	bool callback_active;
1573 1574 1575 1576 1577
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

1578 1579 1580 1581 1582 1583 1584 1585
	/* Get first entry from the done list */
	d40d = d40_first_done(d40c);
	if (d40d == NULL) {
		/* Check if we have reached here for cyclic job */
		d40d = d40_first_active_get(d40c);
		if (d40d == NULL || !d40d->cyclic)
			goto err;
	}
1586

R
Rabin Vincent 已提交
1587
	if (!d40d->cyclic)
1588
		dma_cookie_complete(&d40d->txd);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1600
	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1601 1602 1603
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1604 1605
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1606
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1607
			d40_desc_free(d40c, d40d);
1608 1609 1610 1611 1612
		} else if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
			d40_lcla_free_all(d40c, d40d);
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1623
	if (callback_active && callback)
1624 1625 1626 1627
		callback(callback_param);

	return;

1628 1629
err:
	/* Rescue manouver if receiving double interrupts */
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	int i;
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;
1644 1645 1646
	u32 regs[base->gen_dmac.il_size];
	struct d40_interrupt_lookup *il = base->gen_dmac.il;
	u32 il_size = base->gen_dmac.il_size;
1647 1648 1649 1650

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
1651
	for (i = 0; i < il_size; i++)
1652 1653 1654 1655 1656
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
1657
				     BITS_PER_LONG * il_size, chan + 1);
1658 1659

		/* No more set bits found? */
1660
		if (chan == BITS_PER_LONG * il_size)
1661 1662 1663 1664 1665 1666 1667 1668 1669
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

		if (!d40c) {
			/*
			 * No error because this can happen if something else
			 * in the system is using the channel.
			 */
			continue;
		}

		/* ACK interrupt */
1680
		writel(BIT(idx), base->virtbase + il[row].clr);
1681

1682 1683 1684 1685 1686
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1687 1688
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
1702
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1703

1704
	if (!conf->dir) {
1705
		chan_err(d40c, "Invalid direction.\n");
1706 1707 1708
		res = -EINVAL;
	}

1709 1710 1711 1712
	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
	    (conf->dev_type < 0)) {
		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1713 1714 1715
		res = -EINVAL;
	}

1716
	if (conf->dir == DMA_DEV_TO_DEV) {
1717 1718 1719 1720
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1721
		chan_err(d40c, "periph to periph not supported\n");
1722 1723 1724
		res = -EINVAL;
	}

1725
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1726
	    conf->src_info.data_width !=
1727
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1728
	    conf->dst_info.data_width) {
1729 1730 1731 1732 1733
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1734
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1735 1736 1737
		res = -EINVAL;
	}

1738 1739 1740
	return res;
}

1741 1742 1743
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
			       bool is_src, int log_event_line, bool is_log,
			       bool *first_user)
1744 1745 1746
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1747 1748 1749 1750

	*first_user = ((phy->allocated_src | phy->allocated_dst)
			== D40_ALLOC_FREE);

1751
	if (!is_log) {
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

1770 1771
		if (!(phy->allocated_src & BIT(log_event_line))) {
			phy->allocated_src |= BIT(log_event_line);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

1782 1783
		if (!(phy->allocated_dst & BIT(log_event_line))) {
			phy->allocated_dst |= BIT(log_event_line);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
1813
		phy->allocated_src &= ~BIT(log_event_line);
1814 1815 1816
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
1817
		phy->allocated_dst &= ~BIT(log_event_line);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

1831
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1832
{
1833
	int dev_type = d40c->dma_cfg.dev_type;
1834 1835 1836 1837 1838 1839
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
1840
	int num_phy_chans;
1841
	bool is_src;
1842
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1843 1844

	phys = d40c->base->phy_res;
1845
	num_phy_chans = d40c->base->num_phy_chans;
1846

