ste_dma40.c 96.1 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17
#include <linux/log2.h>
18 19
#include <linux/pm.h>
#include <linux/pm_runtime.h>
20
#include <linux/err.h>
21
#include <linux/of.h>
22
#include <linux/of_dma.h>
23
#include <linux/amba/bus.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/platform_data/dma-ste-dma40.h>
26

27
#include "dmaengine.h"
28 29 30 31 32 33 34 35 36 37 38 39 40
#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

41 42 43
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

44 45
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
46 47 48 49 50

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

51 52 53
/* Max number of logical channels per physical channel */
#define D40_MAX_LOG_CHAN_PER_PHY 32

54 55 56 57
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
58 59
#define D40_ALLOC_FREE		BIT(31)
#define D40_ALLOC_PHY		BIT(30)
60 61
#define D40_ALLOC_LOG_FREE	0

62 63
#define D40_MEMCPY_MAX_CHANS	8

64
/* Reserved event lines for memcpy only. */
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define DB8500_DMA_MEMCPY_EV_0	51
#define DB8500_DMA_MEMCPY_EV_1	56
#define DB8500_DMA_MEMCPY_EV_2	57
#define DB8500_DMA_MEMCPY_EV_3	58
#define DB8500_DMA_MEMCPY_EV_4	59
#define DB8500_DMA_MEMCPY_EV_5	60

static int dma40_memcpy_channels[] = {
	DB8500_DMA_MEMCPY_EV_0,
	DB8500_DMA_MEMCPY_EV_1,
	DB8500_DMA_MEMCPY_EV_2,
	DB8500_DMA_MEMCPY_EV_3,
	DB8500_DMA_MEMCPY_EV_4,
	DB8500_DMA_MEMCPY_EV_5,
};
80

81
/* Default configuration for physcial memcpy */
82
static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83
	.mode = STEDMA40_MODE_PHYSICAL,
84
	.dir = DMA_MEM_TO_MEM,
85

86
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 88 89
	.src_info.psize = STEDMA40_PSIZE_PHY_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

90
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 92 93 94 95
	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

/* Default configuration for logical memcpy */
96
static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97
	.mode = STEDMA40_MODE_LOGICAL,
98
	.dir = DMA_MEM_TO_MEM,
99

100
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 102 103
	.src_info.psize = STEDMA40_PSIZE_LOG_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

104
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 106 107 108
	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * enum d40_events - The different Event Enables for the event lines.
 *
 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 * @D40_ROUND_EVENTLINE: Status check for event line.
 */

enum d40_events {
	D40_DEACTIVATE_EVENTLINE	= 0,
	D40_ACTIVATE_EVENTLINE		= 1,
	D40_SUSPEND_REQ_EVENTLINE	= 2,
	D40_ROUND_EVENTLINE		= 3
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * since 9540 and 8540 has the same HW revision
 * use v4a for 9540 or ealier
 * use v4b for 8540 or later
 * HW revision:
 * DB8500ed has revision 0
 * DB8500v1 has revision 2
 * DB8500v2 has revision 3
 * AP9540v1 has revision 4
 * DB8540v1 has revision 4
 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 */
static u32 d40_backup_regs_v4a[] = {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)

static u32 d40_backup_regs_v4b[] = {
	D40_DREG_CPSEG1,
	D40_DREG_CPSEG2,
	D40_DREG_CPSEG3,
	D40_DREG_CPSEG4,
	D40_DREG_CPSEG5,
	D40_DREG_CPCEG1,
	D40_DREG_CPCEG2,
	D40_DREG_CPCEG3,
	D40_DREG_CPCEG4,
	D40_DREG_CPCEG5,
	D40_DREG_CRSEG1,
	D40_DREG_CRSEG2,
	D40_DREG_CRSEG3,
	D40_DREG_CRSEG4,
	D40_DREG_CRSEG5,
	D40_DREG_CRCEG1,
	D40_DREG_CRCEG2,
	D40_DREG_CRCEG3,
	D40_DREG_CRCEG4,
	D40_DREG_CRCEG5,
};

#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 214 215 216 217 218 219 220 221 222 223 224

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

225 226 227
#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};


static struct d40_interrupt_lookup il_v4a[] = {
	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
};

static struct d40_interrupt_lookup il_v4b[] = {
	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
};

324 325 326 327 328 329
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
330
 * @dma_addr: DMA address, if mapped
331 332 333 334 335 336
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
337
	int	 size;
338
	dma_addr_t	dma_addr;
339
	/* Space for dst and src, plus an extra for padding */
340
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 342 343 344 345 346 347 348 349 350
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
351
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
352
 * @lli_current: Number of transferred llis.
353
 * @lcla_alloc: Number of LCLA entries allocated.
354 355 356 357
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
358
 * @cyclic: true if this is a cyclic job
359 360 361 362 363 364 365 366 367 368
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
369
	int				 lli_len;
370 371
	int				 lli_current;
	int				 lcla_alloc;
372 373 374 375 376

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
377
	bool				 cyclic;
378 379 380 381 382
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
383 384 385 386 387
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
388
 * @lock: Lock to protect the content in this struct.
389
 * @alloc_map: big map over which LCLA entry is own by which job.
390 391 392
 */
struct d40_lcla_pool {
	void		*base;
393
	dma_addr_t	dma_addr;
394 395
	void		*base_unaligned;
	int		 pages;
396
	spinlock_t	 lock;
397
	struct d40_desc	**alloc_map;
398 399 400 401 402 403 404
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
405
 * @reserved: True if used by secure world or otherwise.
406 407 408 409 410
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411
 * event line number.
412
 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 414 415
 */
struct d40_phy_res {
	spinlock_t lock;
416
	bool	   reserved;
417 418 419
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
420
	bool	   use_soft_lli;
421 422 423 424 425 426 427 428 429 430 431 432
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
433 434
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
435 436 437 438
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
439
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440
 * @active: Active descriptor.
441
 * @done: Completed jobs
442
 * @queue: Queued jobs.
443
 * @prepare_queue: Prepared jobs.
444
 * @dma_cfg: The client configuration of this dma channel.
445
 * @configured: whether the dma_cfg configuration is valid
446 447 448 449 450
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
451 452
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
453 454 455 456 457 458 459 460 461 462 463 464
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
465
	struct list_head		 pending_queue;
466
	struct list_head		 active;
467
	struct list_head		 done;
468
	struct list_head		 queue;
469
	struct list_head		 prepare_queue;
470
	struct stedma40_chan_cfg	 dma_cfg;
471
	bool				 configured;
472 473 474 475 476 477
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
478 479
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
480
	enum dma_transfer_direction	runtime_direction;
481 482
};

