ste_dma40.c 86.1 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17 18
#include <linux/pm.h>
#include <linux/pm_runtime.h>
19
#include <linux/err.h>
20
#include <linux/amba/bus.h>
21
#include <linux/regulator/consumer.h>
22
#include <linux/platform_data/dma-ste-dma40.h>
23

24
#include "dmaengine.h"
25 26 27 28 29 30 31 32 33 34 35 36 37
#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

38 39 40
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

41 42
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
43 44 45 46 47

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

48 49 50 51
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/*
 * enum d40_events - The different Event Enables for the event lines.
 *
 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 * @D40_ROUND_EVENTLINE: Status check for event line.
 */

enum d40_events {
	D40_DEACTIVATE_EVENTLINE	= 0,
	D40_ACTIVATE_EVENTLINE		= 1,
	D40_SUSPEND_REQ_EVENTLINE	= 2,
	D40_ROUND_EVENTLINE		= 3
};

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

/* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
static u32 d40_backup_regs_v3[] = {
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

#define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

136 137 138 139 140 141
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
142
 * @dma_addr: DMA address, if mapped
143 144 145 146 147 148
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
149
	int	 size;
150
	dma_addr_t	dma_addr;
151
	/* Space for dst and src, plus an extra for padding */
152
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
153 154 155 156 157 158 159 160 161 162
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
163
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
164
 * @lli_current: Number of transferred llis.
165
 * @lcla_alloc: Number of LCLA entries allocated.
166 167 168 169
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
170
 * @cyclic: true if this is a cyclic job
171 172 173 174 175 176 177 178 179 180
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
181
	int				 lli_len;
182 183
	int				 lli_current;
	int				 lcla_alloc;
184 185 186 187 188

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
189
	bool				 cyclic;
190 191 192 193 194
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
195 196 197 198 199
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
200
 * @lock: Lock to protect the content in this struct.
201
 * @alloc_map: big map over which LCLA entry is own by which job.
202 203 204
 */
struct d40_lcla_pool {
	void		*base;
205
	dma_addr_t	dma_addr;
206 207
	void		*base_unaligned;
	int		 pages;
208
	spinlock_t	 lock;
209
	struct d40_desc	**alloc_map;
210 211 212 213 214 215 216
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
217
 * @reserved: True if used by secure world or otherwise.
218 219 220 221 222
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
223
 * event line number.
224 225 226
 */
struct d40_phy_res {
	spinlock_t lock;
227
	bool	   reserved;
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
243 244
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
245 246 247 248
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
249
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
250 251
 * @active: Active descriptor.
 * @queue: Queued jobs.
252
 * @prepare_queue: Prepared jobs.
253
 * @dma_cfg: The client configuration of this dma channel.
254
 * @configured: whether the dma_cfg configuration is valid
255 256 257 258 259
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
260 261
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
262 263 264 265 266 267 268 269 270 271 272 273
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
274
	struct list_head		 pending_queue;
275 276
	struct list_head		 active;
	struct list_head		 queue;
277
	struct list_head		 prepare_queue;
278
	struct stedma40_chan_cfg	 dma_cfg;
279
	bool				 configured;
280 281 282 283 284 285
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
286 287
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
288
	enum dma_transfer_direction	runtime_direction;
289 290 291 292 293 294 295 296 297 298
};

/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
299
 * @rev: silicon revision detected.
300 301 302 303 304 305 306 307 308 309 310 311
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
312
 * @phy_chans: Room for all possible physical channels in system.
313 314 315 316 317 318 319
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
320
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
321 322 323 324 325
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
326
 * @desc_slab: cache for descriptors.
327 328 329 330 331 332 333
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
 * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
 * later.
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 * @initialized: true if the dma has been initialized
334 335 336 337 338 339
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
340
	u8				  rev:4;
341 342 343 344 345 346 347 348 349 350 351 352 353 354
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
355
	struct regulator		 *lcpa_regulator;
356 357 358 359 360 361
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
362
	struct kmem_cache		 *desc_slab;
363 364 365 366 367
	u32				  reg_val_backup[BACKUP_REGS_SZ];
	u32				  reg_val_backup_v3[BACKUP_REGS_SZ_V3];
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
	bool				  initialized;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
};

/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

397 398 399 400 401
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

402 403 404 405 406 407 408 409 410 411
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

412 413 414 415 416 417
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

418 419 420 421 422 423
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

424
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
425
			      int lli_len)
426
{
427
	bool is_log = chan_is_logical(d40c);
428 429 430 431 432 433 434 435 436 437 438 439 440
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
441
		d40d->lli_pool.size = lli_len * 2 * align;
442 443 444 445 446 447 448 449 450