1847
	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1848 1849
		log_num = 2 * dev_type;
		is_src = true;
1850 1851
	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		/* dst event lines are used for logical memcpy */
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
1862
		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1863
			/* Find physical half channel */
1864 1865
			if (d40c->dma_cfg.use_fixed_channel) {
				i = d40c->dma_cfg.phy_channel;
1866
				if (d40_alloc_mask_set(&phys[i], is_src,
1867 1868
						       0, is_log,
						       first_phy_user))
1869
					goto found_phy;
1870 1871 1872 1873 1874 1875 1876
			} else {
				for (i = 0; i < num_phy_chans; i++) {
					if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log,
						       first_phy_user))
						goto found_phy;
				}
1877 1878 1879 1880 1881
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1882 1883 1884
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
1885 1886
							       is_log,
							       first_phy_user))
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

		if (d40c->dma_cfg.use_fixed_channel) {
			i = d40c->dma_cfg.phy_channel;

			if ((i != phy_num) && (i != phy_num + 1)) {
				dev_err(chan2dev(d40c),
					"invalid fixed phy channel %d\n", i);
				return -EINVAL;
			}

			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
					       is_log, first_phy_user))
				goto found_log;

			dev_err(chan2dev(d40c),
				"could not allocate fixed phy channel %d\n", i);
			return -EINVAL;
		}

1921 1922 1923 1924 1925 1926 1927 1928
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1929 1930
						       event_line, is_log,
						       first_phy_user))
1931 1932 1933 1934 1935
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1936 1937
						       event_line, is_log,
						       first_phy_user))
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1963
		d40c->dma_cfg = dma40_memcpy_conf_log;
1964
		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1965

1966 1967 1968
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

1969 1970
	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
1971
		d40c->dma_cfg = dma40_memcpy_conf_phy;
1972 1973 1974 1975 1976 1977 1978 1979

		/* Generate interrrupt at end of transfer or relink. */
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);

		/* Generate interrupt on error. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);

1980
	} else {
1981
		chan_err(d40c, "No memcpy\n");
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		return -EINVAL;
	}

	return 0;
}

static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1992
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1993 1994 1995 1996 1997 1998 1999
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
2000
		chan_err(d40c, "phy == null\n");
2001 2002 2003 2004 2005
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
2006
		chan_err(d40c, "channel already free\n");
2007 2008 2009
		return -EINVAL;
	}

2010 2011
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2012
		is_src = false;
2013
	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2014
		is_src = true;
2015
	else {
2016
		chan_err(d40c, "Unknown direction\n");
2017 2018 2019
		return -EINVAL;
	}

2020
	pm_runtime_get_sync(d40c->base->dev);
2021
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2022
	if (res) {
2023
		chan_err(d40c, "stop failed\n");
2024
		goto out;
2025 2026
	}

2027
	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2028

2029
	if (chan_is_logical(d40c))
2030
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2031 2032
	else
		d40c->base->lookup_phy_chans[phy->num] = NULL;
2033 2034 2035 2036 2037 2038 2039

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
2040
	d40c->phy_chan = NULL;
2041
	d40c->configured = false;
2042
out:
2043

2044 2045 2046
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
2047 2048
}

2049 2050
static bool d40_is_paused(struct d40_chan *d40c)
{
2051
	void __iomem *chanbase = chan_base(d40c);
2052 2053 2054 2055
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
2056
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2057 2058 2059

	spin_lock_irqsave(&d40c->lock, flags);

2060
	if (chan_is_physical(d40c)) {
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

2075 2076
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2077
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2078
	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2079
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2080
	} else {
2081
		chan_err(d40c, "Unknown direction\n");
2082 2083
		goto _exit;
	}
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

2110 2111 2112
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2113 2114
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2115 2116 2117 2118
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2119
	int ret;
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
2136 2137 2138 2139 2140
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2141 2142
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2143 2144 2145 2146
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
2147
	unsigned long flags = 0;
2148 2149
	int ret;

R
Rabin Vincent 已提交
2150 2151 2152
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

2153 2154 2155 2156
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
2157
				src_info, dst_info, flags);
2158 2159 2160 2161 2162

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
2163
				dst_info, src_info, flags);
2164 2165 2166 2167 2168 2169 2170

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}

2171 2172 2173 2174 2175 2176
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct d40_desc *desc;
2177
	int ret;
2178 2179 2180 2181 2182 2183 2184 2185 2186