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 * controller
 *
 * @backup: the pointer to the registers address array for backup
 * @backup_size: the size of the registers address array for backup
 * @realtime_en: the realtime enable register
 * @realtime_clear: the realtime clear register
 * @high_prio_en: the high priority enable register
 * @high_prio_clear: the high priority clear register
 * @interrupt_en: the interrupt enable register
 * @interrupt_clear: the interrupt clear register
 * @il: the pointer to struct d40_interrupt_lookup
 * @il_size: the size of d40_interrupt_lookup array
 * @init_reg: the pointer to the struct d40_reg_val
 * @init_reg_size: the size of d40_reg_val array
 */
struct d40_gen_dmac {
	u32				*backup;
	u32				 backup_size;
	u32				 realtime_en;
	u32				 realtime_clear;
	u32				 high_prio_en;
	u32				 high_prio_clear;
	u32				 interrupt_en;
	u32				 interrupt_clear;
	struct d40_interrupt_lookup	*il;
	u32				 il_size;
	struct d40_reg_val		*init_reg;
	u32				 init_reg_size;
};

515 516 517 518 519 520 521 522
/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
523
 * @rev: silicon revision detected.
524 525 526 527
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
528 529
 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 * transfers).
530 531 532 533 534 535 536 537
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538
 * @phy_chans: Room for all possible physical channels in system.
539 540 541 542 543 544 545
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
546
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 548 549 550 551
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
552
 * @desc_slab: cache for descriptors.
553 554
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
555 556
 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 * later
557 558
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 560
 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 * DMA controller
561 562 563 564 565 566
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
567
	u8				  rev:4;
568 569 570 571
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
572
	int				  num_memcpy_chans;
573 574
	int				  num_phy_chans;
	int				  num_log_chans;
575
	struct device_dma_parameters	  dma_parms;
576 577 578 579 580 581 582 583
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
584
	struct regulator		 *lcpa_regulator;
585 586 587 588 589 590
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
591
	struct kmem_cache		 *desc_slab;
592
	u32				  reg_val_backup[BACKUP_REGS_SZ];
593
	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594 595
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
596
	struct d40_gen_dmac		  gen_dmac;
597 598
};

599 600 601 602 603
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

604 605 606 607 608 609 610 611 612 613
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

614 615 616 617 618 619
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

620 621 622 623 624 625
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

626
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627
			      int lli_len)
628
{
629
	bool is_log = chan_is_logical(d40c);
630 631 632 633 634 635 636 637 638 639 640 641 642
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
643
		d40d->lli_pool.size = lli_len * 2 * align;
644 645 646 647 648 649 650 651 652

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
653
		d40d->lli_log.src = PTR_ALIGN(base, align);
654
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655 656

		d40d->lli_pool.dma_addr = 0;
657
	} else {
R
Rabin Vincent 已提交
658
		d40d->lli_phy.src = PTR_ALIGN(base, align);
659
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660 661 662 663 664 665 666 667 668 669 670 671 672

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
673 674 675 676 677
	}

	return 0;
}

678
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679
{
680 681 682 683
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

684 685 686 687 688 689 690 691 692
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707 708 709 710
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (!d40c->base->lcla_pool.alloc_map[idx]) {
			d40c->base->lcla_pool.alloc_map[idx] = d40d;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

729
	if (chan_is_physical(d40c))
730 731 732 733 734
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735 736 737 738
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
			d40c->base->lcla_pool.alloc_map[idx] = NULL;
739 740 741 742 743 744 745 746 747 748 749 750 751 752
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

753 754 755 756 757 758 759
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
760
	struct d40_desc *desc = NULL;
761 762

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
763 764 765
		struct d40_desc *d;
		struct d40_desc *_d;

766
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
767 768
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
769 770
				desc = d;
				memset(desc, 0, sizeof(*desc));
771
				break;
772
			}
773
		}
774
	}
R
Rabin Vincent 已提交
775 776 777 778 779 780 781 782

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
783 784 785 786
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
787

788
	d40_pool_lli_free(d40c, d40d);
789
	d40_lcla_free_all(d40c, d40d);
790
	kmem_cache_free(d40c->base->desc_slab, d40d);
791 792 793 794 795 796 797
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

815 816 817 818 819
static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->done);
}

820
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821
{
822 823 824 825
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
826
	bool cyclic = desc->cyclic;
827
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
828
	int first_lcla = 0;
829
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
830
	bool linkback;
831

R
Rabin Vincent 已提交
832 833 834 835 836 837 838 839 840 841 842
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
843 844 845 846 847 848 849
		/*
		 * If the channel is expected to use only soft_lli don't
		 * allocate a lcla. This is to avoid a HW issue that exists
		 * in some controller during a peripheral to memory transfer
		 * that uses linked lists.
		 */
		if (!(chan->phy_chan->use_soft_lli &&
850
			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851 852
			curr_lcla = d40_lcla_alloc_one(chan, desc);

R
Rabin Vincent 已提交
853 854 855 856 857 858 859 860 861 862 863
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
864

R
Rabin Vincent 已提交
865 866
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
867

R
Rabin Vincent 已提交
868 869 870 871 872 873 874
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
875 876 877 878

	if (curr_lcla < 0)
		goto out;

879 880 881 882
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
883
		unsigned int flags = 0;
884 885 886 887 888
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
889 890 891 892
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
893

R
Rabin Vincent 已提交
894 895 896 897 898 899 900 901 902 903 904 905
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
906 907 908
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
909
				       next_lcla, flags);
910

911 912 913 914 915 916 917 918 919 920
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
921 922
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
923
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924 925 926 927 928
			lli_current++;
			break;
		}
	}

929
out:
930 931
	desc->lli_current = lli_current;
}
932

933 934
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
935
	if (chan_is_physical(d40c)) {
936
		d40_phy_lli_load(d40c, d40d);
937
		d40d->lli_current = d40d->lli_len;
938 939
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
940 941
}

942 943 944 945 946 947 948 949 950 951 952 953 954
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

955
/* remove desc from current queue and add it to the pending_queue */
956 957
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
958 959
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
960 961 962 963 964 965 966 967 968 969 970 971 972 973
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->pending_queue))
		return NULL;

	d = list_first_entry(&d40c->pending_queue,
			     struct d40_desc,
			     node);
	return d;
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

989 990 991 992 993 994 995 996
static struct d40_desc *d40_first_done(struct d40_chan *d40c)
{
	if (list_empty(&d40c->done))
		return NULL;

	return list_first_entry(&d40c->done, struct d40_desc, node);
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
1012 1013 1014
 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 *
 * Calculate the total number of dma elements required to send the entire sg list.
1015 1016 1017 1018 1019 1020
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
1021
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1022 1023