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
451
		d40d->lli_log.src = PTR_ALIGN(base, align);
452
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
453 454

		d40d->lli_pool.dma_addr = 0;
455
	} else {
R
Rabin Vincent 已提交
456
		d40d->lli_phy.src = PTR_ALIGN(base, align);
457
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
458 459 460 461 462 463 464 465 466 467 468 469 470

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
471 472 473 474 475
	}

	return 0;
}

476
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
477
{
478 479 480 481
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

482 483 484 485 486 487 488 489 490
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;
	int p;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

528
	if (chan_is_physical(d40c))
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

552 553 554 555 556 557 558
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
559
	struct d40_desc *desc = NULL;
560 561

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
562 563 564
		struct d40_desc *d;
		struct d40_desc *_d;

565
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
566 567
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
568 569
				desc = d;
				memset(desc, 0, sizeof(*desc));
570
				break;
571
			}
572
		}
573
	}
R
Rabin Vincent 已提交
574 575 576 577 578 579 580 581

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
582 583 584 585
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
586

587
	d40_pool_lli_free(d40c, d40d);
588
	d40_lcla_free_all(d40c, d40d);
589
	kmem_cache_free(d40c->base->desc_slab, d40d);
590 591 592 593 594 595 596
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

614
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
615
{
616 617 618 619
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
620
	bool cyclic = desc->cyclic;
621
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
622
	int first_lcla = 0;
623
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
624
	bool linkback;
625

R
Rabin Vincent 已提交
626 627 628 629 630 631 632 633 634 635 636
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
637
		curr_lcla = d40_lcla_alloc_one(chan, desc);
R
Rabin Vincent 已提交
638 639 640 641 642 643 644 645 646 647 648
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
649

R
Rabin Vincent 已提交
650 651
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
652

R
Rabin Vincent 已提交
653 654 655 656 657 658 659
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
660 661 662 663

	if (curr_lcla < 0)
		goto out;

664 665 666 667
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
668
		unsigned int flags = 0;
669 670 671 672 673
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
674 675 676 677
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
678

R
Rabin Vincent 已提交
679 680 681 682 683 684 685 686 687 688 689 690
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
691 692 693
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
694
				       next_lcla, flags);
695

696 697 698 699 700 701 702 703 704 705
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
706 707
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
708
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
709 710 711 712 713
			lli_current++;
			break;
		}
	}

714
out:
715 716
	desc->lli_current = lli_current;
}
717

718 719
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
720
	if (chan_is_physical(d40c)) {
721
		d40_phy_lli_load(d40c, d40d);
722
		d40d->lli_current = d40d->lli_len;
723 724
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
725 726
}

727 728 729 730 731 732 733 734 735 736 737 738 739
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

740
/* remove desc from current queue and add it to the pending_queue */
741 742
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
743 744
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
745 746 747 748 749 750 751 752 753 754 755 756 757 758
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->pending_queue))
		return NULL;

	d = list_first_entry(&d40c->pending_queue,
			     struct d40_desc,
			     node);
	return d;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
	if (base->rev >= 3)
		dma40_backup(base->virtbase, base->reg_val_backup_v3,
			     d40_backup_regs_v3,
			     ARRAY_SIZE(d40_backup_regs_v3),
			     save);
}
#else
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
}
#endif
888

889 890
static int __d40_execute_command_phy(struct d40_chan *d40c,
				     enum d40_command command)
891
{
892 893
	u32 status;
	int i;
894 895 896
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
897
	u32 wmask;
898

899 900 901 902 903 904
	if (command == D40_DMA_STOP) {
		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
		if (ret)
			return ret;
	}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

921 922 923
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
945 946 947
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
948 949 950 951 952 953 954 955 956 957 958 959 960 961
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
962
	struct d40_desc *_d;
963 964 965 966 967 968 969 970 971 972 973 974 975

	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

976 977 978 979 980
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
981

982 983 984 985 986 987 988
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

989 990 991 992 993 994 995
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
996

997 998 999
	d40c->pending_tx = 0;
}

1000 1001 1002
static void __d40_config_set_event(struct d40_chan *d40c,
				   enum d40_events event_type, u32 event,
				   int reg)
1003
{
1004
	void __iomem *addr = chan_base(d40c) + reg;
1005
	int tries;
1006 1007 1008 1009 1010
	u32 status;

	switch (event_type) {

	case D40_DEACTIVATE_EVENTLINE:
1011 1012 1013

		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
1014 1015 1016 1017 1018 1019 1020 1021 1022
		break;

	case D40_SUSPEND_REQ_EVENTLINE:
		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
			  D40_EVENTLINE_POS(event);

		if (status == D40_DEACTIVATE_EVENTLINE ||
		    status == D40_SUSPEND_REQ_EVENTLINE)
			break;
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {

			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
				  D40_EVENTLINE_POS(event);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DEACTIVATE_EVENTLINE)
				break;
		}

		if (tries == D40_SUSPEND_MAX_IT) {
			chan_err(d40c,
				"unable to stop the event_line chl %d (log: %d)"
				"status %x\n", d40c->phy_chan->num,
				 d40c->log_num, status);
		}
		break;

	case D40_ACTIVATE_EVENTLINE:
1052 1053 1054 1055 1056
	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
1057 1058 1059 1060 1061
		tries = 100;
		while (--tries) {
			writel((D40_ACTIVATE_EVENTLINE <<
				D40_EVENTLINE_POS(event)) |
				~D40_EVENTLINE_MASK(event), addr);
1062

1063 1064 1065
			if (readl(addr) & D40_EVENTLINE_MASK(event))
				break;
		}
1066

1067 1068 1069 1070 1071
		if (tries != 99)
			dev_dbg(chan2dev(d40c),
				"[%s] workaround enable S%cLNK (%d tries)\n",
				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
				100 - tries);
1072

1073 1074
		WARN_ON(!tries);
		break;
1075

1076 1077 1078
	case D40_ROUND_EVENTLINE:
		BUG();
		break;
1079

1080 1081
	}
}
1082

1083 1084 1085
static void d40_config_set_event(struct d40_chan *d40c,
				 enum d40_events event_type)
{
1086 1087 1088 1089 1090
	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

1091
		__d40_config_set_event(d40c, event_type, event,
1092
				       D40_CHAN_REG_SSLNK);
1093
	}
1094

1095 1096 1097
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

1098
		__d40_config_set_event(d40c, event_type, event,
1099
				       D40_CHAN_REG_SDLNK);
1100 1101 1102
	}
}

1103
static u32 d40_chan_has_events(struct d40_chan *d40c)
1104
{
1105
	void __iomem *chanbase = chan_base(d40c);
1106
	u32 val;
1107

1108 1109
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1110

1111
	return val;
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
	unsigned long flags;
	int ret = 0;
	u32 active_status;
	void __iomem *active_reg;

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;


	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	switch (command) {
	case D40_DMA_STOP:
	case D40_DMA_SUSPEND_REQ:

		active_status = (readl(active_reg) &
				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				 D40_CHAN_POS(d40c->phy_chan->num);

		if (active_status == D40_DMA_RUN)
			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
		else
			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);

		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
			ret = __d40_execute_command_phy(d40c, command);

		break;

	case D40_DMA_RUN:

		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
		ret = __d40_execute_command_phy(d40c, command);
		break;

	case D40_DMA_SUSPENDED:
		BUG();
		break;
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
	return ret;
}

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
	if (chan_is_logical(d40c))
		return __d40_execute_command_log(d40c, command);
	else
		return __d40_execute_command_phy(d40c, command);
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1191
	if (chan_is_physical(d40c))
1192 1193 1194 1195 1196
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1197
static void d40_config_write(struct d40_chan *d40c)
1198 1199 1200 1201 1202 1203 1204
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1205
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1206 1207 1208 1209
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1210
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1211 1212 1213

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1214
	if (chan_is_logical(d40c)) {
1215 1216 1217 1218
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1219
		/* Set default config for CFG reg */
1220 1221
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1222

1223
		/* Set LIDX for lcla */
1224 1225
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1226 1227 1228 1229

		/* Clear LNK which will be used by d40_chan_has_events() */
		writel(0, chanbase + D40_CHAN_REG_SSLNK);
		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1230 1231 1232
	}
}

1233 1234 1235 1236
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1237
	if (chan_is_logical(d40c))
1238 1239
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1240 1241 1242 1243 1244 1245
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1246 1247 1248 1249 1250 1251 1252
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1253
	if (chan_is_logical(d40c))
1254 1255
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1256 1257 1258
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1259 1260 1261
	return is_link;
}

1262
static int d40_pause(struct d40_chan *d40c)
1263 1264 1265 1266
{
	int res = 0;
	unsigned long flags;

1267 1268 1269
	if (!d40c->busy)
		return 0;

1270
	pm_runtime_get_sync(d40c->base->dev);
1271 1272 1273
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1274

1275 1276
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1277 1278 1279 1280
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1281
static int d40_resume(struct d40_chan *d40c)
1282 1283 1284 1285
{
	int res = 0;
	unsigned long flags;

1286 1287 1288
	if (!d40c->busy)
		return 0;

1289
	spin_lock_irqsave(&d40c->lock, flags);
1290
	pm_runtime_get_sync(d40c->base->dev);
1291 1292

	/* If bytes left to transfer or linked tx resume job */
1293
	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1294 1295
		res = d40_channel_execute_command(d40c, D40_DMA_RUN);