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
2187 2188
		goto err;
	}
2189

2190 2191 2192 2193
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
		goto err;
2194 2195 2196 2197 2198 2199 2200 2201 2202
	}

	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2203 2204 2205 2206

err:
	d40_desc_free(chan, desc);
	return NULL;
2207 2208
}

2209 2210 2211
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2212
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2213 2214
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
R
Rabin Vincent 已提交
2215 2216
	dma_addr_t src_dev_addr = 0;
	dma_addr_t dst_dev_addr = 0;
2217
	struct d40_desc *desc;
2218
	unsigned long flags;
2219
	int ret;
2220

2221 2222 2223
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2224 2225
	}

2226
	spin_lock_irqsave(&chan->lock, flags);
2227

2228 2229
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2230 2231
		goto err;

R
Rabin Vincent 已提交
2232 2233 2234
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

2235 2236 2237 2238
	if (direction == DMA_DEV_TO_MEM)
		src_dev_addr = chan->runtime_addr;
	else if (direction == DMA_MEM_TO_DEV)
		dst_dev_addr = chan->runtime_addr;
2239 2240 2241

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2242
				      sg_len, src_dev_addr, dst_dev_addr);
2243 2244
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2245
				      sg_len, src_dev_addr, dst_dev_addr);
2246 2247 2248 2249 2250

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
		goto err;
2251 2252
	}

2253 2254 2255 2256 2257 2258
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2259 2260 2261
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2262 2263

err:
2264 2265 2266
	if (desc)
		d40_desc_free(chan, desc);
	spin_unlock_irqrestore(&chan->lock, flags);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2284 2285 2286
	if (!err)
		d40c->configured = true;

2287 2288 2289 2290
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2291 2292 2293 2294
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
2295
	u32 rtreg;
2296 2297
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
2298
	u32 bit = BIT(event);
2299
	u32 prioreg;
2300
	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2301

2302
	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	/*
	 * Due to a hardware bug, in some cases a logical channel triggered by
	 * a high priority destination event line can generate extra packet
	 * transactions.
	 *
	 * The workaround is to not set the high priority level for the
	 * destination event lines that trigger logical channels.
	 */
	if (!src && chan_is_logical(d40c))
		highprio = false;

2314
	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

2329 2330
	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2331
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2332

2333 2334
	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2335
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2336 2337
}

2338 2339 2340 2341
#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2342
#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
				  struct of_dma *ofdma)
{
	struct stedma40_chan_cfg cfg;
	dma_cap_mask_t cap;
	u32 flags;

	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));

	dma_cap_zero(cap);
	dma_cap_set(DMA_SLAVE, cap);

	cfg.dev_type = dma_spec->args[0];
	flags = dma_spec->args[2];

	switch (D40_DT_FLAGS_MODE(flags)) {
	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
	}

	switch (D40_DT_FLAGS_DIR(flags)) {
	case 0:
2366
		cfg.dir = DMA_MEM_TO_DEV;
2367 2368 2369
		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	case 1:
2370
		cfg.dir = DMA_DEV_TO_MEM;
2371 2372 2373 2374 2375 2376 2377 2378 2379
		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	}

	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
		cfg.phy_channel = dma_spec->args[1];
		cfg.use_fixed_channel = true;
	}

2380 2381 2382
	if (D40_DT_FLAGS_HIGH_PRIO(flags))
		cfg.high_priority = true;

2383 2384 2385
	return dma_request_channel(cap, stedma40_filter, &cfg);
}

2386 2387 2388 2389 2390 2391 2392
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2393
	bool is_free_phy;
2394 2395
	spin_lock_irqsave(&d40c->lock, flags);

2396
	dma_cookie_init(chan);
2397

2398 2399
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2400
		err = d40_config_memcpy(d40c);
2401
		if (err) {
2402
			chan_err(d40c, "Failed to configure memcpy channel\n");
2403 2404
			goto fail;
		}
2405 2406
	}

