ste_dma40.c 96.2 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17
#include <linux/log2.h>
18 19
#include <linux/pm.h>
#include <linux/pm_runtime.h>
20
#include <linux/err.h>
21
#include <linux/of.h>
22
#include <linux/of_dma.h>
23
#include <linux/amba/bus.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/platform_data/dma-ste-dma40.h>
26

27
#include "dmaengine.h"
28 29 30 31 32 33 34 35 36 37 38 39 40
#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

41 42 43
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

44 45
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
46 47 48 49 50

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

51 52 53
/* Max number of logical channels per physical channel */
#define D40_MAX_LOG_CHAN_PER_PHY 32

54 55 56 57
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
58 59
#define D40_ALLOC_FREE		BIT(31)
#define D40_ALLOC_PHY		BIT(30)
60 61
#define D40_ALLOC_LOG_FREE	0

62 63
#define D40_MEMCPY_MAX_CHANS	8

64
/* Reserved event lines for memcpy only. */
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define DB8500_DMA_MEMCPY_EV_0	51
#define DB8500_DMA_MEMCPY_EV_1	56
#define DB8500_DMA_MEMCPY_EV_2	57
#define DB8500_DMA_MEMCPY_EV_3	58
#define DB8500_DMA_MEMCPY_EV_4	59
#define DB8500_DMA_MEMCPY_EV_5	60

static int dma40_memcpy_channels[] = {
	DB8500_DMA_MEMCPY_EV_0,
	DB8500_DMA_MEMCPY_EV_1,
	DB8500_DMA_MEMCPY_EV_2,
	DB8500_DMA_MEMCPY_EV_3,
	DB8500_DMA_MEMCPY_EV_4,
	DB8500_DMA_MEMCPY_EV_5,
};
80

81
/* Default configuration for physcial memcpy */
82
static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83
	.mode = STEDMA40_MODE_PHYSICAL,
84
	.dir = DMA_MEM_TO_MEM,
85

86
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 88 89
	.src_info.psize = STEDMA40_PSIZE_PHY_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

90
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 92 93 94 95
	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

/* Default configuration for logical memcpy */
96
static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97
	.mode = STEDMA40_MODE_LOGICAL,
98
	.dir = DMA_MEM_TO_MEM,
99

100
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 102 103
	.src_info.psize = STEDMA40_PSIZE_LOG_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

104
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 106 107 108
	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * enum d40_events - The different Event Enables for the event lines.
 *
 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 * @D40_ROUND_EVENTLINE: Status check for event line.
 */

enum d40_events {
	D40_DEACTIVATE_EVENTLINE	= 0,
	D40_ACTIVATE_EVENTLINE		= 1,
	D40_SUSPEND_REQ_EVENTLINE	= 2,
	D40_ROUND_EVENTLINE		= 3
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * since 9540 and 8540 has the same HW revision
 * use v4a for 9540 or ealier
 * use v4b for 8540 or later
 * HW revision:
 * DB8500ed has revision 0
 * DB8500v1 has revision 2
 * DB8500v2 has revision 3
 * AP9540v1 has revision 4
 * DB8540v1 has revision 4
 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 */
static u32 d40_backup_regs_v4a[] = {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)

static u32 d40_backup_regs_v4b[] = {
	D40_DREG_CPSEG1,
	D40_DREG_CPSEG2,
	D40_DREG_CPSEG3,
	D40_DREG_CPSEG4,
	D40_DREG_CPSEG5,
	D40_DREG_CPCEG1,
	D40_DREG_CPCEG2,
	D40_DREG_CPCEG3,
	D40_DREG_CPCEG4,
	D40_DREG_CPCEG5,
	D40_DREG_CRSEG1,
	D40_DREG_CRSEG2,
	D40_DREG_CRSEG3,
	D40_DREG_CRSEG4,
	D40_DREG_CRSEG5,
	D40_DREG_CRCEG1,
	D40_DREG_CRCEG2,
	D40_DREG_CRCEG3,
	D40_DREG_CRCEG4,
	D40_DREG_CRCEG5,
};

#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 214 215 216 217 218 219 220 221 222 223 224

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

225 226 227
#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};


static struct d40_interrupt_lookup il_v4a[] = {
	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
};

static struct d40_interrupt_lookup il_v4b[] = {
	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
};

324 325 326 327 328 329
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
330
 * @dma_addr: DMA address, if mapped
331 332 333 334 335 336
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
337
	int	 size;
338
	dma_addr_t	dma_addr;
339
	/* Space for dst and src, plus an extra for padding */
340
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 342 343 344 345 346 347 348 349 350
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
351
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
352
 * @lli_current: Number of transferred llis.
353
 * @lcla_alloc: Number of LCLA entries allocated.
354 355 356 357
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
358
 * @cyclic: true if this is a cyclic job
359 360 361 362 363 364 365 366 367 368
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
369
	int				 lli_len;
370 371
	int				 lli_current;
	int				 lcla_alloc;
372 373 374 375 376

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
377
	bool				 cyclic;
378 379 380 381 382
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
383 384 385 386 387
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
388
 * @lock: Lock to protect the content in this struct.
389
 * @alloc_map: big map over which LCLA entry is own by which job.
390 391 392
 */
struct d40_lcla_pool {
	void		*base;
393
	dma_addr_t	dma_addr;
394 395
	void		*base_unaligned;
	int		 pages;
396
	spinlock_t	 lock;
397
	struct d40_desc	**alloc_map;
398 399 400 401 402 403 404
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
405
 * @reserved: True if used by secure world or otherwise.
406 407 408 409 410
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411
 * event line number.
412
 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 414 415
 */
struct d40_phy_res {
	spinlock_t lock;
416
	bool	   reserved;
417 418 419
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
420
	bool	   use_soft_lli;
421 422 423 424 425 426 427 428 429 430 431 432
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
433 434
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
435 436 437 438
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
439
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440
 * @active: Active descriptor.
441
 * @done: Completed jobs
442
 * @queue: Queued jobs.
443
 * @prepare_queue: Prepared jobs.
444
 * @dma_cfg: The client configuration of this dma channel.
445
 * @configured: whether the dma_cfg configuration is valid
446 447 448 449 450
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
451 452
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
453 454 455 456 457 458 459 460 461 462 463 464
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
465
	struct list_head		 pending_queue;
466
	struct list_head		 active;
467
	struct list_head		 done;
468
	struct list_head		 queue;
469
	struct list_head		 prepare_queue;
470
	struct stedma40_chan_cfg	 dma_cfg;
471
	bool				 configured;
472 473 474 475 476 477
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
478 479
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
480
	enum dma_transfer_direction	runtime_direction;
481 482
};