1296 1297
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1298 1299 1300 1301
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1302 1303 1304 1305 1306 1307 1308
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;
1309
	dma_cookie_t cookie;
1310 1311

	spin_lock_irqsave(&d40c->lock, flags);
1312
	cookie = dma_cookie_assign(tx);
1313 1314 1315
	d40_desc_queue(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);

1316
	return cookie;
1317 1318 1319 1320
}

static int d40_start(struct d40_chan *d40c)
{
1321
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1333
		if (!d40c->busy) {
1334
			d40c->busy = true;
1335 1336
			pm_runtime_get_sync(d40c->base->dev);
		}
1337 1338 1339 1340 1341 1342 1343

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1344 1345
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1346

1347 1348
		/* Start dma job */
		err = d40_start(d40c);
1349

1350 1351
		if (err)
			return NULL;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1381

R
Rabin Vincent 已提交
1382 1383 1384 1385 1386
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1387

R
Rabin Vincent 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

		if (d40_queue_start(d40c) == NULL)
			d40c->busy = false;
1397 1398
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
R
Rabin Vincent 已提交
1399
	}
1400 1401 1402 1403 1404 1405 1406 1407 1408

	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1409
	struct d40_desc *d40d;
1410 1411 1412 1413 1414 1415 1416
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

	/* Get first active entry from list */
1417 1418
	d40d = d40_first_active_get(d40c);
	if (d40d == NULL)
1419 1420
		goto err;

R
Rabin Vincent 已提交
1421
	if (!d40d->cyclic)
1422
		dma_cookie_complete(&d40d->txd);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1434 1435 1436
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1437 1438
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1439
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1440 1441 1442 1443 1444 1445 1446 1447
			d40_desc_free(d40c, d40d);
		} else {
			if (!d40d->is_in_client_list) {
				d40_desc_remove(d40d);
				d40_lcla_free_all(d40c, d40d);
				list_add_tail(&d40d->node, &d40c->client);
				d40d->is_in_client_list = true;
			}
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1458
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1459 1460 1461 1462
		callback(callback_param);

	return;

1463 1464
err:
	/* Rescue manouver if receiving double interrupts */
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	static const struct d40_interrupt_lookup il[] = {
		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
	};

	int i;
	u32 regs[ARRAY_SIZE(il)];
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
	for (i = 0; i < ARRAY_SIZE(il); i++)
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);

		/* No more set bits found? */
		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		/* ACK interrupt */
1513
		writel(1 << idx, base->virtbase + il[row].clr);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1524 1525
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1541
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1542

1543
	if (!conf->dir) {
1544
		chan_err(d40c, "Invalid direction.\n");
1545 1546 1547 1548 1549 1550 1551
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

1552 1553
		chan_err(d40c, "Invalid TX channel address (%d)\n",
			 conf->dst_dev_type);
1554 1555 1556 1557 1558 1559
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
1560 1561
		chan_err(d40c, "Invalid RX channel address (%d)\n",
			conf->src_dev_type);
1562 1563 1564 1565
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1566
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1567
		chan_err(d40c, "Invalid dst\n");
1568 1569 1570
		res = -EINVAL;
	}

1571
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1572
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1573
		chan_err(d40c, "Invalid src\n");
1574 1575 1576 1577 1578
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1579
		chan_err(d40c, "No event line\n");
1580 1581 1582 1583 1584
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
1585
		chan_err(d40c, "Invalid event group\n");
1586 1587 1588 1589 1590 1591 1592 1593
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1594
		chan_err(d40c, "periph to periph not supported\n");
1595 1596 1597
		res = -EINVAL;
	}

1598 1599 1600 1601 1602 1603 1604 1605 1606
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1607
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1608 1609 1610
		res = -EINVAL;
	}

1611 1612 1613
	return res;
}

1614 1615 1616
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
			       bool is_src, int log_event_line, bool is_log,
			       bool *first_user)
1617 1618 1619
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1620 1621 1622 1623

	*first_user = ((phy->allocated_src | phy->allocated_dst)
			== D40_ALLOC_FREE);

1624
	if (!is_log) {
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

1704
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1705 1706 1707 1708 1709 1710 1711 1712 1713
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
	bool is_src;
1714
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

	phys = d40c->base->phy_res;

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
			for (i = 0; i < d40c->base->num_phy_chans; i++) {

1739
				if (d40_alloc_mask_set(&phys[i], is_src,
1740 1741
						       0, is_log,
						       first_phy_user))
1742 1743 1744 1745 1746 1747
					goto found_phy;
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1748 1749 1750
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
1751 1752
							       is_log,
							       first_phy_user))
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

		if (d40c->dma_cfg.use_fixed_channel) {
			i = d40c->dma_cfg.phy_channel;

			if ((i != phy_num) && (i != phy_num + 1)) {
				dev_err(chan2dev(d40c),
					"invalid fixed phy channel %d\n", i);
				return -EINVAL;
			}