2407
	err = d40_allocate_channel(d40c, &is_free_phy);
2408
	if (err) {
2409
		chan_err(d40c, "Failed to allocate channel\n");
2410
		d40c->configured = false;
2411
		goto fail;
2412 2413
	}

2414
	pm_runtime_get_sync(d40c->base->dev);
2415

2416 2417
	d40_set_prio_realtime(d40c);

2418
	if (chan_is_logical(d40c)) {
2419
		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2420
			d40c->lcpa = d40c->base->lcpa_base +
2421
				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2422 2423
		else
			d40c->lcpa = d40c->base->lcpa_base +
2424
				d40c->dma_cfg.dev_type *
2425
				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2426 2427 2428 2429

		/* Unmask the Global Interrupt Mask. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2430 2431
	}

2432 2433 2434 2435 2436 2437
	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
		 chan_is_logical(d40c) ? "logical" : "physical",
		 d40c->phy_chan->num,
		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");


2438 2439 2440 2441 2442
	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2443 2444
	if (is_free_phy)
		d40_config_write(d40c);
2445
fail:
2446 2447
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2448
	spin_unlock_irqrestore(&d40c->lock, flags);
2449
	return err;
2450 2451 2452 2453 2454 2455 2456 2457 2458
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2459
	if (d40c->phy_chan == NULL) {
2460
		chan_err(d40c, "Cannot free unallocated channel\n");
2461 2462 2463
		return;
	}

2464 2465 2466 2467 2468
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2469
		chan_err(d40c, "Failed to free channel\n");
2470 2471 2472 2473 2474 2475 2476
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2477
						       unsigned long dma_flags)
2478
{
2479 2480
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2481

2482 2483
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2484

2485 2486
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2487

2488 2489
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2490

2491 2492
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
			   DMA_MEM_TO_MEM, dma_flags);
2493 2494
}

2495
static struct dma_async_tx_descriptor *
2496 2497 2498 2499
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2500 2501 2502 2503
{
	if (dst_nents != src_nents)
		return NULL;

2504 2505
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents,
			   DMA_MEM_TO_MEM, dma_flags);
2506 2507
}

2508 2509 2510 2511
static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		  unsigned int sg_len, enum dma_transfer_direction direction,
		  unsigned long dma_flags, void *context)
2512
{
2513
	if (!is_slave_direction(direction))
2514 2515
		return NULL;

2516
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2517 2518
}

R
Rabin Vincent 已提交
2519 2520 2521
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2522
		     enum dma_transfer_direction direction, unsigned long flags)
R
Rabin Vincent 已提交
2523 2524 2525 2526 2527 2528
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2529
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2530 2531 2532
	if (!sg)
		return NULL;

R
Rabin Vincent 已提交
2533 2534 2535 2536 2537 2538 2539
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
2540
	sg_dma_len(&sg[periods]) = 0;
R
Rabin Vincent 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2552 2553 2554 2555 2556
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2557
	enum dma_status ret;
2558

2559
	if (d40c->phy_chan == NULL) {
2560
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2561 2562 2563
		return -EINVAL;
	}

2564
	ret = dma_cookie_status(chan, cookie, txstate);
2565
	if (ret != DMA_COMPLETE && txstate)
2566
		dma_set_residue(txstate, stedma40_residue(chan));
2567

2568 2569
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
2570 2571 2572 2573 2574 2575 2576 2577 2578

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2579
	if (d40c->phy_chan == NULL) {
2580
		chan_err(d40c, "Channel is not allocated!\n");
2581 2582 2583
		return;
	}

2584 2585
	spin_lock_irqsave(&d40c->lock, flags);

2586 2587 2588
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2589 2590 2591 2592 2593 2594
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2595
static int d40_terminate_all(struct dma_chan *chan)
2596 2597 2598 2599 2600
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	int ret;

2601 2602 2603 2604 2605
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	spin_lock_irqsave(&d40c->lock, flags);

	pm_runtime_get_sync(d40c->base->dev);
	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (ret)
		chan_err(d40c, "Failed to stop channel\n");

	d40_term_all(d40c);
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}
	d40c->busy = false;

	spin_unlock_irqrestore(&d40c->lock, flags);
2623
	return 0;
2624 2625
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    u32 maxburst)
{
	int psize;