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 * controller
 *
 * @backup: the pointer to the registers address array for backup
 * @backup_size: the size of the registers address array for backup
 * @realtime_en: the realtime enable register
 * @realtime_clear: the realtime clear register
 * @high_prio_en: the high priority enable register
 * @high_prio_clear: the high priority clear register
 * @interrupt_en: the interrupt enable register
 * @interrupt_clear: the interrupt clear register
 * @il: the pointer to struct d40_interrupt_lookup
 * @il_size: the size of d40_interrupt_lookup array
 * @init_reg: the pointer to the struct d40_reg_val
 * @init_reg_size: the size of d40_reg_val array
 */
struct d40_gen_dmac {
	u32				*backup;
	u32				 backup_size;
	u32				 realtime_en;
	u32				 realtime_clear;
	u32				 high_prio_en;
	u32				 high_prio_clear;
	u32				 interrupt_en;
	u32				 interrupt_clear;
	struct d40_interrupt_lookup	*il;
	u32				 il_size;
	struct d40_reg_val		*init_reg;
	u32				 init_reg_size;
};

515 516 517 518 519 520 521 522
/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
523
 * @rev: silicon revision detected.
524 525 526 527
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
528 529
 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 * transfers).
530 531 532 533 534 535 536 537
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538
 * @phy_chans: Room for all possible physical channels in system.
539 540 541 542 543 544 545
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
546
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 548 549 550 551
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
552
 * @desc_slab: cache for descriptors.
553 554
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
555 556
 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 * later
557 558 559
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 * @initialized: true if the dma has been initialized
560 561
 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 * DMA controller
562 563 564 565 566 567
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
568
	u8				  rev:4;
569 570 571 572
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
573
	int				  num_memcpy_chans;
574 575
	int				  num_phy_chans;
	int				  num_log_chans;
576
	struct device_dma_parameters	  dma_parms;
577 578 579 580 581 582 583 584
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
585
	struct regulator		 *lcpa_regulator;
586 587 588 589 590 591
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
592
	struct kmem_cache		 *desc_slab;
593
	u32				  reg_val_backup[BACKUP_REGS_SZ];
594
	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
595 596 597
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
	bool				  initialized;
598
	struct d40_gen_dmac		  gen_dmac;
599 600
};

601 602 603 604 605
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

606 607 608 609 610 611 612 613 614 615
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

616 617 618 619 620 621
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

622 623 624 625 626 627
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

628
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
629
			      int lli_len)
630
{
631
	bool is_log = chan_is_logical(d40c);
632 633 634 635 636 637 638 639 640 641 642 643 644
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
645
		d40d->lli_pool.size = lli_len * 2 * align;
646 647 648 649 650 651 652 653 654

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
655
		d40d->lli_log.src = PTR_ALIGN(base, align);
656
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
657 658

		d40d->lli_pool.dma_addr = 0;
659
	} else {
R
Rabin Vincent 已提交
660
		d40d->lli_phy.src = PTR_ALIGN(base, align);
661
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
662 663 664 665 666 667 668 669 670 671 672 673 674

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
675 676 677 678 679
	}

	return 0;
}

680
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
681
{
682 683 684 685
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

686 687 688 689 690 691 692 693 694
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
709 710 711 712
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (!d40c->base->lcla_pool.alloc_map[idx]) {
			d40c->base->lcla_pool.alloc_map[idx] = d40d;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

731
	if (chan_is_physical(d40c))
732 733 734 735 736
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
737 738 739 740
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
			d40c->base->lcla_pool.alloc_map[idx] = NULL;
741 742 743 744 745 746 747 748 749 750 751 752 753 754
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

755 756 757 758 759 760 761
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
762
	struct d40_desc *desc = NULL;
763 764

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
765 766 767
		struct d40_desc *d;
		struct d40_desc *_d;

768
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
769 770
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
771 772
				desc = d;
				memset(desc, 0, sizeof(*desc));
773
				break;
774
			}
775
		}
776
	}
R
Rabin Vincent 已提交
777 778 779 780 781 782 783 784

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
785 786 787 788
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
789

790
	d40_pool_lli_free(d40c, d40d);
791
	d40_lcla_free_all(d40c, d40d);
792
	kmem_cache_free(d40c->base->desc_slab, d40d);
793 794 795 796 797 798 799
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

817 818 819 820 821
static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->done);
}

822
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
823
{
824 825 826 827
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
828
	bool cyclic = desc->cyclic;
829
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
830
	int first_lcla = 0;
831
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
832
	bool linkback;
833

R
Rabin Vincent 已提交
834 835 836 837 838 839 840 841 842 843 844
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
845 846 847 848 849 850 851
		/*
		 * If the channel is expected to use only soft_lli don't
		 * allocate a lcla. This is to avoid a HW issue that exists
		 * in some controller during a peripheral to memory transfer
		 * that uses linked lists.
		 */
		if (!(chan->phy_chan->use_soft_lli &&
852
			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
853 854
			curr_lcla = d40_lcla_alloc_one(chan, desc);

R
Rabin Vincent 已提交
855 856 857 858 859 860 861 862 863 864 865
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
866

R
Rabin Vincent 已提交
867 868
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
869

R
Rabin Vincent 已提交
870 871 872 873 874 875 876
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
877 878 879 880

	if (curr_lcla < 0)
		goto out;

881 882 883 884
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
885
		unsigned int flags = 0;
886 887 888 889 890
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
891 892 893 894
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
895

R
Rabin Vincent 已提交
896 897 898 899 900 901 902 903 904 905 906 907
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
908 909 910
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
911
				       next_lcla, flags);
912

913 914 915 916 917 918 919 920 921 922
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
923 924
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
925
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
926 927 928 929 930
			lli_current++;
			break;
		}
	}

931
out:
932 933
	desc->lli_current = lli_current;
}
934

935 936
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
937
	if (chan_is_physical(d40c)) {
938
		d40_phy_lli_load(d40c, d40d);
939
		d40d->lli_current = d40d->lli_len;
940 941
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
942 943
}

944 945 946 947 948 949 950 951 952 953 954 955 956
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

957
/* remove desc from current queue and add it to the pending_queue */
958 959
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
960 961
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
962 963 964 965 966 967 968 969 970 971 972 973 974 975
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->pending_queue))
		return NULL;

	d = list_first_entry(&d40c->pending_queue,
			     struct d40_desc,
			     node);
	return d;
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

991 992 993 994 995 996 997 998
static struct d40_desc *d40_first_done(struct d40_chan *d40c)
{
	if (list_empty(&d40c->done))
		return NULL;

	return list_first_entry(&d40c->done, struct d40_desc, node);
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
1014 1015 1016
 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 *
 * Calculate the total number of dma elements required to send the entire sg list.
1017 1018 1019 1020 1021 1022
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
1023
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1024 1025