			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
					       is_log, first_phy_user))
				goto found_log;

			dev_err(chan2dev(d40c),
				"could not allocate fixed phy channel %d\n", i);
			return -EINVAL;
		}

1787 1788 1789 1790 1791 1792 1793 1794
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1795 1796
						       event_line, is_log,
						       first_phy_user))
1797 1798 1799 1800 1801
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1802 1803
						       event_line, is_log,
						       first_phy_user))
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
			memcpy[d40c->chan.chan_id];

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
1838
		chan_err(d40c, "No memcpy\n");
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
		return -EINVAL;
	}

	return 0;
}

static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1849
	u32 event;
1850 1851 1852 1853 1854 1855 1856
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
1857
		chan_err(d40c, "phy == null\n");
1858 1859 1860 1861 1862
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
1863
		chan_err(d40c, "channel already free\n");
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
1875
		chan_err(d40c, "Unknown direction\n");
1876 1877 1878
		return -EINVAL;
	}

1879
	pm_runtime_get_sync(d40c->base->dev);
1880
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1881
	if (res) {
1882
		chan_err(d40c, "stop failed\n");
1883
		goto out;
1884 1885
	}

1886
	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
1887

1888
	if (chan_is_logical(d40c))
1889
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1890 1891
	else
		d40c->base->lookup_phy_chans[phy->num] = NULL;
1892 1893 1894 1895 1896 1897 1898

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
1899
	d40c->phy_chan = NULL;
1900
	d40c->configured = false;
1901
out:
1902

1903 1904 1905
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
1906 1907
}

1908 1909
static bool d40_is_paused(struct d40_chan *d40c)
{
1910
	void __iomem *chanbase = chan_base(d40c);
1911 1912 1913 1914 1915 1916 1917 1918
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

1919
	if (chan_is_physical(d40c)) {
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1935
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1936
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1937
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1938
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1939
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1940
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1941
	} else {
1942
		chan_err(d40c, "Unknown direction\n");
1943 1944
		goto _exit;
	}
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}


1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

1972 1973 1974
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
1975 1976
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
1977 1978 1979 1980
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1981
	int ret;
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
1998 1999 2000 2001 2002
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2003 2004
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2005 2006 2007 2008
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
2009
	unsigned long flags = 0;
2010 2011
	int ret;

R
Rabin Vincent 已提交
2012 2013 2014
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

2015 2016 2017 2018
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
2019
				src_info, dst_info, flags);
2020 2021 2022 2023 2024

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
2025
				dst_info, src_info, flags);
2026 2027 2028 2029 2030 2031 2032 2033

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}


2034 2035 2036 2037 2038 2039
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct d40_desc *desc;
2040
	int ret;
2041 2042 2043 2044 2045 2046 2047 2048 2049

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
2050 2051
		goto err;
	}
2052

2053 2054 2055 2056
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
		goto err;
2057 2058
	}

2059

2060 2061 2062 2063 2064 2065 2066
	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2067 2068 2069 2070

err:
	d40_desc_free(chan, desc);
	return NULL;
2071 2072
}

2073
static dma_addr_t
2074
d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2075
{
2076 2077
	struct stedma40_platform_data *plat = chan->base->plat_data;
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2078
	dma_addr_t addr = 0;
2079 2080 2081 2082

	if (chan->runtime_addr)
		return chan->runtime_addr;

2083
	if (direction == DMA_DEV_TO_MEM)
2084
		addr = plat->dev_rx[cfg->src_dev_type];
2085
	else if (direction == DMA_MEM_TO_DEV)
2086 2087 2088 2089 2090 2091 2092 2093
		addr = plat->dev_tx[cfg->dst_dev_type];

	return addr;
}

static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2094
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2095 2096
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
R
Rabin Vincent 已提交
2097 2098
	dma_addr_t src_dev_addr = 0;
	dma_addr_t dst_dev_addr = 0;
2099
	struct d40_desc *desc;
2100
	unsigned long flags;
2101
	int ret;
2102

2103 2104 2105
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2106 2107
	}

R
Rabin Vincent 已提交
2108

2109
	spin_lock_irqsave(&chan->lock, flags);
2110

2111 2112
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2113 2114
		goto err;

R
Rabin Vincent 已提交
2115 2116 2117
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

2118
	if (direction != DMA_TRANS_NONE) {
R
Rabin Vincent 已提交
2119 2120
		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);

2121
		if (direction == DMA_DEV_TO_MEM)
R
Rabin Vincent 已提交
2122
			src_dev_addr = dev_addr;
2123
		else if (direction == DMA_MEM_TO_DEV)
R
Rabin Vincent 已提交
2124 2125
			dst_dev_addr = dev_addr;
	}
2126 2127 2128