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2659
/* Runtime reconfiguration extension */
2660 2661
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2662 2663 2664
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2665
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2666
	dma_addr_t config_addr;
2667 2668 2669
	u32 src_maxburst, dst_maxburst;
	int ret;

2670 2671 2672 2673 2674
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

2675 2676 2677 2678
	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2679

2680
	if (config->direction == DMA_DEV_TO_MEM) {
2681
		config_addr = config->src_addr;
2682

2683
		if (cfg->dir != DMA_DEV_TO_MEM)
2684 2685 2686 2687
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
2688
		cfg->dir = DMA_DEV_TO_MEM;
2689

2690 2691 2692 2693 2694
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2695

2696
	} else if (config->direction == DMA_MEM_TO_DEV) {
2697
		config_addr = config->dst_addr;
2698

2699
		if (cfg->dir != DMA_MEM_TO_DEV)
2700 2701 2702 2703
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
2704
		cfg->dir = DMA_MEM_TO_DEV;
2705

2706 2707 2708 2709 2710
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2711 2712 2713 2714
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2715
		return -EINVAL;
2716 2717
	}

2718 2719 2720 2721 2722
	if (config_addr <= 0) {
		dev_err(d40c->base->dev, "no address supplied\n");
		return -EINVAL;
	}

2723
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2724
		dev_err(d40c->base->dev,
2725 2726 2727 2728 2729 2730
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2731 2732
	}

2733 2734 2735 2736 2737 2738 2739 2740
	if (src_maxburst > 16) {
		src_maxburst = 16;
		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
	} else if (dst_maxburst > 16) {
		dst_maxburst = 16;
		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
	}

2741 2742 2743 2744 2745
	/* Only valid widths are; 1, 2, 4 and 8. */
	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2746 2747
	    !is_power_of_2(src_addr_width) ||
	    !is_power_of_2(dst_addr_width))
2748 2749 2750 2751 2752
		return -EINVAL;

	cfg->src_info.data_width = src_addr_width;
	cfg->dst_info.data_width = dst_addr_width;

2753 2754 2755 2756
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_maxburst);
	if (ret)
		return ret;
2757

2758 2759 2760 2761
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_maxburst);
	if (ret)
		return ret;
2762

2763
	/* Fill in register values */
2764
	if (chan_is_logical(d40c))
2765 2766
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
2767
		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2768

2769 2770 2771 2772
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2773 2774
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2775
		dma_chan_name(chan),
2776
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2777 2778 2779 2780
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2781 2782
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

2803
		INIT_LIST_HEAD(&d40c->done);
2804 2805
		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2806
		INIT_LIST_HEAD(&d40c->pending_queue);
2807
		INIT_LIST_HEAD(&d40c->client);
2808
		INIT_LIST_HEAD(&d40c->prepare_queue);
2809 2810 2811 2812 2813 2814 2815 2816 2817

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
2830
		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2831 2832 2833 2834 2835
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2836 2837 2838
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2839 2840 2841 2842
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
2843 2844 2845 2846
	dev->device_config = d40_set_runtime_config;
	dev->device_pause = d40_pause;
	dev->device_resume = d40_resume;
	dev->device_terminate_all = d40_terminate_all;
2847 2848 2849
	dev->dev = base->dev;
}

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2860
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2861

2862
	d40_ops_init(base, &base->dma_slave);
2863 2864 2865 2866

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2867
		d40_err(base->dev, "Failed to register slave channels\n");
2868 2869 2870 2871
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2872
		      base->num_log_chans, base->num_memcpy_chans);
2873 2874 2875

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2876 2877 2878
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2879 2880 2881 2882

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2883
		d40_err(base->dev,
2884
			"Failed to register memcpy only channels\n");
2885 2886 2887 2888 2889 2890 2891 2892 2893
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2894
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2895
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2896 2897

	d40_ops_init(base, &base->dma_both);
2898 2899 2900
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2901 2902
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