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1026
		seg_max -= max_w;
1027

1028
	if (!IS_ALIGNED(size, max_w))
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
1103 1104 1105 1106 1107
	if (base->gen_dmac.backup)
		dma40_backup(base->virtbase, base->reg_val_backup_v4,
			     base->gen_dmac.backup,
			base->gen_dmac.backup_size,
			save);
1108 1109 1110 1111 1112 1113
}
#else
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
}
#endif
1114

1115 1116
static int __d40_execute_command_phy(struct d40_chan *d40c,
				     enum d40_command command)
1117
{
1118 1119
	u32 status;
	int i;
1120 1121 1122
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
1123
	u32 wmask;
1124

1125 1126 1127 1128 1129 1130
	if (command == D40_DMA_STOP) {
		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
		if (ret)
			return ret;
	}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

1147 1148 1149
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
1171 1172 1173
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
1188
	struct d40_desc *_d;
1189

1190 1191 1192 1193 1194 1195
	/* Release completed descriptors */
	while ((d40d = d40_first_done(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1208 1209 1210 1211 1212
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
1213

1214 1215 1216 1217 1218 1219 1220
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

1221 1222 1223 1224 1225 1226 1227
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
1228

1229 1230 1231
	d40c->pending_tx = 0;
}

1232 1233 1234
static void __d40_config_set_event(struct d40_chan *d40c,
				   enum d40_events event_type, u32 event,
				   int reg)
1235
{
1236
	void __iomem *addr = chan_base(d40c) + reg;
1237
	int tries;
1238 1239 1240 1241 1242
	u32 status;

	switch (event_type) {

	case D40_DEACTIVATE_EVENTLINE:
1243 1244 1245

		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
1246 1247 1248 1249 1250 1251 1252 1253 1254
		break;

	case D40_SUSPEND_REQ_EVENTLINE:
		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
			  D40_EVENTLINE_POS(event);

		if (status == D40_DEACTIVATE_EVENTLINE ||
		    status == D40_SUSPEND_REQ_EVENTLINE)
			break;
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {

			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
				  D40_EVENTLINE_POS(event);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DEACTIVATE_EVENTLINE)
				break;
		}

		if (tries == D40_SUSPEND_MAX_IT) {
			chan_err(d40c,
				"unable to stop the event_line chl %d (log: %d)"
				"status %x\n", d40c->phy_chan->num,
				 d40c->log_num, status);
		}
		break;

	case D40_ACTIVATE_EVENTLINE:
1284 1285 1286 1287 1288
	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
1289 1290 1291 1292 1293
		tries = 100;
		while (--tries) {
			writel((D40_ACTIVATE_EVENTLINE <<
				D40_EVENTLINE_POS(event)) |
				~D40_EVENTLINE_MASK(event), addr);
1294

1295 1296 1297
			if (readl(addr) & D40_EVENTLINE_MASK(event))
				break;
		}
1298

1299 1300 1301 1302 1303
		if (tries != 99)
			dev_dbg(chan2dev(d40c),
				"[%s] workaround enable S%cLNK (%d tries)\n",
				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
				100 - tries);
1304

1305 1306
		WARN_ON(!tries);
		break;
1307

1308 1309 1310
	case D40_ROUND_EVENTLINE:
		BUG();
		break;
1311

1312 1313
	}
}
1314

1315 1316 1317
static void d40_config_set_event(struct d40_chan *d40c,
				 enum d40_events event_type)
{
1318 1319
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);

1320
	/* Enable event line connected to device (or memcpy) */
1321 1322
	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1323
		__d40_config_set_event(d40c, event_type, event,
1324
				       D40_CHAN_REG_SSLNK);
1325

1326
	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1327
		__d40_config_set_event(d40c, event_type, event,
1328
				       D40_CHAN_REG_SDLNK);
1329 1330
}

1331
static u32 d40_chan_has_events(struct d40_chan *d40c)
1332
{
1333
	void __iomem *chanbase = chan_base(d40c);
1334
	u32 val;
1335

1336 1337
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1338

1339
	return val;
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
	unsigned long flags;
	int ret = 0;
	u32 active_status;
	void __iomem *active_reg;

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;


	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	switch (command) {
	case D40_DMA_STOP:
	case D40_DMA_SUSPEND_REQ:

		active_status = (readl(active_reg) &
				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				 D40_CHAN_POS(d40c->phy_chan->num);

		if (active_status == D40_DMA_RUN)
			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
		else
			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);

		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
			ret = __d40_execute_command_phy(d40c, command);

		break;

	case D40_DMA_RUN:

		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
		ret = __d40_execute_command_phy(d40c, command);
		break;

	case D40_DMA_SUSPENDED:
		BUG();
		break;
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
	return ret;
}

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
	if (chan_is_logical(d40c))
		return __d40_execute_command_log(d40c, command);
	else
		return __d40_execute_command_phy(d40c, command);
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1419
	if (chan_is_physical(d40c))
1420 1421 1422 1423 1424
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1425
static void d40_config_write(struct d40_chan *d40c)
1426 1427 1428 1429 1430 1431 1432
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1433
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1434 1435 1436 1437
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1438
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1439 1440 1441

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1442
	if (chan_is_logical(d40c)) {
1443 1444 1445 1446
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1447
		/* Set default config for CFG reg */
1448 1449
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1450

1451
		/* Set LIDX for lcla */
1452 1453
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1454 1455 1456 1457

		/* Clear LNK which will be used by d40_chan_has_events() */
		writel(0, chanbase + D40_CHAN_REG_SSLNK);
		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1458 1459 1460
	}
}

1461 1462 1463 1464
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1465
	if (chan_is_logical(d40c))
1466 1467
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1468 1469 1470 1471 1472 1473
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1474
	return num_elt * d40c->dma_cfg.dst_info.data_width;
1475 1476 1477 1478 1479 1480
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1481
	if (chan_is_logical(d40c))
1482 1483
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1484 1485 1486
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1487 1488 1489
	return is_link;
}

1490
static int d40_pause(struct d40_chan *d40c)
1491 1492 1493 1494
{
	int res = 0;
	unsigned long flags;

1495 1496 1497
	if (!d40c->busy)
		return 0;

1498
	spin_lock_irqsave(&d40c->lock, flags);
1499
	pm_runtime_get_sync(d40c->base->dev);
1500 1501

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1502

1503 1504
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1505 1506 1507 1508
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1509
static int d40_resume(struct d40_chan *d40c)
1510 1511 1512 1513
{
	int res = 0;
	unsigned long flags;