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1024
		seg_max -= max_w;
1025

1026
	if (!IS_ALIGNED(size, max_w))
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
1056

1057 1058
static int __d40_execute_command_phy(struct d40_chan *d40c,
				     enum d40_command command)
1059
{
1060 1061
	u32 status;
	int i;
1062 1063 1064
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
1065
	u32 wmask;
1066

1067 1068 1069 1070 1071 1072
	if (command == D40_DMA_STOP) {
		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
		if (ret)
			return ret;
	}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

1089 1090 1091
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
1113 1114 1115
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
1130
	struct d40_desc *_d;
1131

1132 1133 1134 1135 1136 1137
	/* Release completed descriptors */
	while ((d40d = d40_first_done(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1150 1151 1152 1153 1154
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
1155

1156 1157 1158 1159 1160 1161 1162
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

1163 1164 1165 1166 1167 1168 1169
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
1170

1171 1172 1173
	d40c->pending_tx = 0;
}

1174 1175 1176
static void __d40_config_set_event(struct d40_chan *d40c,
				   enum d40_events event_type, u32 event,
				   int reg)
1177
{
1178
	void __iomem *addr = chan_base(d40c) + reg;
1179
	int tries;
1180 1181 1182 1183 1184
	u32 status;

	switch (event_type) {

	case D40_DEACTIVATE_EVENTLINE:
1185 1186 1187

		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
1188 1189 1190 1191 1192 1193 1194 1195 1196
		break;

	case D40_SUSPEND_REQ_EVENTLINE:
		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
			  D40_EVENTLINE_POS(event);

		if (status == D40_DEACTIVATE_EVENTLINE ||
		    status == D40_SUSPEND_REQ_EVENTLINE)
			break;
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {

			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
				  D40_EVENTLINE_POS(event);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DEACTIVATE_EVENTLINE)
				break;
		}

		if (tries == D40_SUSPEND_MAX_IT) {
			chan_err(d40c,
				"unable to stop the event_line chl %d (log: %d)"
				"status %x\n", d40c->phy_chan->num,
				 d40c->log_num, status);
		}
		break;

	case D40_ACTIVATE_EVENTLINE:
1226 1227 1228 1229 1230
	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
1231 1232 1233 1234 1235
		tries = 100;
		while (--tries) {
			writel((D40_ACTIVATE_EVENTLINE <<
				D40_EVENTLINE_POS(event)) |
				~D40_EVENTLINE_MASK(event), addr);
1236

1237 1238 1239
			if (readl(addr) & D40_EVENTLINE_MASK(event))
				break;
		}
1240

1241 1242 1243 1244 1245
		if (tries != 99)
			dev_dbg(chan2dev(d40c),
				"[%s] workaround enable S%cLNK (%d tries)\n",
				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
				100 - tries);
1246

1247 1248
		WARN_ON(!tries);
		break;
1249

1250 1251 1252
	case D40_ROUND_EVENTLINE:
		BUG();
		break;
1253

1254 1255
	}
}
1256

1257 1258 1259
static void d40_config_set_event(struct d40_chan *d40c,
				 enum d40_events event_type)
{
1260 1261
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);

1262
	/* Enable event line connected to device (or memcpy) */
1263 1264
	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1265
		__d40_config_set_event(d40c, event_type, event,
1266
				       D40_CHAN_REG_SSLNK);
1267

1268
	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1269
		__d40_config_set_event(d40c, event_type, event,
1270
				       D40_CHAN_REG_SDLNK);
1271 1272
}

1273
static u32 d40_chan_has_events(struct d40_chan *d40c)
1274
{
1275
	void __iomem *chanbase = chan_base(d40c);
1276
	u32 val;
1277

1278 1279
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1280

1281
	return val;
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
	unsigned long flags;
	int ret = 0;
	u32 active_status;
	void __iomem *active_reg;

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;


	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	switch (command) {
	case D40_DMA_STOP:
	case D40_DMA_SUSPEND_REQ:

		active_status = (readl(active_reg) &
				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				 D40_CHAN_POS(d40c->phy_chan->num);

		if (active_status == D40_DMA_RUN)
			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
		else
			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);

		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
			ret = __d40_execute_command_phy(d40c, command);

		break;

	case D40_DMA_RUN:

		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
		ret = __d40_execute_command_phy(d40c, command);
		break;

	case D40_DMA_SUSPENDED:
		BUG();
		break;
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
	return ret;
}

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
	if (chan_is_logical(d40c))
		return __d40_execute_command_log(d40c, command);
	else
		return __d40_execute_command_phy(d40c, command);
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1361
	if (chan_is_physical(d40c))
1362 1363 1364 1365 1366
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1367
static void d40_config_write(struct d40_chan *d40c)
1368 1369 1370 1371 1372 1373 1374
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1375
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1376 1377 1378 1379
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1380
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1381 1382 1383

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1384
	if (chan_is_logical(d40c)) {
1385 1386 1387 1388
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1389
		/* Set default config for CFG reg */
1390 1391
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1392

1393
		/* Set LIDX for lcla */
1394 1395
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1396 1397 1398 1399

		/* Clear LNK which will be used by d40_chan_has_events() */
		writel(0, chanbase + D40_CHAN_REG_SSLNK);
		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1400 1401 1402
	}
}

1403 1404 1405 1406
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1407
	if (chan_is_logical(d40c))
1408 1409
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1410 1411 1412 1413 1414 1415
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1416
	return num_elt * d40c->dma_cfg.dst_info.data_width;
1417 1418 1419 1420 1421 1422
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1423
	if (chan_is_logical(d40c))
1424 1425
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1426 1427 1428
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1429 1430 1431
	return is_link;
}

1432
static int d40_pause(struct d40_chan *d40c)
1433 1434 1435 1436
{
	int res = 0;
	unsigned long flags;

1437 1438 1439
	if (!d40c->busy)
		return 0;

1440
	spin_lock_irqsave(&d40c->lock, flags);
1441
	pm_runtime_get_sync(d40c->base->dev);
1442 1443

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1444

1445 1446
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1447 1448 1449 1450
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1451
static int d40_resume(struct d40_chan *d40c)
1452 1453 1454 1455
{
	int res = 0;
	unsigned long flags;

1456 1457 1458
	if (!d40c->busy)
		return 0;

1459
	spin_lock_irqsave(&d40c->lock, flags);
1460
	pm_runtime_get_sync(d40c->base->dev);
1461 1462

	/* If bytes left to transfer or linked tx resume job */
1463
	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1464 1465
		res = d40_channel_execute_command(d40c, D40_DMA_RUN);