2914
/* Suspend resume functionality */
2915 2916
#ifdef CONFIG_PM_SLEEP
static int dma40_suspend(struct device *dev)
2917
{
2918 2919
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
2920 2921 2922 2923 2924
	int ret;

	ret = pm_runtime_force_suspend(dev);
	if (ret)
		return ret;
2925

2926 2927 2928
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
2929 2930
}

2931 2932 2933 2934 2935 2936
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

2937
	if (base->lcpa_regulator) {
2938
		ret = regulator_enable(base->lcpa_regulator);
2939 2940 2941
		if (ret)
			return ret;
	}
2942

2943
	return pm_runtime_force_resume(dev);
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
}
#endif

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
	if (base->gen_dmac.backup)
		dma40_backup(base->virtbase, base->reg_val_backup_v4,
			     base->gen_dmac.backup,
			base->gen_dmac.backup_size,
			save);
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

3017
	d40_save_restore_registers(base, false);
3018 3019 3020 3021 3022

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}
3023
#endif
3024 3025

static const struct dev_pm_ops dma40_pm_ops = {
3026
	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3027
	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3028 3029
				dma40_runtime_resume,
				NULL)
3030 3031
};

3032 3033 3034 3035 3036 3037 3038 3039
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
3040
	int gcc = D40_DREG_GCC_ENA;
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3052 3053 3054 3055 3056 3057 3058
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


3059 3060 3061
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3062
			base->phy_res[i].reserved = false;
3063 3064 3065 3066
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
3067 3068 3069

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3070 3071 3072 3073
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3074 3075 3076 3077 3078
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
3079
		num_phy_chans_avail--;
3080 3081
	}

3082 3083 3084 3085 3086 3087 3088
	/* Mark soft_lli channels */
	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
		int chan = base->plat_data->soft_lli_chans[i];

		base->phy_res[chan].use_soft_lli = true;
	}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

3106 3107 3108 3109 3110 3111 3112 3113 3114
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

3115 3116 3117 3118 3119
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3120
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3121 3122 3123 3124 3125 3126
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
3127
	int num_memcpy_chans;
3128
	int clk_ret = -EINVAL;
3129
	int i;
3130 3131 3132
	u32 pid;
	u32 cid;
	u8 rev;
3133 3134 3135

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
3136
		d40_err(&pdev->dev, "No matching clock found\n");
3137 3138 3139
		goto failure;
	}

3140 3141 3142 3143 3144
	clk_ret = clk_prepare_enable(clk);
	if (clk_ret) {
		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
		goto failure;
	}
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

3159 3160 3161 3162 3163 3164 3165
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
3166

3167 3168 3169 3170 3171
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
		goto failure;
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3172
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3173 3174
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
3175 3176
		goto failure;
	}
3177 3178 3179 3180 3181 3182
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
3183 3184
	 * AP9540v1 has revision 4
	 * DB8540v1 has revision 4
3185 3186
	 */
	rev = AMBA_REV_BITS(pid);
3187 3188 3189 3190
	if (rev < 2) {
		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
		goto failure;
	}
3191

3192
	/* The number of physical channels on this HW */
3193 3194 3195 3196
	if (plat_data->num_of_phy_chans)
		num_phy_chans = plat_data->num_of_phy_chans;
	else
		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3197

3198 3199 3200 3201 3202 3203
	/* The number of channels used for memcpy */
	if (plat_data->num_of_memcpy_chans)
		num_memcpy_chans = plat_data->num_of_memcpy_chans;
	else
		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);

3204 3205
	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;

3206
	dev_info(&pdev->dev,
3207 3208
		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
		 rev, &res->start, num_phy_chans, num_log_chans);
3209 3210

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3211
		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3212 3213
		       sizeof(struct d40_chan), GFP_KERNEL);

3214
	if (base == NULL)
3215 3216
		goto failure;