1514 1515 1516
	if (!d40c->busy)
		return 0;

1517
	spin_lock_irqsave(&d40c->lock, flags);
1518
	pm_runtime_get_sync(d40c->base->dev);
1519 1520

	/* If bytes left to transfer or linked tx resume job */
1521
	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1522 1523
		res = d40_channel_execute_command(d40c, D40_DMA_RUN);

1524 1525
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1526 1527 1528 1529
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1530 1531 1532 1533 1534 1535 1536
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;
1537
	dma_cookie_t cookie;
1538 1539

	spin_lock_irqsave(&d40c->lock, flags);
1540
	cookie = dma_cookie_assign(tx);
1541 1542 1543
	d40_desc_queue(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);

1544
	return cookie;
1545 1546 1547 1548
}

static int d40_start(struct d40_chan *d40c)
{
1549
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1561
		if (!d40c->busy) {
1562
			d40c->busy = true;
1563 1564
			pm_runtime_get_sync(d40c->base->dev);
		}
1565 1566 1567 1568 1569 1570 1571

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1572 1573
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1574

1575 1576
		/* Start dma job */
		err = d40_start(d40c);
1577

1578 1579
		if (err)
			return NULL;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1609

R
Rabin Vincent 已提交
1610 1611 1612 1613 1614
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1615

R
Rabin Vincent 已提交
1616 1617 1618 1619 1620 1621 1622
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

1623
		if (d40_queue_start(d40c) == NULL) {
R
Rabin Vincent 已提交
1624
			d40c->busy = false;
1625 1626 1627 1628

			pm_runtime_mark_last_busy(d40c->base->dev);
			pm_runtime_put_autosuspend(d40c->base->dev);
		}
1629

1630 1631 1632
		d40_desc_remove(d40d);
		d40_desc_done(d40c, d40d);
	}
1633

1634 1635 1636 1637 1638 1639 1640 1641
	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1642
	struct d40_desc *d40d;
1643
	unsigned long flags;
1644
	bool callback_active;
1645 1646 1647 1648 1649
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

1650 1651 1652 1653 1654 1655 1656 1657
	/* Get first entry from the done list */
	d40d = d40_first_done(d40c);
	if (d40d == NULL) {
		/* Check if we have reached here for cyclic job */
		d40d = d40_first_active_get(d40c);
		if (d40d == NULL || !d40d->cyclic)
			goto err;
	}
1658

R
Rabin Vincent 已提交
1659
	if (!d40d->cyclic)
1660
		dma_cookie_complete(&d40d->txd);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1672
	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1673 1674 1675
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1676 1677
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1678
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1679
			d40_desc_free(d40c, d40d);
1680 1681 1682 1683 1684
		} else if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
			d40_lcla_free_all(d40c, d40d);
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1695
	if (callback_active && callback)
1696 1697 1698 1699
		callback(callback_param);

	return;

1700 1701
err:
	/* Rescue manouver if receiving double interrupts */
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	int i;
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;
1716 1717 1718
	u32 regs[base->gen_dmac.il_size];
	struct d40_interrupt_lookup *il = base->gen_dmac.il;
	u32 il_size = base->gen_dmac.il_size;
1719 1720 1721 1722

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
1723
	for (i = 0; i < il_size; i++)
1724 1725 1726 1727 1728
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
1729
				     BITS_PER_LONG * il_size, chan + 1);
1730 1731

		/* No more set bits found? */
1732
		if (chan == BITS_PER_LONG * il_size)
1733 1734 1735 1736 1737 1738 1739 1740 1741
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

		if (!d40c) {
			/*
			 * No error because this can happen if something else
			 * in the system is using the channel.
			 */
			continue;
		}

		/* ACK interrupt */
1752
		writel(BIT(idx), base->virtbase + il[row].clr);
1753

1754 1755 1756 1757 1758
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1759 1760
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
1774
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1775

1776
	if (!conf->dir) {
1777
		chan_err(d40c, "Invalid direction.\n");
1778 1779 1780
		res = -EINVAL;
	}

1781 1782 1783 1784
	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
	    (conf->dev_type < 0)) {
		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1785 1786 1787
		res = -EINVAL;
	}

1788
	if (conf->dir == DMA_DEV_TO_DEV) {
1789 1790 1791 1792
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1793
		chan_err(d40c, "periph to periph not supported\n");
1794 1795 1796
		res = -EINVAL;
	}

1797
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1798
	    conf->src_info.data_width !=
1799
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1800
	    conf->dst_info.data_width) {
1801 1802 1803 1804 1805
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1806
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1807 1808 1809
		res = -EINVAL;
	}

1810 1811 1812
	return res;
}

1813 1814 1815
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
			       bool is_src, int log_event_line, bool is_log,
			       bool *first_user)
1816 1817 1818
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1819 1820 1821 1822

	*first_user = ((phy->allocated_src | phy->allocated_dst)
			== D40_ALLOC_FREE);

1823
	if (!is_log) {
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

1842 1843
		if (!(phy->allocated_src & BIT(log_event_line))) {
			phy->allocated_src |= BIT(log_event_line);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

1854 1855
		if (!(phy->allocated_dst & BIT(log_event_line))) {
			phy->allocated_dst |= BIT(log_event_line);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
1885
		phy->allocated_src &= ~BIT(log_event_line);
1886 1887 1888
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
1889
		phy->allocated_dst &= ~BIT(log_event_line);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

1903
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1904
{
1905
	int dev_type = d40c->dma_cfg.dev_type;
1906 1907 1908 1909 1910 1911
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
1912
	int num_phy_chans;
1913
	bool is_src;
1914
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1915 1916

	phys = d40c->base->phy_res;
1917
	num_phy_chans = d40c->base->num_phy_chans;
1918

1919
	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1920 1921
		log_num = 2 * dev_type;
		is_src = true;
1922 1923
	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		/* dst event lines are used for logical memcpy */
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
1934
		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1935
			/* Find physical half channel */
1936 1937
			if (d40c->dma_cfg.use_fixed_channel) {
				i = d40c->dma_cfg.phy_channel;
1938
				if (d40_alloc_mask_set(&phys[i], is_src,
1939 1940
						       0, is_log,
						       first_phy_user))
1941
					goto found_phy;
1942 1943 1944 1945 1946 1947 1948
			} else {
				for (i = 0; i < num_phy_chans; i++) {
					if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log,
						       first_phy_user))
						goto found_phy;
				}
1949 1950 1951 1952 1953
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1954 1955 1956
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
1957 1958
							       is_log,
							       first_phy_user))
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

		if (d40c->dma_cfg.use_fixed_channel) {
			i = d40c->dma_cfg.phy_channel;

			if ((i != phy_num) && (i != phy_num + 1)) {
				dev_err(chan2dev(d40c),
					"invalid fixed phy channel %d\n", i);
				return -EINVAL;
			}