1466 1467
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1468 1469 1470 1471
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1472 1473 1474 1475 1476 1477 1478
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;
1479
	dma_cookie_t cookie;
1480 1481

	spin_lock_irqsave(&d40c->lock, flags);
1482
	cookie = dma_cookie_assign(tx);
1483 1484 1485
	d40_desc_queue(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);

1486
	return cookie;
1487 1488 1489 1490
}

static int d40_start(struct d40_chan *d40c)
{
1491
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1503
		if (!d40c->busy) {
1504
			d40c->busy = true;
1505 1506
			pm_runtime_get_sync(d40c->base->dev);
		}
1507 1508 1509 1510 1511 1512 1513

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1514 1515
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1516

1517 1518
		/* Start dma job */
		err = d40_start(d40c);
1519

1520 1521
		if (err)
			return NULL;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1551

R
Rabin Vincent 已提交
1552 1553 1554 1555 1556
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1557

R
Rabin Vincent 已提交
1558 1559 1560 1561 1562 1563 1564
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

1565
		if (d40_queue_start(d40c) == NULL) {
R
Rabin Vincent 已提交
1566
			d40c->busy = false;
1567 1568 1569 1570

			pm_runtime_mark_last_busy(d40c->base->dev);
			pm_runtime_put_autosuspend(d40c->base->dev);
		}
1571

1572 1573 1574
		d40_desc_remove(d40d);
		d40_desc_done(d40c, d40d);
	}
1575

1576 1577 1578 1579 1580 1581 1582 1583
	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1584
	struct d40_desc *d40d;
1585
	unsigned long flags;
1586
	bool callback_active;
1587 1588 1589 1590 1591
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

1592 1593 1594 1595 1596 1597 1598 1599
	/* Get first entry from the done list */
	d40d = d40_first_done(d40c);
	if (d40d == NULL) {
		/* Check if we have reached here for cyclic job */
		d40d = d40_first_active_get(d40c);
		if (d40d == NULL || !d40d->cyclic)
			goto err;
	}
1600

R
Rabin Vincent 已提交
1601
	if (!d40d->cyclic)
1602
		dma_cookie_complete(&d40d->txd);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1614
	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1615 1616 1617
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1618 1619
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1620
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1621
			d40_desc_free(d40c, d40d);
1622 1623 1624 1625 1626
		} else if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
			d40_lcla_free_all(d40c, d40d);
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1637
	if (callback_active && callback)
1638 1639 1640 1641
		callback(callback_param);

	return;

1642 1643
err:
	/* Rescue manouver if receiving double interrupts */
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	int i;
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;
1658 1659 1660
	u32 regs[base->gen_dmac.il_size];
	struct d40_interrupt_lookup *il = base->gen_dmac.il;
	u32 il_size = base->gen_dmac.il_size;
1661 1662 1663 1664

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
1665
	for (i = 0; i < il_size; i++)
1666 1667 1668 1669 1670
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
1671
				     BITS_PER_LONG * il_size, chan + 1);
1672 1673

		/* No more set bits found? */
1674
		if (chan == BITS_PER_LONG * il_size)
1675 1676 1677 1678 1679 1680 1681 1682 1683
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

		if (!d40c) {
			/*
			 * No error because this can happen if something else
			 * in the system is using the channel.
			 */
			continue;
		}

		/* ACK interrupt */
1694
		writel(BIT(idx), base->virtbase + il[row].clr);
1695

1696 1697 1698 1699 1700
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1701 1702
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
1716
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1717

1718
	if (!conf->dir) {
1719
		chan_err(d40c, "Invalid direction.\n");
1720 1721 1722
		res = -EINVAL;
	}

1723 1724 1725 1726
	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
	    (conf->dev_type < 0)) {
		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1727 1728 1729
		res = -EINVAL;
	}

1730
	if (conf->dir == DMA_DEV_TO_DEV) {
1731 1732 1733 1734
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1735
		chan_err(d40c, "periph to periph not supported\n");
1736 1737 1738
		res = -EINVAL;
	}

1739
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1740
	    conf->src_info.data_width !=
1741
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1742
	    conf->dst_info.data_width) {
1743 1744 1745 1746 1747
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1748
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1749 1750 1751
		res = -EINVAL;
	}

1752 1753 1754
	return res;
}

1755 1756 1757
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
			       bool is_src, int log_event_line, bool is_log,
			       bool *first_user)
1758 1759 1760
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1761 1762 1763 1764

	*first_user = ((phy->allocated_src | phy->allocated_dst)
			== D40_ALLOC_FREE);

1765
	if (!is_log) {
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

1784 1785
		if (!(phy->allocated_src & BIT(log_event_line))) {
			phy->allocated_src |= BIT(log_event_line);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

1796 1797
		if (!(phy->allocated_dst & BIT(log_event_line))) {
			phy->allocated_dst |= BIT(log_event_line);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
1827
		phy->allocated_src &= ~BIT(log_event_line);
1828 1829 1830
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
1831
		phy->allocated_dst &= ~BIT(log_event_line);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

1845
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1846
{
1847
	int dev_type = d40c->dma_cfg.dev_type;
1848 1849 1850 1851 1852 1853
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
1854
	int num_phy_chans;
1855
	bool is_src;
1856
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1857 1858

	phys = d40c->base->phy_res;
1859
	num_phy_chans = d40c->base->num_phy_chans;
1860

1861
	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1862 1863
		log_num = 2 * dev_type;
		is_src = true;
1864 1865
	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		/* dst event lines are used for logical memcpy */
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
1876
		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1877
			/* Find physical half channel */
1878 1879
			if (d40c->dma_cfg.use_fixed_channel) {
				i = d40c->dma_cfg.phy_channel;
1880
				if (d40_alloc_mask_set(&phys[i], is_src,
1881 1882
						       0, is_log,
						       first_phy_user))
1883
					goto found_phy;
1884 1885 1886 1887 1888 1889 1890
			} else {
				for (i = 0; i < num_phy_chans; i++) {
					if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log,
						       first_phy_user))
						goto found_phy;
				}
1891 1892 1893 1894 1895
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1896 1897 1898
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
1899 1900
							       is_log,
							       first_phy_user))
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

		if (d40c->dma_cfg.use_fixed_channel) {
			i = d40c->dma_cfg.phy_channel;

			if ((i != phy_num) && (i != phy_num + 1)) {
				dev_err(chan2dev(d40c),
					"invalid fixed phy channel %d\n", i);
				return -EINVAL;
			}

			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
					       is_log, first_phy_user))
				goto found_log;

			dev_err(chan2dev(d40c),
				"could not allocate fixed phy channel %d\n", i);
			return -EINVAL;
		}