3217
	base->rev = rev;
3218
	base->clk = clk;
3219
	base->num_memcpy_chans = num_memcpy_chans;
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	if (base->plat_data->num_of_phy_chans == 14) {
		base->gen_dmac.backup = d40_backup_regs_v4b;
		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
		base->gen_dmac.il = il_v4b;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
		base->gen_dmac.init_reg = dma_init_reg_v4b;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
	} else {
		if (base->rev >= 3) {
			base->gen_dmac.backup = d40_backup_regs_v4a;
			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
		}
		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
		base->gen_dmac.il = il_v4a;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
		base->gen_dmac.init_reg = dma_init_reg_v4a;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
	}

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

3271 3272 3273 3274 3275
	base->lookup_log_chans = kzalloc(num_log_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_log_chans)
		goto failure;
3276

3277 3278
	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
					    sizeof(d40_backup_regs_chan),
3279
					    GFP_KERNEL);
3280 3281 3282 3283 3284 3285
	if (!base->reg_val_backup_chan)
		goto failure;

	base->lcla_pool.alloc_map =
		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3286 3287 3288
	if (!base->lcla_pool.alloc_map)
		goto failure;

3289 3290 3291 3292 3293 3294
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

3295 3296 3297
	return base;

failure:
3298 3299 3300
	if (!clk_ret)
		clk_disable_unprepare(clk);
	if (!IS_ERR(clk))
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		clk_put(clk);
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
3312
		kfree(base->reg_val_backup_chan);
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;
3330 3331
	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
	u32 reg_size = base->gen_dmac.init_reg_size;
3332

3333
	for (i = 0; i < reg_size; i++)
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
3366
	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3367 3368

	/* Write which interrupt to clear */
3369
	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3370

3371 3372 3373
	/* These are __initdata and cannot be accessed after init */
	base->gen_dmac.init_reg = NULL;
	base->gen_dmac.init_reg_size = 0;
3374 3375
}

3376 3377
static int __init d40_lcla_allocate(struct d40_base *base)
{
3378
	struct d40_lcla_pool *pool = &base->lcla_pool;
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3404 3405
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3406
			ret = -ENOMEM;
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3424 3425 3426 3427
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3444 3445 3446 3447 3448 3449 3450 3451 3452
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

3453 3454 3455 3456 3457 3458 3459
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

3460 3461 3462 3463
static int __init d40_of_probe(struct platform_device *pdev,
			       struct device_node *np)
{
	struct stedma40_platform_data *pdata;
3464
	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3465
	const __be32 *list;
3466 3467 3468 3469 3470 3471 3472

	pdata = devm_kzalloc(&pdev->dev,
			     sizeof(struct stedma40_platform_data),
			     GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

3473 3474 3475 3476 3477
	/* If absent this value will be obtained from h/w. */
	of_property_read_u32(np, "dma-channels", &num_phy);
	if (num_phy > 0)
		pdata->num_of_phy_chans = num_phy;

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	list = of_get_property(np, "memcpy-channels", &num_memcpy);
	num_memcpy /= sizeof(*list);

	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
		d40_err(&pdev->dev,
			"Invalid number of memcpy channels specified (%d)\n",
			num_memcpy);
		return -EINVAL;
	}
	pdata->num_of_memcpy_chans = num_memcpy;

	of_property_read_u32_array(np, "memcpy-channels",
				   dma40_memcpy_channels,
				   num_memcpy);

3493 3494 3495
	list = of_get_property(np, "disabled-channels", &num_disabled);
	num_disabled /= sizeof(*list);

3496
	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		d40_err(&pdev->dev,
			"Invalid number of disabled channels specified (%d)\n",
			num_disabled);
		return -EINVAL;
	}

	of_property_read_u32_array(np, "disabled-channels",
				   pdata->disabled_channels,
				   num_disabled);
	pdata->disabled_channels[num_disabled] = -1;

3508 3509 3510 3511 3512
	pdev->dev.platform_data = pdata;

	return 0;
}

3513 3514
static int __init d40_probe(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3515
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3516
	struct device_node *np = pdev->dev.of_node;
3517
	int ret = -ENOENT;
3518
	struct d40_base *base;
3519
	struct resource *res;
3520 3521 3522
	int num_reserved_chans;
	u32 val;