			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
					       is_log, first_phy_user))
				goto found_log;

			dev_err(chan2dev(d40c),
				"could not allocate fixed phy channel %d\n", i);
			return -EINVAL;
		}

1993 1994 1995 1996 1997 1998 1999 2000
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
2001 2002
						       event_line, is_log,
						       first_phy_user))
2003 2004 2005 2006 2007
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
2008 2009
						       event_line, is_log,
						       first_phy_user))
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2035
		d40c->dma_cfg = dma40_memcpy_conf_log;
2036
		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2037

2038 2039 2040
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

2041 2042
	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
2043
		d40c->dma_cfg = dma40_memcpy_conf_phy;
2044 2045 2046 2047 2048 2049 2050 2051

		/* Generate interrrupt at end of transfer or relink. */
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);

		/* Generate interrupt on error. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);

2052
	} else {
2053
		chan_err(d40c, "No memcpy\n");
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		return -EINVAL;
	}

	return 0;
}

static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
2064
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2065 2066 2067 2068 2069 2070 2071
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
2072
		chan_err(d40c, "phy == null\n");
2073 2074 2075 2076 2077
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
2078
		chan_err(d40c, "channel already free\n");
2079 2080 2081
		return -EINVAL;
	}

2082 2083
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2084
		is_src = false;
2085
	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2086
		is_src = true;
2087
	else {
2088
		chan_err(d40c, "Unknown direction\n");
2089 2090 2091
		return -EINVAL;
	}

2092
	pm_runtime_get_sync(d40c->base->dev);
2093
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2094
	if (res) {
2095
		chan_err(d40c, "stop failed\n");
2096
		goto out;
2097 2098
	}

2099
	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2100

2101
	if (chan_is_logical(d40c))
2102
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2103 2104
	else
		d40c->base->lookup_phy_chans[phy->num] = NULL;
2105 2106 2107 2108 2109 2110 2111

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
2112
	d40c->phy_chan = NULL;
2113
	d40c->configured = false;
2114
out:
2115

2116 2117 2118
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
2119 2120
}

2121 2122
static bool d40_is_paused(struct d40_chan *d40c)
{
2123
	void __iomem *chanbase = chan_base(d40c);
2124 2125 2126 2127
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
2128
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2129 2130 2131

	spin_lock_irqsave(&d40c->lock, flags);

2132
	if (chan_is_physical(d40c)) {
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

2147 2148
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2149
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2150
	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2151
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2152
	} else {
2153
		chan_err(d40c, "Unknown direction\n");
2154 2155
		goto _exit;
	}
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

2182 2183 2184
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2185 2186
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2187 2188 2189 2190
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2191
	int ret;
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
2208 2209 2210 2211 2212
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2213 2214
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2215 2216 2217 2218
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
2219
	unsigned long flags = 0;
2220 2221
	int ret;

R
Rabin Vincent 已提交
2222 2223 2224
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

2225 2226 2227 2228
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
2229
				src_info, dst_info, flags);
2230 2231 2232 2233 2234

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
2235
				dst_info, src_info, flags);
2236 2237 2238 2239 2240 2241 2242

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}

2243 2244 2245 2246 2247 2248
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct d40_desc *desc;
2249
	int ret;
2250 2251 2252 2253 2254 2255 2256 2257 2258

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
2259 2260
		goto err;
	}
2261

2262 2263 2264 2265
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
		goto err;
2266 2267 2268 2269 2270 2271 2272 2273 2274
	}

	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2275 2276 2277 2278

err:
	d40_desc_free(chan, desc);
	return NULL;
2279 2280
}

2281 2282 2283
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2284
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2285 2286
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
R
Rabin Vincent 已提交
2287 2288
	dma_addr_t src_dev_addr = 0;
	dma_addr_t dst_dev_addr = 0;
2289
	struct d40_desc *desc;
2290
	unsigned long flags;
2291
	int ret;
2292

2293 2294 2295
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2296 2297
	}

2298
	spin_lock_irqsave(&chan->lock, flags);
2299

2300 2301
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2302 2303
		goto err;

R
Rabin Vincent 已提交
2304 2305 2306
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

2307 2308 2309 2310
	if (direction == DMA_DEV_TO_MEM)
		src_dev_addr = chan->runtime_addr;
	else if (direction == DMA_MEM_TO_DEV)
		dst_dev_addr = chan->runtime_addr;
2311 2312 2313

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2314
				      sg_len, src_dev_addr, dst_dev_addr);
2315 2316
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2317
				      sg_len, src_dev_addr, dst_dev_addr);
2318 2319 2320 2321 2322

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
		goto err;
2323 2324
	}

2325 2326 2327 2328 2329 2330
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2331 2332 2333
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2334 2335

err:
2336 2337 2338
	if (desc)
		d40_desc_free(chan, desc);
	spin_unlock_irqrestore(&chan->lock, flags);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2356 2357 2358
	if (!err)
		d40c->configured = true;

2359 2360 2361 2362
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2363 2364 2365 2366
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
2367
	u32 rtreg;
2368 2369
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
2370
	u32 bit = BIT(event);
2371
	u32 prioreg;
2372
	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2373

2374
	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	/*
	 * Due to a hardware bug, in some cases a logical channel triggered by
	 * a high priority destination event line can generate extra packet
	 * transactions.
	 *
	 * The workaround is to not set the high priority level for the
	 * destination event lines that trigger logical channels.
	 */
	if (!src && chan_is_logical(d40c))
		highprio = false;

2386
	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

2401 2402
	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2403
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2404

2405 2406
	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2407
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2408 2409
}

2410 2411 2412 2413
#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2414
#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
				  struct of_dma *ofdma)
{
	struct stedma40_chan_cfg cfg;
	dma_cap_mask_t cap;
	u32 flags;

	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));

	dma_cap_zero(cap);
	dma_cap_set(DMA_SLAVE, cap);

	cfg.dev_type = dma_spec->args[0];
	flags = dma_spec->args[2];

	switch (D40_DT_FLAGS_MODE(flags)) {
	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
	}

	switch (D40_DT_FLAGS_DIR(flags)) {
	case 0:
2438
		cfg.dir = DMA_MEM_TO_DEV;
2439 2440 2441
		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	case 1:
2442
		cfg.dir = DMA_DEV_TO_MEM;
2443 2444 2445 2446 2447 2448 2449 2450 2451
		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	}