1935 1936 1937 1938 1939 1940 1941 1942
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1943 1944
						       event_line, is_log,
						       first_phy_user))
1945 1946 1947 1948 1949
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1950 1951
						       event_line, is_log,
						       first_phy_user))
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1977
		d40c->dma_cfg = dma40_memcpy_conf_log;
1978
		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1979

1980 1981 1982
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

1983 1984
	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
1985
		d40c->dma_cfg = dma40_memcpy_conf_phy;
1986 1987 1988 1989 1990 1991 1992 1993

		/* Generate interrrupt at end of transfer or relink. */
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);

		/* Generate interrupt on error. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);

1994
	} else {
1995
		chan_err(d40c, "No memcpy\n");
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
		return -EINVAL;
	}

	return 0;
}

static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
2006
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2007 2008 2009 2010 2011 2012 2013
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
2014
		chan_err(d40c, "phy == null\n");
2015 2016 2017 2018 2019
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
2020
		chan_err(d40c, "channel already free\n");
2021 2022 2023
		return -EINVAL;
	}

2024 2025
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2026
		is_src = false;
2027
	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2028
		is_src = true;
2029
	else {
2030
		chan_err(d40c, "Unknown direction\n");
2031 2032 2033
		return -EINVAL;
	}

2034
	pm_runtime_get_sync(d40c->base->dev);
2035
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2036
	if (res) {
2037
		chan_err(d40c, "stop failed\n");
2038
		goto out;
2039 2040
	}

2041
	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2042

2043
	if (chan_is_logical(d40c))
2044
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2045 2046
	else
		d40c->base->lookup_phy_chans[phy->num] = NULL;
2047 2048 2049 2050 2051 2052 2053

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
2054
	d40c->phy_chan = NULL;
2055
	d40c->configured = false;
2056
out:
2057

2058 2059 2060
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
2061 2062
}

2063 2064
static bool d40_is_paused(struct d40_chan *d40c)
{
2065
	void __iomem *chanbase = chan_base(d40c);
2066 2067 2068 2069
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
2070
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2071 2072 2073

	spin_lock_irqsave(&d40c->lock, flags);

2074
	if (chan_is_physical(d40c)) {
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

2089 2090
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2091
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2092
	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2093
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2094
	} else {
2095
		chan_err(d40c, "Unknown direction\n");
2096 2097
		goto _exit;
	}
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

2124 2125 2126
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2127 2128
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2129 2130 2131 2132
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2133
	int ret;
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
2150 2151 2152 2153 2154
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2155 2156
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2157 2158 2159 2160
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
2161
	unsigned long flags = 0;
2162 2163
	int ret;

R
Rabin Vincent 已提交
2164 2165 2166
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

2167 2168 2169 2170
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
2171
				src_info, dst_info, flags);
2172 2173 2174 2175 2176

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
2177
				dst_info, src_info, flags);
2178 2179 2180 2181 2182 2183 2184

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}

2185 2186 2187 2188 2189 2190
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct d40_desc *desc;
2191
	int ret;
2192 2193 2194 2195 2196 2197 2198 2199 2200

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
2201 2202
		goto err;
	}
2203

2204 2205 2206 2207
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
		goto err;
2208 2209 2210 2211 2212 2213 2214 2215 2216
	}

	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2217 2218 2219 2220

err:
	d40_desc_free(chan, desc);
	return NULL;
2221 2222
}

2223 2224 2225
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2226
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2227 2228
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
R
Rabin Vincent 已提交
2229 2230
	dma_addr_t src_dev_addr = 0;
	dma_addr_t dst_dev_addr = 0;
2231
	struct d40_desc *desc;
2232
	unsigned long flags;
2233
	int ret;
2234

2235 2236 2237
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2238 2239
	}

2240
	spin_lock_irqsave(&chan->lock, flags);
2241

2242 2243
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2244 2245
		goto err;

R
Rabin Vincent 已提交
2246 2247 2248
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

2249 2250 2251 2252
	if (direction == DMA_DEV_TO_MEM)
		src_dev_addr = chan->runtime_addr;
	else if (direction == DMA_MEM_TO_DEV)
		dst_dev_addr = chan->runtime_addr;
2253 2254 2255

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2256
				      sg_len, src_dev_addr, dst_dev_addr);
2257 2258
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2259
				      sg_len, src_dev_addr, dst_dev_addr);
2260 2261 2262 2263 2264

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
		goto err;
2265 2266
	}

2267 2268 2269 2270 2271 2272
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2273 2274 2275
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2276 2277

err:
2278 2279 2280
	if (desc)
		d40_desc_free(chan, desc);
	spin_unlock_irqrestore(&chan->lock, flags);
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2298 2299 2300
	if (!err)
		d40c->configured = true;

2301 2302 2303 2304
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2305 2306 2307 2308
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
2309
	u32 rtreg;
2310 2311
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
2312
	u32 bit = BIT(event);
2313
	u32 prioreg;
2314
	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2315

2316
	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	/*
	 * Due to a hardware bug, in some cases a logical channel triggered by
	 * a high priority destination event line can generate extra packet
	 * transactions.
	 *
	 * The workaround is to not set the high priority level for the
	 * destination event lines that trigger logical channels.
	 */
	if (!src && chan_is_logical(d40c))
		highprio = false;

2328
	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

2343 2344
	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2345
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2346

2347 2348
	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2349
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2350 2351
}

2352 2353 2354 2355
#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2356
#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
				  struct of_dma *ofdma)
{
	struct stedma40_chan_cfg cfg;
	dma_cap_mask_t cap;
	u32 flags;

	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));

	dma_cap_zero(cap);
	dma_cap_set(DMA_SLAVE, cap);

	cfg.dev_type = dma_spec->args[0];
	flags = dma_spec->args[2];

	switch (D40_DT_FLAGS_MODE(flags)) {
	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
	}

	switch (D40_DT_FLAGS_DIR(flags)) {
	case 0:
2380
		cfg.dir = DMA_MEM_TO_DEV;
2381 2382 2383
		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	case 1:
2384
		cfg.dir = DMA_DEV_TO_MEM;
2385 2386 2387 2388 2389 2390 2391 2392 2393
		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	}

	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
		cfg.phy_channel = dma_spec->args[1];
		cfg.use_fixed_channel = true;
	}

2394 2395 2396
	if (D40_DT_FLAGS_HIGH_PRIO(flags))
		cfg.high_priority = true;

2397 2398 2399
	return dma_request_channel(cap, stedma40_filter, &cfg);
}

2400 2401 2402 2403 2404 2405 2406
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2407
	bool is_free_phy;
2408 2409
	spin_lock_irqsave(&d40c->lock, flags);

