ste_dma40.c 77.6 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8 9 10 11 12 13 14
 * License terms: GNU General Public License (GPL) version 2
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
15
#include <linux/err.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

#include <plat/ste_dma40.h>

#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

32 33
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
34 35 36 37 38

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

39 40 41 42
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
43 44 45 46 47
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

/* Hardware designer of the block */
48
#define D40_HW_DESIGNER 0x8
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
77
	int	 size;
78
	/* Space for dst and src, plus an extra for padding */
79
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
80 81 82 83 84 85 86 87 88 89
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
90
 * @lli_len: Number of llis of current descriptor.
91 92
 * @lli_current: Number of transfered llis.
 * @lcla_alloc: Number of LCLA entries allocated.
93 94 95 96
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
97 98
 * @is_hw_linked: true if this job will automatically be continued for
 * the previous one.
99 100 101 102 103 104 105 106 107 108
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
109
	int				 lli_len;
110 111
	int				 lli_current;
	int				 lcla_alloc;
112 113 114 115 116

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
117
	bool				 is_hw_linked;
118 119 120 121 122
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
123 124 125 126 127
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
128
 * @lock: Lock to protect the content in this struct.
129
 * @alloc_map: big map over which LCLA entry is own by which job.
130 131 132
 */
struct d40_lcla_pool {
	void		*base;
133 134
	void		*base_unaligned;
	int		 pages;
135
	spinlock_t	 lock;
136
	struct d40_desc	**alloc_map;
137 138 139 140 141 142 143 144 145 146 147 148
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
149
 * event line number.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
 */
struct d40_phy_res {
	spinlock_t lock;
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @completed: Starts with 1, after first interrupt it is set to dma engine's
 * current cookie.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
170 171
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
172 173 174 175 176 177 178
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
 * @active: Active descriptor.
 * @queue: Queued jobs.
 * @dma_cfg: The client configuration of this dma channel.
179
 * @configured: whether the dma_cfg configuration is valid
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcla: Space for one dst src pair for logical channel transfers.
 * @lcpa: Pointer to dst and src lcpa settings.
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	/* ID of the most recent completed transfer */
	int				 completed;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
	struct list_head		 active;
	struct list_head		 queue;
	struct stedma40_chan_cfg	 dma_cfg;
203
	bool				 configured;
204 205 206 207 208 209
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
210 211 212
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
	enum dma_data_direction		runtime_direction;
213 214 215 216 217 218 219 220 221 222
};

/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
223
 * @rev: silicon revision detected.
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
248
 * @desc_slab: cache for descriptors.
249 250 251 252 253 254
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
255
	u8				  rev:4;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
276
	struct kmem_cache		 *desc_slab;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
};

/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

306 307 308 309 310
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static int d40_pool_lli_alloc(struct d40_desc *d40d,
			      int lli_len, bool is_log)
{
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
		d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
		d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
					      align);
		d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
					      align);
	} else {
		d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
					      align);
		d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
					      align);
	}

	return 0;
}

static void d40_pool_lli_free(struct d40_desc *d40d)
{
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;
	int p;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	if (d40c->log_num == D40_PHY_CHAN)
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

423 424 425 426 427 428 429
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
430
	struct d40_desc *desc = NULL;
431 432

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
433 434 435
		struct d40_desc *d;
		struct d40_desc *_d;

436 437 438 439
		list_for_each_entry_safe(d, _d, &d40c->client, node)
			if (async_tx_test_ack(&d->txd)) {
				d40_pool_lli_free(d);
				d40_desc_remove(d);
R
Rabin Vincent 已提交
440 441
				desc = d;
				memset(desc, 0, sizeof(*desc));
442
				break;
443 444
			}
	}
R
Rabin Vincent 已提交
445 446 447 448 449 450 451 452

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
453 454 455 456
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
457 458

	d40_lcla_free_all(d40c, d40d);
459
	kmem_cache_free(d40c->base->desc_slab, d40d);
460 461 462 463 464 465 466
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
	int curr_lcla = -EINVAL, next_lcla;

	if (d40c->log_num == D40_PHY_CHAN) {
		d40_phy_lli_write(d40c->base->virtbase,
				  d40c->phy_chan->num,
				  d40d->lli_phy.dst,
				  d40d->lli_phy.src);
		d40d->lli_current = d40d->lli_len;
	} else {

		if ((d40d->lli_len - d40d->lli_current) > 1)
			curr_lcla = d40_lcla_alloc_one(d40c, d40d);