	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
		cfg.phy_channel = dma_spec->args[1];
		cfg.use_fixed_channel = true;
	}

2452 2453 2454
	if (D40_DT_FLAGS_HIGH_PRIO(flags))
		cfg.high_priority = true;

2455 2456 2457
	return dma_request_channel(cap, stedma40_filter, &cfg);
}

2458 2459 2460 2461 2462 2463 2464
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2465
	bool is_free_phy;
2466 2467
	spin_lock_irqsave(&d40c->lock, flags);

2468
	dma_cookie_init(chan);
2469

2470 2471
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2472
		err = d40_config_memcpy(d40c);
2473
		if (err) {
2474
			chan_err(d40c, "Failed to configure memcpy channel\n");
2475 2476
			goto fail;
		}
2477 2478
	}

2479
	err = d40_allocate_channel(d40c, &is_free_phy);
2480
	if (err) {
2481
		chan_err(d40c, "Failed to allocate channel\n");
2482
		d40c->configured = false;
2483
		goto fail;
2484 2485
	}

2486
	pm_runtime_get_sync(d40c->base->dev);
2487

2488 2489
	d40_set_prio_realtime(d40c);

2490
	if (chan_is_logical(d40c)) {
2491
		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2492
			d40c->lcpa = d40c->base->lcpa_base +
2493
				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2494 2495
		else
			d40c->lcpa = d40c->base->lcpa_base +
2496
				d40c->dma_cfg.dev_type *
2497
				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2498 2499 2500 2501

		/* Unmask the Global Interrupt Mask. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2502 2503
	}

2504 2505 2506 2507 2508 2509
	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
		 chan_is_logical(d40c) ? "logical" : "physical",
		 d40c->phy_chan->num,
		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");


2510 2511 2512 2513 2514
	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2515 2516
	if (is_free_phy)
		d40_config_write(d40c);
2517
fail:
2518 2519
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2520
	spin_unlock_irqrestore(&d40c->lock, flags);
2521
	return err;
2522 2523 2524 2525 2526 2527 2528 2529 2530
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2531
	if (d40c->phy_chan == NULL) {
2532
		chan_err(d40c, "Cannot free unallocated channel\n");
2533 2534 2535
		return;
	}

2536 2537 2538 2539 2540
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2541
		chan_err(d40c, "Failed to free channel\n");
2542 2543 2544 2545 2546 2547 2548
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2549
						       unsigned long dma_flags)
2550
{
2551 2552
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2553

2554 2555
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2556

2557 2558
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2559

2560 2561
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2562

2563
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2564 2565
}

2566
static struct dma_async_tx_descriptor *
2567 2568 2569 2570
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2571 2572 2573 2574
{
	if (dst_nents != src_nents)
		return NULL;

2575
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2576 2577
}

2578 2579 2580 2581
static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		  unsigned int sg_len, enum dma_transfer_direction direction,
		  unsigned long dma_flags, void *context)
2582
{
2583
	if (!is_slave_direction(direction))
2584 2585
		return NULL;

2586
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2587 2588
}

R
Rabin Vincent 已提交
2589 2590 2591
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2592 2593
		     enum dma_transfer_direction direction, unsigned long flags,
		     void *context)
R
Rabin Vincent 已提交
2594 2595 2596 2597 2598 2599
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2600
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2601 2602 2603
	if (!sg)
		return NULL;

R
Rabin Vincent 已提交
2604 2605 2606 2607 2608 2609 2610
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
2611
	sg_dma_len(&sg[periods]) = 0;
R
Rabin Vincent 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2623 2624 2625 2626 2627
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2628
	enum dma_status ret;
2629

2630
	if (d40c->phy_chan == NULL) {
2631
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2632 2633 2634
		return -EINVAL;
	}

2635
	ret = dma_cookie_status(chan, cookie, txstate);
2636
	if (ret != DMA_COMPLETE)
2637
		dma_set_residue(txstate, stedma40_residue(chan));
2638

2639 2640
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
2641 2642 2643 2644 2645 2646 2647 2648 2649

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2650
	if (d40c->phy_chan == NULL) {
2651
		chan_err(d40c, "Channel is not allocated!\n");
2652 2653 2654
		return;
	}

2655 2656
	spin_lock_irqsave(&d40c->lock, flags);

2657 2658 2659
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2660 2661 2662 2663 2664 2665
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
static void d40_terminate_all(struct dma_chan *chan)
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	int ret;

	spin_lock_irqsave(&d40c->lock, flags);

	pm_runtime_get_sync(d40c->base->dev);
	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (ret)
		chan_err(d40c, "Failed to stop channel\n");

	d40_term_all(d40c);
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}
	d40c->busy = false;

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    u32 maxburst)
{
	int psize;

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2724
/* Runtime reconfiguration extension */
2725 2726
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2727 2728 2729
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2730
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2731
	dma_addr_t config_addr;
2732 2733 2734 2735 2736 2737 2738
	u32 src_maxburst, dst_maxburst;
	int ret;

	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2739

2740
	if (config->direction == DMA_DEV_TO_MEM) {
2741
		config_addr = config->src_addr;
2742

2743
		if (cfg->dir != DMA_DEV_TO_MEM)
2744 2745 2746 2747
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
2748
		cfg->dir = DMA_DEV_TO_MEM;
2749

2750 2751 2752 2753 2754
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2755

2756
	} else if (config->direction == DMA_MEM_TO_DEV) {
2757
		config_addr = config->dst_addr;
2758

2759
		if (cfg->dir != DMA_MEM_TO_DEV)
2760 2761 2762 2763
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
2764
		cfg->dir = DMA_MEM_TO_DEV;
2765

2766 2767 2768 2769 2770
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2771 2772 2773 2774
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2775
		return -EINVAL;
2776 2777
	}

2778 2779 2780 2781 2782
	if (config_addr <= 0) {
		dev_err(d40c->base->dev, "no address supplied\n");
		return -EINVAL;
	}

2783
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2784
		dev_err(d40c->base->dev,
2785 2786 2787 2788 2789 2790
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2791 2792
	}

2793 2794 2795 2796 2797 2798 2799 2800
	if (src_maxburst > 16) {
		src_maxburst = 16;
		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
	} else if (dst_maxburst > 16) {
		dst_maxburst = 16;
		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
	}

2801 2802 2803 2804 2805
	/* Only valid widths are; 1, 2, 4 and 8. */
	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2806 2807
	    !is_power_of_2(src_addr_width) ||
	    !is_power_of_2(dst_addr_width))
2808 2809 2810 2811 2812
		return -EINVAL;

	cfg->src_info.data_width = src_addr_width;
	cfg->dst_info.data_width = dst_addr_width;