3523 3524
	if (!plat_data) {
		if (np) {
3525
			if (d40_of_probe(pdev, np)) {
3526
				ret = -ENOMEM;
3527
				goto report_failure;
3528 3529 3530
			}
		} else {
			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3531
			goto report_failure;
3532 3533
		}
	}
3534

3535
	base = d40_hw_detect_init(pdev);
3536
	if (!base)
3537
		goto report_failure;
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3550
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3551 3552 3553 3554 3555 3556 3557 3558
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3559
		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3560 3561 3562 3563 3564 3565 3566
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
3567 3568
			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
			 __func__, val, &res->start);
3569 3570 3571 3572 3573 3574
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3575
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3576 3577
		goto failure;
	}
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
			goto failure;
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
			goto failure;
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3596

3597 3598 3599 3600 3601 3602
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
			goto failure;
		}
3603 3604 3605 3606 3607 3608 3609 3610
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3611
		d40_err(&pdev->dev, "No IRQ defined\n");
3612 3613 3614
		goto failure;
	}

3615 3616 3617 3618 3619
	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3620
			ret = PTR_ERR(base->lcpa_regulator);
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
			base->lcpa_regulator = NULL;
			goto failure;
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
			goto failure;
		}
	}

3635 3636 3637 3638 3639 3640 3641 3642 3643
	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);

	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_mark_last_busy(base->dev);
	pm_runtime_set_active(base->dev);
	pm_runtime_enable(base->dev);

3644 3645
	ret = d40_dmaengine_init(base, num_reserved_chans);
	if (ret)
3646 3647
		goto failure;

3648
	base->dev->dma_parms = &base->dma_parms;
3649 3650
	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
	if (ret) {
3651 3652 3653 3654
		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
		goto failure;
	}

3655 3656
	d40_hw_init(base);

3657
	if (np) {
3658 3659
		ret = of_dma_controller_register(np, d40_xlate, NULL);
		if (ret)
3660 3661 3662 3663
			dev_err(&pdev->dev,
				"could not register of_dma_controller\n");
	}

3664 3665 3666 3667
	dev_info(base->dev, "initialized\n");
	return 0;

failure:
3668 3669 3670
	kmem_cache_destroy(base->desc_slab);
	if (base->virtbase)
		iounmap(base->virtbase);
3671

3672 3673 3674 3675
	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
		iounmap(base->lcla_pool.base);
		base->lcla_pool.base = NULL;
	}
3676

3677 3678 3679 3680
	if (base->lcla_pool.dma_addr)
		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
				 SZ_1K * base->num_phy_chans,
				 DMA_TO_DEVICE);
3681

3682 3683 3684
	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
		free_pages((unsigned long)base->lcla_pool.base,
			   base->lcla_pool.pages);
3685

3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	kfree(base->lcla_pool.base_unaligned);

	if (base->phy_lcpa)
		release_mem_region(base->phy_lcpa,
				   base->lcpa_size);
	if (base->phy_start)
		release_mem_region(base->phy_start,
				   base->phy_size);
	if (base->clk) {
		clk_disable_unprepare(base->clk);
		clk_put(base->clk);
	}

	if (base->lcpa_regulator) {
		regulator_disable(base->lcpa_regulator);
		regulator_put(base->lcpa_regulator);
3702 3703
	}

3704 3705 3706 3707 3708 3709
	kfree(base->lcla_pool.alloc_map);
	kfree(base->lookup_log_chans);
	kfree(base->lookup_phy_chans);
	kfree(base->phy_res);
	kfree(base);
report_failure:
3710
	d40_err(&pdev->dev, "probe failed\n");
3711 3712 3713
	return ret;
}

3714 3715 3716 3717 3718
static const struct of_device_id d40_match[] = {
        { .compatible = "stericsson,dma40", },
        {}
};

3719 3720 3721
static struct platform_driver d40_driver = {
	.driver = {
		.name  = D40_NAME,
3722
		.pm = &dma40_pm_ops,
3723
		.of_match_table = d40_match,
3724 3725 3726
	},
};

R
Rabin Vincent 已提交
3727
static int __init stedma40_init(void)
3728 3729 3730
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3731
subsys_initcall(stedma40_init);