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2129
				      sg_len, src_dev_addr, dst_dev_addr);
2130 2131
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2132
				      sg_len, src_dev_addr, dst_dev_addr);
2133 2134 2135 2136 2137

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
		goto err;
2138 2139
	}

2140 2141 2142 2143 2144 2145
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2146 2147 2148
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2149 2150

err:
2151 2152 2153
	if (desc)
		d40_desc_free(chan, desc);
	spin_unlock_irqrestore(&chan->lock, flags);
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2171 2172 2173
	if (!err)
		d40c->configured = true;

2174 2175 2176 2177
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
	u32 bit = 1 << event;

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);

	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
}

2210 2211 2212 2213 2214 2215 2216
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2217
	bool is_free_phy;
2218 2219
	spin_lock_irqsave(&d40c->lock, flags);

2220
	dma_cookie_init(chan);
2221

2222 2223
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2224
		err = d40_config_memcpy(d40c);
2225
		if (err) {
2226
			chan_err(d40c, "Failed to configure memcpy channel\n");
2227 2228
			goto fail;
		}
2229 2230
	}

2231
	err = d40_allocate_channel(d40c, &is_free_phy);
2232
	if (err) {
2233
		chan_err(d40c, "Failed to allocate channel\n");
2234
		d40c->configured = false;
2235
		goto fail;
2236 2237
	}

2238
	pm_runtime_get_sync(d40c->base->dev);
2239 2240
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2241
		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2242

2243 2244
	d40_set_prio_realtime(d40c);

2245
	if (chan_is_logical(d40c)) {
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
		else
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.dst_dev_type *
			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
	}

2258 2259 2260 2261 2262 2263
	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
		 chan_is_logical(d40c) ? "logical" : "physical",
		 d40c->phy_chan->num,
		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");


2264 2265 2266 2267 2268
	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2269 2270
	if (is_free_phy)
		d40_config_write(d40c);
2271
fail:
2272 2273
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2274
	spin_unlock_irqrestore(&d40c->lock, flags);
2275
	return err;
2276 2277 2278 2279 2280 2281 2282 2283 2284
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2285
	if (d40c->phy_chan == NULL) {
2286
		chan_err(d40c, "Cannot free unallocated channel\n");
2287 2288 2289 2290
		return;
	}


2291 2292 2293 2294 2295
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2296
		chan_err(d40c, "Failed to free channel\n");
2297 2298 2299 2300 2301 2302 2303
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2304
						       unsigned long dma_flags)
2305
{
2306 2307
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2308

2309 2310
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2311

2312 2313
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2314

2315 2316
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2317

2318
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2319 2320
}

2321
static struct dma_async_tx_descriptor *
2322 2323 2324 2325
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2326 2327 2328 2329
{
	if (dst_nents != src_nents)
		return NULL;

2330
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2331 2332
}

2333 2334 2335
static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
2336
							 enum dma_transfer_direction direction,
2337 2338
							 unsigned long dma_flags,
							 void *context)
2339
{
2340
	if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2341 2342
		return NULL;

2343
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2344 2345
}

R
Rabin Vincent 已提交
2346 2347 2348
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2349 2350
		     enum dma_transfer_direction direction, unsigned long flags,
		     void *context)
R
Rabin Vincent 已提交
2351 2352 2353 2354 2355 2356
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2357
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
R
Rabin Vincent 已提交
2358 2359 2360 2361 2362 2363 2364
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
2365
	sg_dma_len(&sg[periods]) = 0;
R
Rabin Vincent 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2377 2378 2379 2380 2381
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2382
	enum dma_status ret;
2383

2384
	if (d40c->phy_chan == NULL) {
2385
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2386 2387 2388
		return -EINVAL;
	}

2389 2390 2391
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret != DMA_SUCCESS)
		dma_set_residue(txstate, stedma40_residue(chan));
2392

2393 2394
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
2395 2396 2397 2398 2399 2400 2401 2402 2403

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2404
	if (d40c->phy_chan == NULL) {
2405
		chan_err(d40c, "Channel is not allocated!\n");
2406 2407 2408
		return;
	}

2409 2410
	spin_lock_irqsave(&d40c->lock, flags);

2411 2412 2413
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2414 2415 2416 2417 2418 2419
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static void d40_terminate_all(struct dma_chan *chan)
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	int ret;

	spin_lock_irqsave(&d40c->lock, flags);

	pm_runtime_get_sync(d40c->base->dev);
	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (ret)
		chan_err(d40c, "Failed to stop channel\n");

	d40_term_all(d40c);
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}
	d40c->busy = false;