2813 2814 2815 2816
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_maxburst);
	if (ret)
		return ret;
2817

2818 2819 2820 2821
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_maxburst);
	if (ret)
		return ret;
2822

2823
	/* Fill in register values */
2824
	if (chan_is_logical(d40c))
2825 2826
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
2827
		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2828

2829 2830 2831 2832
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2833 2834
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2835
		dma_chan_name(chan),
2836
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2837 2838 2839 2840
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2841 2842
}

2843 2844
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2845 2846 2847
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2848
	if (d40c->phy_chan == NULL) {
2849
		chan_err(d40c, "Channel is not allocated!\n");
2850 2851 2852
		return -EINVAL;
	}

2853 2854
	switch (cmd) {
	case DMA_TERMINATE_ALL:
2855 2856
		d40_terminate_all(chan);
		return 0;
2857
	case DMA_PAUSE:
2858
		return d40_pause(d40c);
2859
	case DMA_RESUME:
2860
		return d40_resume(d40c);
2861
	case DMA_SLAVE_CONFIG:
2862
		return d40_set_runtime_config(chan,
2863 2864 2865
			(struct dma_slave_config *) arg);
	default:
		break;
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

2892
		INIT_LIST_HEAD(&d40c->done);
2893 2894
		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2895
		INIT_LIST_HEAD(&d40c->pending_queue);
2896
		INIT_LIST_HEAD(&d40c->client);
2897
		INIT_LIST_HEAD(&d40c->prepare_queue);
2898 2899 2900 2901 2902 2903 2904 2905 2906

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
		dev->copy_align = 2;
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2925 2926 2927
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2928 2929 2930 2931 2932 2933 2934 2935
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
	dev->device_control = d40_control;
	dev->dev = base->dev;
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2946
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2947

2948
	d40_ops_init(base, &base->dma_slave);
2949 2950 2951 2952

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2953
		d40_err(base->dev, "Failed to register slave channels\n");
2954 2955 2956 2957
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2958
		      base->num_log_chans, base->num_memcpy_chans);
2959 2960 2961

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2962 2963 2964
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2965 2966 2967 2968

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2969 2970
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2971 2972 2973 2974 2975 2976 2977 2978 2979
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2980
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2981
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2982 2983

	d40_ops_init(base, &base->dma_both);
2984 2985 2986
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2987 2988
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

3000 3001 3002 3003
/* Suspend resume functionality */
#ifdef CONFIG_PM
static int dma40_pm_suspend(struct device *dev)
{
3004 3005 3006
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;
3007

3008 3009 3010
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
}

static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	if (base->initialized)
		d40_save_restore_registers(base, false);

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

	if (base->lcpa_regulator)
		ret = regulator_enable(base->lcpa_regulator);

	return ret;
}
3052 3053 3054 3055 3056

static const struct dev_pm_ops dma40_pm_ops = {
	.suspend		= dma40_pm_suspend,
	.runtime_suspend	= dma40_runtime_suspend,
	.runtime_resume		= dma40_runtime_resume,
3057
	.resume			= dma40_resume,
3058 3059 3060 3061 3062 3063
};
#define DMA40_PM_OPS	(&dma40_pm_ops)
#else
#define DMA40_PM_OPS	NULL
#endif

3064 3065 3066 3067 3068 3069 3070 3071
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
3072
	int gcc = D40_DREG_GCC_ENA;
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3084 3085 3086 3087 3088 3089 3090
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


3091 3092 3093
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3094
			base->phy_res[i].reserved = false;
3095 3096 3097 3098
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
3099 3100 3101

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3102 3103 3104 3105
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3106 3107 3108 3109 3110
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
3111
		num_phy_chans_avail--;
3112 3113
	}

3114 3115 3116 3117 3118 3119 3120
	/* Mark soft_lli channels */
	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
		int chan = base->plat_data->soft_lli_chans[i];

		base->phy_res[chan].use_soft_lli = true;
	}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

3138 3139 3140 3141 3142 3143 3144 3145 3146
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

3147 3148 3149 3150 3151
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3152
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3153 3154 3155 3156 3157 3158
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
3159
	int num_memcpy_chans;
3160
	int clk_ret = -EINVAL;
3161
	int i;
3162 3163 3164
	u32 pid;
	u32 cid;
	u8 rev;
3165 3166 3167

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
3168
		d40_err(&pdev->dev, "No matching clock found\n");
3169 3170 3171
		goto failure;
	}

3172 3173 3174 3175 3176
	clk_ret = clk_prepare_enable(clk);
	if (clk_ret) {
		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
		goto failure;
	}
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

3191 3192 3193 3194 3195 3196 3197
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
3198

3199 3200 3201 3202 3203
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
		goto failure;
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3204
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3205 3206
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
3207 3208
		goto failure;
	}
3209 3210 3211 3212 3213 3214
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
3215 3216
	 * AP9540v1 has revision 4
	 * DB8540v1 has revision 4
3217 3218
	 */
	rev = AMBA_REV_BITS(pid);
3219 3220 3221 3222
	if (rev < 2) {
		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
		goto failure;
	}
3223

3224
	/* The number of physical channels on this HW */
3225 3226 3227 3228
	if (plat_data->num_of_phy_chans)
		num_phy_chans = plat_data->num_of_phy_chans;
	else
		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3229

3230 3231 3232 3233 3234 3235
	/* The number of channels used for memcpy */
	if (plat_data->num_of_memcpy_chans)
		num_memcpy_chans = plat_data->num_of_memcpy_chans;
	else
		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);

3236 3237
	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;

3238
	dev_info(&pdev->dev,
3239 3240
		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
		 rev, &res->start, num_phy_chans, num_log_chans);
3241 3242

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3243
		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3244 3245 3246
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
3247
		d40_err(&pdev->dev, "Out of memory\n");
3248 3249 3250
		goto failure;
	}

3251
	base->rev = rev;
3252
	base->clk = clk;
3253
	base->num_memcpy_chans = num_memcpy_chans;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	if (base->plat_data->num_of_phy_chans == 14) {
		base->gen_dmac.backup = d40_backup_regs_v4b;
		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
		base->gen_dmac.il = il_v4b;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
		base->gen_dmac.init_reg = dma_init_reg_v4b;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
	} else {
		if (base->rev >= 3) {
			base->gen_dmac.backup = d40_backup_regs_v4a;
			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
		}
		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
		base->gen_dmac.il = il_v4a;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
		base->gen_dmac.init_reg = dma_init_reg_v4a;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
	}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

3305 3306 3307 3308 3309
	base->lookup_log_chans = kzalloc(num_log_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_log_chans)
		goto failure;
3310