2410
	dma_cookie_init(chan);
2411

2412 2413
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2414
		err = d40_config_memcpy(d40c);
2415
		if (err) {
2416
			chan_err(d40c, "Failed to configure memcpy channel\n");
2417 2418
			goto fail;
		}
2419 2420
	}

2421
	err = d40_allocate_channel(d40c, &is_free_phy);
2422
	if (err) {
2423
		chan_err(d40c, "Failed to allocate channel\n");
2424
		d40c->configured = false;
2425
		goto fail;
2426 2427
	}

2428
	pm_runtime_get_sync(d40c->base->dev);
2429

2430 2431
	d40_set_prio_realtime(d40c);

2432
	if (chan_is_logical(d40c)) {
2433
		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2434
			d40c->lcpa = d40c->base->lcpa_base +
2435
				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2436 2437
		else
			d40c->lcpa = d40c->base->lcpa_base +
2438
				d40c->dma_cfg.dev_type *
2439
				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2440 2441 2442 2443

		/* Unmask the Global Interrupt Mask. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2444 2445
	}

2446 2447 2448 2449 2450 2451
	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
		 chan_is_logical(d40c) ? "logical" : "physical",
		 d40c->phy_chan->num,
		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");


2452 2453 2454 2455 2456
	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2457 2458
	if (is_free_phy)
		d40_config_write(d40c);
2459
fail:
2460 2461
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2462
	spin_unlock_irqrestore(&d40c->lock, flags);
2463
	return err;
2464 2465 2466 2467 2468 2469 2470 2471 2472
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2473
	if (d40c->phy_chan == NULL) {
2474
		chan_err(d40c, "Cannot free unallocated channel\n");
2475 2476 2477
		return;
	}

2478 2479 2480 2481 2482
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2483
		chan_err(d40c, "Failed to free channel\n");
2484 2485 2486 2487 2488 2489 2490
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2491
						       unsigned long dma_flags)
2492
{
2493 2494
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2495

2496 2497
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2498

2499 2500
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2501

2502 2503
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2504

2505
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2506 2507
}

2508
static struct dma_async_tx_descriptor *
2509 2510 2511 2512
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2513 2514 2515 2516
{
	if (dst_nents != src_nents)
		return NULL;

2517
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2518 2519
}

2520 2521 2522 2523
static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		  unsigned int sg_len, enum dma_transfer_direction direction,
		  unsigned long dma_flags, void *context)
2524
{
2525
	if (!is_slave_direction(direction))
2526 2527
		return NULL;

2528
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2529 2530
}

R
Rabin Vincent 已提交
2531 2532 2533
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2534
		     enum dma_transfer_direction direction, unsigned long flags)
R
Rabin Vincent 已提交
2535 2536 2537 2538 2539 2540
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2541
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2542 2543 2544
	if (!sg)
		return NULL;

R
Rabin Vincent 已提交
2545 2546 2547 2548 2549 2550 2551
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
2552
	sg_dma_len(&sg[periods]) = 0;
R
Rabin Vincent 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2564 2565 2566 2567 2568
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2569
	enum dma_status ret;
2570

2571
	if (d40c->phy_chan == NULL) {
2572
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2573 2574 2575
		return -EINVAL;
	}

2576
	ret = dma_cookie_status(chan, cookie, txstate);
2577
	if (ret != DMA_COMPLETE)
2578
		dma_set_residue(txstate, stedma40_residue(chan));
2579

2580 2581
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
2582 2583 2584 2585 2586 2587 2588 2589 2590

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2591
	if (d40c->phy_chan == NULL) {
2592
		chan_err(d40c, "Channel is not allocated!\n");
2593 2594 2595
		return;
	}

2596 2597
	spin_lock_irqsave(&d40c->lock, flags);

2598 2599 2600
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2601 2602 2603 2604 2605 2606
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
static void d40_terminate_all(struct dma_chan *chan)
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	int ret;

	spin_lock_irqsave(&d40c->lock, flags);

	pm_runtime_get_sync(d40c->base->dev);
	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (ret)
		chan_err(d40c, "Failed to stop channel\n");

	d40_term_all(d40c);
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}
	d40c->busy = false;

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    u32 maxburst)
{
	int psize;

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2665
/* Runtime reconfiguration extension */
2666 2667
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2668 2669 2670
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2671
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2672
	dma_addr_t config_addr;
2673 2674 2675 2676 2677 2678 2679
	u32 src_maxburst, dst_maxburst;
	int ret;

	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2680

2681
	if (config->direction == DMA_DEV_TO_MEM) {
2682
		config_addr = config->src_addr;
2683

2684
		if (cfg->dir != DMA_DEV_TO_MEM)
2685 2686 2687 2688
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
2689
		cfg->dir = DMA_DEV_TO_MEM;
2690

2691 2692 2693 2694 2695
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2696

2697
	} else if (config->direction == DMA_MEM_TO_DEV) {
2698
		config_addr = config->dst_addr;
2699

2700
		if (cfg->dir != DMA_MEM_TO_DEV)
2701 2702 2703 2704
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
2705
		cfg->dir = DMA_MEM_TO_DEV;
2706

2707 2708 2709 2710 2711
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2712 2713 2714 2715
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2716
		return -EINVAL;
2717 2718
	}

2719 2720 2721 2722 2723
	if (config_addr <= 0) {
		dev_err(d40c->base->dev, "no address supplied\n");
		return -EINVAL;
	}

2724
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2725
		dev_err(d40c->base->dev,
2726 2727 2728 2729 2730 2731
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2732 2733
	}

2734 2735 2736 2737 2738 2739 2740 2741
	if (src_maxburst > 16) {
		src_maxburst = 16;
		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
	} else if (dst_maxburst > 16) {
		dst_maxburst = 16;
		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
	}

2742 2743 2744 2745 2746
	/* Only valid widths are; 1, 2, 4 and 8. */
	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2747 2748
	    !is_power_of_2(src_addr_width) ||
	    !is_power_of_2(dst_addr_width))
2749 2750 2751 2752 2753
		return -EINVAL;

	cfg->src_info.data_width = src_addr_width;
	cfg->dst_info.data_width = dst_addr_width;

2754 2755 2756 2757
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_maxburst);
	if (ret)
		return ret;
2758

2759 2760 2761 2762
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_maxburst);
	if (ret)
		return ret;
2763

2764
	/* Fill in register values */
2765
	if (chan_is_logical(d40c))
2766 2767
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
2768
		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2769