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    enum dma_slave_buswidth width,
			    u32 maxburst)
{
	enum stedma40_periph_data_width addr_width;
	int psize;

	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			width);
		return -EINVAL;
	}

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->data_width = addr_width;
	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2502
/* Runtime reconfiguration extension */
2503 2504
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2505 2506 2507
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2508
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2509
	dma_addr_t config_addr;
2510 2511 2512 2513 2514 2515 2516
	u32 src_maxburst, dst_maxburst;
	int ret;

	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2517

2518
	if (config->direction == DMA_DEV_TO_MEM) {
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

2535 2536 2537 2538 2539
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2540

2541
	} else if (config->direction == DMA_MEM_TO_DEV) {
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

2558 2559 2560 2561 2562
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2563 2564 2565 2566
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2567
		return -EINVAL;
2568 2569
	}

2570
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2571
		dev_err(d40c->base->dev,
2572 2573 2574 2575 2576 2577
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2578 2579
	}

2580 2581 2582 2583 2584
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_addr_width,
					  src_maxburst);
	if (ret)
		return ret;
2585

2586 2587 2588 2589 2590
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_addr_width,
					  dst_maxburst);
	if (ret)
		return ret;
2591

2592
	/* Fill in register values */
2593
	if (chan_is_logical(d40c))
2594 2595 2596 2597 2598
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2599 2600 2601 2602
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2603 2604
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2605
		dma_chan_name(chan),
2606
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2607 2608 2609 2610
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2611 2612
}

2613 2614
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2615 2616 2617
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2618
	if (d40c->phy_chan == NULL) {
2619
		chan_err(d40c, "Channel is not allocated!\n");
2620 2621 2622
		return -EINVAL;
	}

2623 2624
	switch (cmd) {
	case DMA_TERMINATE_ALL:
2625 2626
		d40_terminate_all(chan);
		return 0;
2627
	case DMA_PAUSE:
2628
		return d40_pause(d40c);
2629
	case DMA_RESUME:
2630
		return d40_resume(d40c);
2631
	case DMA_SLAVE_CONFIG:
2632
		return d40_set_runtime_config(chan,
2633 2634 2635
			(struct dma_slave_config *) arg);
	default:
		break;
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2664
		INIT_LIST_HEAD(&d40c->pending_queue);
2665
		INIT_LIST_HEAD(&d40c->client);
2666
		INIT_LIST_HEAD(&d40c->prepare_queue);
2667 2668 2669 2670 2671 2672 2673 2674 2675

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
		dev->copy_align = 2;
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2694 2695 2696
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2697 2698 2699 2700 2701 2702 2703 2704
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
	dev->device_control = d40_control;
	dev->dev = base->dev;
}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2715
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2716

2717
	d40_ops_init(base, &base->dma_slave);
2718 2719 2720 2721

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2722
		d40_err(base->dev, "Failed to register slave channels\n");
2723 2724 2725 2726 2727 2728 2729 2730
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
		      base->num_log_chans, base->plat_data->memcpy_len);

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2731 2732 2733
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2734 2735 2736 2737

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2738 2739
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2740 2741 2742 2743 2744 2745 2746 2747 2748
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2749
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2750
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2751 2752

	d40_ops_init(base, &base->dma_both);
2753 2754 2755
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2756 2757
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

2769 2770 2771 2772
/* Suspend resume functionality */
#ifdef CONFIG_PM
static int dma40_pm_suspend(struct device *dev)
{
2773 2774 2775
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;
2776 2777 2778
	if (!pm_runtime_suspended(dev))
		return -EBUSY;

2779 2780 2781
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
}

static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	if (base->initialized)
		d40_save_restore_registers(base, false);

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

	if (base->lcpa_regulator)
		ret = regulator_enable(base->lcpa_regulator);

	return ret;
}
2823 2824 2825 2826 2827

static const struct dev_pm_ops dma40_pm_ops = {
	.suspend		= dma40_pm_suspend,
	.runtime_suspend	= dma40_runtime_suspend,
	.runtime_resume		= dma40_runtime_resume,
2828
	.resume			= dma40_resume,
2829 2830 2831 2832 2833 2834
};
#define DMA40_PM_OPS	(&dma40_pm_ops)
#else
#define DMA40_PM_OPS	NULL
#endif

2835 2836 2837 2838 2839 2840 2841 2842
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
2843
	int gcc = D40_DREG_GCC_ENA;
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2855 2856 2857 2858 2859 2860 2861
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


2862 2863 2864
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2865
			base->phy_res[i].reserved = false;
2866 2867 2868 2869
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
2870 2871 2872

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2873 2874 2875 2876
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2877 2878 2879 2880 2881
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
2882
		num_phy_chans_avail--;
2883 2884
	}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