3311 3312
	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
					    sizeof(d40_backup_regs_chan),
3313
					    GFP_KERNEL);
3314 3315 3316 3317 3318 3319
	if (!base->reg_val_backup_chan)
		goto failure;

	base->lcla_pool.alloc_map =
		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3320 3321 3322
	if (!base->lcla_pool.alloc_map)
		goto failure;

3323 3324 3325 3326 3327 3328
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

3329 3330 3331
	return base;

failure:
3332 3333 3334
	if (!clk_ret)
		clk_disable_unprepare(clk);
	if (!IS_ERR(clk))
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
		clk_put(clk);
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
3346
		kfree(base->reg_val_backup_chan);
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;
3364 3365
	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
	u32 reg_size = base->gen_dmac.init_reg_size;
3366

3367
	for (i = 0; i < reg_size; i++)
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
3400
	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3401 3402

	/* Write which interrupt to clear */
3403
	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3404

3405 3406 3407
	/* These are __initdata and cannot be accessed after init */
	base->gen_dmac.init_reg = NULL;
	base->gen_dmac.init_reg_size = 0;
3408 3409
}

3410 3411
static int __init d40_lcla_allocate(struct d40_base *base)
{
3412
	struct d40_lcla_pool *pool = &base->lcla_pool;
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3438 3439
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3457 3458 3459 3460
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3477 3478 3479 3480 3481 3482 3483 3484 3485
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

3486 3487 3488 3489 3490 3491 3492
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

3493 3494 3495 3496
static int __init d40_of_probe(struct platform_device *pdev,
			       struct device_node *np)
{
	struct stedma40_platform_data *pdata;
3497
	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3498
	const __be32 *list;
3499 3500 3501 3502 3503 3504 3505

	pdata = devm_kzalloc(&pdev->dev,
			     sizeof(struct stedma40_platform_data),
			     GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

3506 3507 3508 3509 3510
	/* If absent this value will be obtained from h/w. */
	of_property_read_u32(np, "dma-channels", &num_phy);
	if (num_phy > 0)
		pdata->num_of_phy_chans = num_phy;

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	list = of_get_property(np, "memcpy-channels", &num_memcpy);
	num_memcpy /= sizeof(*list);

	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
		d40_err(&pdev->dev,
			"Invalid number of memcpy channels specified (%d)\n",
			num_memcpy);
		return -EINVAL;
	}
	pdata->num_of_memcpy_chans = num_memcpy;

	of_property_read_u32_array(np, "memcpy-channels",
				   dma40_memcpy_channels,
				   num_memcpy);

3526 3527 3528
	list = of_get_property(np, "disabled-channels", &num_disabled);
	num_disabled /= sizeof(*list);

3529
	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		d40_err(&pdev->dev,
			"Invalid number of disabled channels specified (%d)\n",
			num_disabled);
		return -EINVAL;
	}

	of_property_read_u32_array(np, "disabled-channels",
				   pdata->disabled_channels,
				   num_disabled);
	pdata->disabled_channels[num_disabled] = -1;

3541 3542 3543 3544 3545
	pdev->dev.platform_data = pdata;

	return 0;
}

3546 3547
static int __init d40_probe(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3548
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3549
	struct device_node *np = pdev->dev.of_node;
3550
	int ret = -ENOENT;
3551
	struct d40_base *base = NULL;
3552 3553 3554 3555
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	if (!plat_data) {
		if (np) {
			if(d40_of_probe(pdev, np)) {
				ret = -ENOMEM;
				goto failure;
			}
		} else {
			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
			goto failure;
		}
	}
3567

3568
	base = d40_hw_detect_init(pdev);
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3583
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3584 3585 3586 3587 3588 3589 3590 3591
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3592
		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3593 3594 3595 3596 3597 3598 3599
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
3600 3601
			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
			 __func__, val, &res->start);
3602 3603 3604 3605 3606 3607
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3608
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3609 3610
		goto failure;
	}
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
			goto failure;
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
			goto failure;
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3629

3630 3631 3632 3633 3634 3635
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
			goto failure;
		}
3636 3637 3638 3639 3640 3641 3642 3643
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3644
		d40_err(&pdev->dev, "No IRQ defined\n");
3645 3646 3647
		goto failure;
	}

3648 3649 3650 3651 3652
	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_enable(base->dev);
	pm_runtime_resume(base->dev);
3653 3654 3655 3656 3657 3658

	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3659
			ret = PTR_ERR(base->lcpa_regulator);
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
			base->lcpa_regulator = NULL;
			goto failure;
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
			goto failure;
		}
	}

3674
	base->initialized = true;
3675 3676
	ret = d40_dmaengine_init(base, num_reserved_chans);
	if (ret)
3677 3678
		goto failure;

3679
	base->dev->dma_parms = &base->dma_parms;
3680 3681
	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
	if (ret) {
3682 3683 3684 3685
		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
		goto failure;
	}

3686 3687
	d40_hw_init(base);

3688
	if (np) {
3689 3690
		ret = of_dma_controller_register(np, d40_xlate, NULL);
		if (ret)
3691 3692 3693 3694
			dev_err(&pdev->dev,
				"could not register of_dma_controller\n");
	}

3695 3696 3697 3698 3699
	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
3700 3701
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
3702 3703
		if (base->virtbase)
			iounmap(base->virtbase);
3704

3705 3706 3707 3708 3709
		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
			iounmap(base->lcla_pool.base);
			base->lcla_pool.base = NULL;
		}

3710 3711 3712 3713 3714
		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

3715 3716 3717
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
3718 3719 3720

		kfree(base->lcla_pool.base_unaligned);

3721 3722 3723 3724 3725 3726 3727
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
3728
			clk_disable_unprepare(base->clk);
3729 3730 3731
			clk_put(base->clk);
		}

3732 3733 3734 3735 3736
		if (base->lcpa_regulator) {
			regulator_disable(base->lcpa_regulator);
			regulator_put(base->lcpa_regulator);
		}

3737 3738 3739 3740 3741 3742 3743
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

3744
	d40_err(&pdev->dev, "probe failed\n");
3745 3746 3747
	return ret;
}

3748 3749 3750 3751 3752
static const struct of_device_id d40_match[] = {
        { .compatible = "stericsson,dma40", },
        {}
};

3753 3754 3755 3756
static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
3757
		.pm = DMA40_PM_OPS,
3758
		.of_match_table = d40_match,
3759 3760 3761
	},
};

R
Rabin Vincent 已提交
3762
static int __init stedma40_init(void)
3763 3764 3765
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3766
subsys_initcall(stedma40_init);