2770 2771 2772 2773
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2774 2775
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2776
		dma_chan_name(chan),
2777
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2778 2779 2780 2781
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2782 2783
}

2784 2785
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2786 2787 2788
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2789
	if (d40c->phy_chan == NULL) {
2790
		chan_err(d40c, "Channel is not allocated!\n");
2791 2792 2793
		return -EINVAL;
	}

2794 2795
	switch (cmd) {
	case DMA_TERMINATE_ALL:
2796 2797
		d40_terminate_all(chan);
		return 0;
2798
	case DMA_PAUSE:
2799
		return d40_pause(d40c);
2800
	case DMA_RESUME:
2801
		return d40_resume(d40c);
2802
	case DMA_SLAVE_CONFIG:
2803
		return d40_set_runtime_config(chan,
2804 2805 2806
			(struct dma_slave_config *) arg);
	default:
		break;
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

2833
		INIT_LIST_HEAD(&d40c->done);
2834 2835
		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2836
		INIT_LIST_HEAD(&d40c->pending_queue);
2837
		INIT_LIST_HEAD(&d40c->client);
2838
		INIT_LIST_HEAD(&d40c->prepare_queue);
2839 2840 2841 2842 2843 2844 2845 2846 2847

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
		dev->copy_align = 2;
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2866 2867 2868
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2869 2870 2871 2872 2873 2874 2875 2876
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
	dev->device_control = d40_control;
	dev->dev = base->dev;
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2887
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2888

2889
	d40_ops_init(base, &base->dma_slave);
2890 2891 2892 2893

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2894
		d40_err(base->dev, "Failed to register slave channels\n");
2895 2896 2897 2898
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2899
		      base->num_log_chans, base->num_memcpy_chans);
2900 2901 2902

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2903 2904 2905
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2906 2907 2908 2909

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2910 2911
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2912 2913 2914 2915 2916 2917 2918 2919 2920
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2921
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2922
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2923 2924

	d40_ops_init(base, &base->dma_both);
2925 2926 2927
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2928 2929
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

2941
/* Suspend resume functionality */
2942 2943
#ifdef CONFIG_PM_SLEEP
static int dma40_suspend(struct device *dev)
2944
{
2945 2946
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
2947 2948 2949 2950 2951
	int ret;

	ret = pm_runtime_force_suspend(dev);
	if (ret)
		return ret;
2952

2953 2954 2955
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
2956 2957
}

2958 2959 2960 2961 2962 2963
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

2964
	if (base->lcpa_regulator) {
2965
		ret = regulator_enable(base->lcpa_regulator);
2966 2967 2968
		if (ret)
			return ret;
	}
2969

2970
	return pm_runtime_force_resume(dev);
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
}
#endif

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
	if (base->gen_dmac.backup)
		dma40_backup(base->virtbase, base->reg_val_backup_v4,
			     base->gen_dmac.backup,
			base->gen_dmac.backup_size,
			save);
}

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

3044
	d40_save_restore_registers(base, false);
3045 3046 3047 3048 3049

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}
3050
#endif
3051 3052

static const struct dev_pm_ops dma40_pm_ops = {
3053
	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3054 3055 3056
	SET_PM_RUNTIME_PM_OPS(dma40_runtime_suspend,
				dma40_runtime_resume,
				NULL)
3057 3058
};

3059 3060 3061 3062 3063 3064 3065 3066
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
3067
	int gcc = D40_DREG_GCC_ENA;
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3079 3080 3081 3082 3083 3084 3085
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


3086 3087 3088
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3089
			base->phy_res[i].reserved = false;
3090 3091 3092 3093
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
3094 3095 3096

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3097 3098 3099 3100
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3101 3102 3103 3104 3105
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
3106
		num_phy_chans_avail--;
3107 3108
	}

3109 3110 3111 3112 3113 3114 3115
	/* Mark soft_lli channels */
	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
		int chan = base->plat_data->soft_lli_chans[i];

		base->phy_res[chan].use_soft_lli = true;
	}

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

3133 3134 3135 3136 3137 3138 3139 3140 3141
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

3142 3143 3144 3145 3146
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3147
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3148 3149 3150 3151 3152 3153
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
3154
	int num_memcpy_chans;
3155
	int clk_ret = -EINVAL;
3156
	int i;
3157 3158 3159
	u32 pid;
	u32 cid;
	u8 rev;
3160 3161 3162

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
3163
		d40_err(&pdev->dev, "No matching clock found\n");
3164 3165 3166
		goto failure;
	}

3167 3168 3169 3170 3171
	clk_ret = clk_prepare_enable(clk);
	if (clk_ret) {
		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
		goto failure;
	}
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

3186 3187 3188 3189 3190 3191 3192
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
3193

3194 3195 3196 3197 3198
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
		goto failure;
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3199
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3200 3201
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
3202 3203
		goto failure;
	}
3204 3205 3206 3207 3208 3209
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
3210 3211
	 * AP9540v1 has revision 4
	 * DB8540v1 has revision 4
3212 3213
	 */
	rev = AMBA_REV_BITS(pid);
3214 3215 3216 3217
	if (rev < 2) {
		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
		goto failure;
	}
3218

3219
	/* The number of physical channels on this HW */
3220 3221 3222 3223
	if (plat_data->num_of_phy_chans)
		num_phy_chans = plat_data->num_of_phy_chans;
	else
		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3224

3225 3226 3227 3228 3229 3230
	/* The number of channels used for memcpy */
	if (plat_data->num_of_memcpy_chans)
		num_memcpy_chans = plat_data->num_of_memcpy_chans;
	else
		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);

3231 3232
	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;

3233
	dev_info(&pdev->dev,
3234 3235
		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
		 rev, &res->start, num_phy_chans, num_log_chans);
3236 3237

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3238
		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3239 3240 3241
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
3242
		d40_err(&pdev->dev, "Out of memory\n");
3243 3244 3245
		goto failure;
	}

3246
	base->rev = rev;
3247
	base->clk = clk;
3248
	base->num_memcpy_chans = num_memcpy_chans;
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	if (base->plat_data->num_of_phy_chans == 14) {
		base->gen_dmac.backup = d40_backup_regs_v4b;
		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
		base->gen_dmac.il = il_v4b;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
		base->gen_dmac.init_reg = dma_init_reg_v4b;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
	} else {
		if (base->rev >= 3) {
			base->gen_dmac.backup = d40_backup_regs_v4a;
			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
		}
		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
		base->gen_dmac.il = il_v4a;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
		base->gen_dmac.init_reg = dma_init_reg_v4a;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
	}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

3300 3301 3302 3303 3304
	base->lookup_log_chans = kzalloc(num_log_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_log_chans)
		goto failure;
3305