2902 2903 2904 2905 2906 2907 2908 2909 2910
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
2923
	int clk_ret = -EINVAL;
2924
	int i;
2925 2926 2927
	u32 pid;
	u32 cid;
	u8 rev;
2928 2929 2930

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
2931
		d40_err(&pdev->dev, "No matching clock found\n");
2932 2933 2934
		goto failure;
	}

2935 2936 2937 2938 2939
	clk_ret = clk_prepare_enable(clk);
	if (clk_ret) {
		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
		goto failure;
	}
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

2954 2955 2956 2957 2958 2959 2960
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
2961

2962 2963 2964 2965 2966
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
		goto failure;
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2967
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2968 2969
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
2970 2971
		goto failure;
	}
2972 2973 2974 2975 2976 2977 2978 2979
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
	 */
	rev = AMBA_REV_BITS(pid);
2980

2981 2982 2983 2984
	/* The number of physical channels on this HW */
	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;

	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2985
		 rev, res->start);
2986

2987 2988 2989 2990 2991 2992
	if (rev < 2) {
		d40_err(&pdev->dev, "hardware revision: %d is not supported",
			rev);
		goto failure;
	}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
	plat_data = pdev->dev.platform_data;

	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
3009
		d40_err(&pdev->dev, "Out of memory\n");
3010 3011 3012
		goto failure;
	}

3013
	base->rev = rev;
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

	if (num_log_chans + plat_data->memcpy_len) {
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
3047

3048 3049
	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
					    sizeof(d40_backup_regs_chan),
3050
					    GFP_KERNEL);
3051 3052 3053 3054 3055 3056
	if (!base->reg_val_backup_chan)
		goto failure;

	base->lcla_pool.alloc_map =
		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3057 3058 3059
	if (!base->lcla_pool.alloc_map)
		goto failure;

3060 3061 3062 3063 3064 3065
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

3066 3067 3068
	return base;

failure:
3069 3070 3071
	if (!clk_ret)
		clk_disable_unprepare(clk);
	if (!IS_ERR(clk))
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
		clk_put(clk);
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
3083
		kfree(base->reg_val_backup_chan);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

3096
	static struct d40_reg_val dma_init_reg[] = {
3097
		/* Clock every part of the DMA block from start */
3098
		{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159

		/* Interrupts on all logical channels */
		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
	};
	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;

	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
	writel(pcmis, base->virtbase + D40_DREG_PCMIS);

	/* Write which interrupt to clear */
	writel(pcicr, base->virtbase + D40_DREG_PCICR);

}

3160 3161
static int __init d40_lcla_allocate(struct d40_base *base)
{
3162
	struct d40_lcla_pool *pool = &base->lcla_pool;
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3188 3189
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3207 3208 3209 3210
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3227 3228 3229 3230 3231 3232 3233 3234 3235
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

3236 3237 3238 3239 3240 3241 3242
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3268
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3269 3270 3271 3272 3273 3274 3275 3276
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3277 3278 3279
		d40_err(&pdev->dev,
			"Failed to request LCPA region 0x%x-0x%x\n",
			res->start, res->end);
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3295
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3296 3297
		goto failure;
	}
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
			goto failure;
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
			goto failure;
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3316

3317 3318 3319 3320 3321 3322
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
			goto failure;
		}
3323 3324 3325 3326 3327 3328 3329 3330
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3331
		d40_err(&pdev->dev, "No IRQ defined\n");
3332 3333 3334
		goto failure;
	}

3335 3336 3337 3338 3339
	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_enable(base->dev);
	pm_runtime_resume(base->dev);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
			base->lcpa_regulator = NULL;
			goto failure;
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
			goto failure;
		}
	}

3360
	base->initialized = true;
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
3372 3373
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
3374 3375
		if (base->virtbase)
			iounmap(base->virtbase);
3376

3377 3378 3379 3380 3381
		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
			iounmap(base->lcla_pool.base);
			base->lcla_pool.base = NULL;
		}

3382 3383 3384 3385 3386
		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

3387 3388 3389
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
3390 3391 3392

		kfree(base->lcla_pool.base_unaligned);

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
			clk_disable(base->clk);
			clk_put(base->clk);
		}

3404 3405 3406 3407 3408
		if (base->lcpa_regulator) {
			regulator_disable(base->lcpa_regulator);
			regulator_put(base->lcpa_regulator);
		}

3409 3410 3411 3412 3413 3414 3415
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

3416
	d40_err(&pdev->dev, "probe failed\n");
3417 3418 3419 3420 3421 3422 3423
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
3424
		.pm = DMA40_PM_OPS,
3425 3426 3427
	},
};

R
Rabin Vincent 已提交
3428
static int __init stedma40_init(void)
3429 3430 3431
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3432
subsys_initcall(stedma40_init);