3306 3307
	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
					    sizeof(d40_backup_regs_chan),
3308
					    GFP_KERNEL);
3309 3310 3311 3312 3313 3314
	if (!base->reg_val_backup_chan)
		goto failure;

	base->lcla_pool.alloc_map =
		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3315 3316 3317
	if (!base->lcla_pool.alloc_map)
		goto failure;

3318 3319 3320 3321 3322 3323
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

3324 3325 3326
	return base;

failure:
3327 3328 3329
	if (!clk_ret)
		clk_disable_unprepare(clk);
	if (!IS_ERR(clk))
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
		clk_put(clk);
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
3341
		kfree(base->reg_val_backup_chan);
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;
3359 3360
	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
	u32 reg_size = base->gen_dmac.init_reg_size;
3361

3362
	for (i = 0; i < reg_size; i++)
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
3395
	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3396 3397

	/* Write which interrupt to clear */
3398
	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3399

3400 3401 3402
	/* These are __initdata and cannot be accessed after init */
	base->gen_dmac.init_reg = NULL;
	base->gen_dmac.init_reg_size = 0;
3403 3404
}

3405 3406
static int __init d40_lcla_allocate(struct d40_base *base)
{
3407
	struct d40_lcla_pool *pool = &base->lcla_pool;
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3433 3434
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3452 3453 3454 3455
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3472 3473 3474 3475 3476 3477 3478 3479 3480
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

3481 3482 3483 3484 3485 3486 3487
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

3488 3489 3490 3491
static int __init d40_of_probe(struct platform_device *pdev,
			       struct device_node *np)
{
	struct stedma40_platform_data *pdata;
3492
	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3493
	const __be32 *list;
3494 3495 3496 3497 3498 3499 3500

	pdata = devm_kzalloc(&pdev->dev,
			     sizeof(struct stedma40_platform_data),
			     GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

3501 3502 3503 3504 3505
	/* If absent this value will be obtained from h/w. */
	of_property_read_u32(np, "dma-channels", &num_phy);
	if (num_phy > 0)
		pdata->num_of_phy_chans = num_phy;

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	list = of_get_property(np, "memcpy-channels", &num_memcpy);
	num_memcpy /= sizeof(*list);

	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
		d40_err(&pdev->dev,
			"Invalid number of memcpy channels specified (%d)\n",
			num_memcpy);
		return -EINVAL;
	}
	pdata->num_of_memcpy_chans = num_memcpy;

	of_property_read_u32_array(np, "memcpy-channels",
				   dma40_memcpy_channels,
				   num_memcpy);

3521 3522 3523
	list = of_get_property(np, "disabled-channels", &num_disabled);
	num_disabled /= sizeof(*list);

3524
	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
		d40_err(&pdev->dev,
			"Invalid number of disabled channels specified (%d)\n",
			num_disabled);
		return -EINVAL;
	}

	of_property_read_u32_array(np, "disabled-channels",
				   pdata->disabled_channels,
				   num_disabled);
	pdata->disabled_channels[num_disabled] = -1;

3536 3537 3538 3539 3540
	pdev->dev.platform_data = pdata;

	return 0;
}

3541 3542
static int __init d40_probe(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3543
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3544
	struct device_node *np = pdev->dev.of_node;
3545
	int ret = -ENOENT;
3546
	struct d40_base *base = NULL;
3547 3548 3549 3550
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	if (!plat_data) {
		if (np) {
			if(d40_of_probe(pdev, np)) {
				ret = -ENOMEM;
				goto failure;
			}
		} else {
			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
			goto failure;
		}
	}
3562

3563
	base = d40_hw_detect_init(pdev);
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3578
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3579 3580 3581 3582 3583 3584 3585 3586
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3587
		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3588 3589 3590 3591 3592 3593 3594
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
3595 3596
			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
			 __func__, val, &res->start);
3597 3598 3599 3600 3601 3602
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3603
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3604 3605
		goto failure;
	}
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
			goto failure;
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
			goto failure;
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3624

3625 3626 3627 3628 3629 3630
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
			goto failure;
		}
3631 3632 3633 3634 3635 3636 3637 3638
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3639
		d40_err(&pdev->dev, "No IRQ defined\n");
3640 3641 3642
		goto failure;
	}

3643 3644 3645 3646 3647
	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3648
			ret = PTR_ERR(base->lcpa_regulator);
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
			base->lcpa_regulator = NULL;
			goto failure;
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
			goto failure;
		}
	}

3663 3664 3665 3666 3667 3668 3669 3670 3671
	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);

	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_mark_last_busy(base->dev);
	pm_runtime_set_active(base->dev);
	pm_runtime_enable(base->dev);

3672 3673
	ret = d40_dmaengine_init(base, num_reserved_chans);
	if (ret)
3674 3675
		goto failure;

3676
	base->dev->dma_parms = &base->dma_parms;
3677 3678
	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
	if (ret) {
3679 3680 3681 3682
		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
		goto failure;
	}

3683 3684
	d40_hw_init(base);

3685
	if (np) {
3686 3687
		ret = of_dma_controller_register(np, d40_xlate, NULL);
		if (ret)
3688 3689 3690 3691
			dev_err(&pdev->dev,
				"could not register of_dma_controller\n");
	}

3692 3693 3694 3695 3696
	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
3697 3698
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
3699 3700
		if (base->virtbase)
			iounmap(base->virtbase);
3701

3702 3703 3704 3705 3706
		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
			iounmap(base->lcla_pool.base);
			base->lcla_pool.base = NULL;
		}

3707 3708 3709 3710 3711
		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

3712 3713 3714
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
3715 3716 3717

		kfree(base->lcla_pool.base_unaligned);

3718 3719 3720 3721 3722 3723 3724
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
3725
			clk_disable_unprepare(base->clk);
3726 3727 3728
			clk_put(base->clk);
		}

3729 3730 3731 3732 3733
		if (base->lcpa_regulator) {
			regulator_disable(base->lcpa_regulator);
			regulator_put(base->lcpa_regulator);
		}

3734 3735 3736 3737 3738 3739 3740
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

3741
	d40_err(&pdev->dev, "probe failed\n");
3742 3743 3744
	return ret;
}

3745 3746 3747 3748 3749
static const struct of_device_id d40_match[] = {
        { .compatible = "stericsson,dma40", },
        {}
};

3750 3751 3752 3753
static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
3754
		.pm = &dma40_pm_ops,
3755
		.of_match_table = d40_match,
3756 3757 3758
	},
};

R
Rabin Vincent 已提交
3759
static int __init stedma40_init(void)
3760 3761 3762
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3763
subsys_initcall(stedma40_init);