		d40_log_lli_lcpa_write(d40c->lcpa,
				       &d40d->lli_log.dst[d40d->lli_current],
				       &d40d->lli_log.src[d40d->lli_current],
				       curr_lcla);

		d40d->lli_current++;
		for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
			struct d40_log_lli *lcla;

			if (d40d->lli_current + 1 < d40d->lli_len)
				next_lcla = d40_lcla_alloc_one(d40c, d40d);
			else
				next_lcla = -EINVAL;

			lcla = d40c->base->lcla_pool.base +
				d40c->phy_chan->num * 1024 +
				8 * curr_lcla * 2;

			d40_log_lli_lcla_write(lcla,
					       &d40d->lli_log.dst[d40d->lli_current],
					       &d40d->lli_log.src[d40d->lli_current],
					       next_lcla);

			(void) dma_map_single(d40c->base->dev, lcla,
					      2 * sizeof(struct d40_log_lli),
					      DMA_TO_DEVICE);

			curr_lcla = next_lcla;

			if (curr_lcla == -EINVAL) {
				d40d->lli_current++;
				break;
			}

		}
	}
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->queue);
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

551 552 553 554 555 556 557 558 559 560 561 562
static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;
	list_for_each_entry(d, &d40c->queue, node)
		if (list_is_last(&d->node, &d40c->queue))
			break;
	return d;
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
621

622
/* Support functions for logical channels */
623 624 625 626

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
627 628
	u32 status;
	int i;
629 630 631
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
632
	u32 wmask;
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

650 651 652
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
			dev_err(&d40c->chan.dev->device,
				"[%s]: unable to suspend the chl %d (log: %d) status %x\n",
				__func__, d40c->phy_chan->num, d40c->log_num,
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}


	d40c->pending_tx = 0;
	d40c->busy = false;
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
				   u32 event, int reg)
{
	void __iomem *addr = d40c->base->virtbase + D40_DREG_PCBASE
			     + d40c->phy_chan->num * D40_DREG_PCDELTA + reg;
	int tries;

	if (!enable) {
		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
		return;
	}

	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
	tries = 100;
	while (--tries) {
		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		if (readl(addr) & D40_EVENTLINE_MASK(event))
			break;
	}

	if (tries != 99)
		dev_dbg(chan2dev(d40c),
			"[%s] workaround enable S%cLNK (%d tries)\n",
			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
			100 - tries);

	WARN_ON(!tries);
}

745 746 747 748 749 750 751 752 753 754 755
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
{
	unsigned long flags;

	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

756 757
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SSLNK);
758
	}
759

760 761 762
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

763 764
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SDLNK);
765 766 767 768 769
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
}

770
static u32 d40_chan_has_events(struct d40_chan *d40c)
771
{
772
	u32 val;
773

774 775 776 777 778 779 780
	val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
		    d40c->phy_chan->num * D40_DREG_PCDELTA +
		    D40_CHAN_REG_SSLNK);

	val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
		     d40c->phy_chan->num * D40_DREG_PCDELTA +
		     D40_CHAN_REG_SDLNK);
781
	return val;
782 783
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

	if (d40c->log_num == D40_PHY_CHAN)
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

809
static void d40_config_write(struct d40_chan *d40c)
810 811 812 813 814 815 816 817 818 819 820 821
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
	var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
822
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
823 824 825 826 827 828 829 830 831 832 833 834 835 836

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

	if (d40c->log_num != D40_PHY_CHAN) {
		/* Set default config for CFG reg */
		writel(d40c->src_def_cfg,
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg,
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SDCFG);

837 838 839 840 841 842 843 844 845 846 847 848 849
		/* Set LIDX for lcla */
		writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
		       D40_SREG_ELEM_LOG_LIDX_MASK,
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SDELT);

		writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
		       D40_SREG_ELEM_LOG_LIDX_MASK,
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SSELT);

850 851 852
	}
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

	if (d40c->log_num != D40_PHY_CHAN)
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
	else
		num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
				 d40c->phy_chan->num * D40_DREG_PCDELTA +
				 D40_CHAN_REG_SDELT) &
			   D40_SREG_ELEM_PHY_ECNT_MASK) >>
			D40_SREG_ELEM_PHY_ECNT_POS;
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

	if (d40c->log_num != D40_PHY_CHAN)
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
		is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
				d40c->phy_chan->num * D40_DREG_PCDELTA +
				D40_CHAN_REG_SDLNK) &
			D40_SREG_LNK_PHYS_LNK_MASK;
	return is_link;
}

static int d40_pause(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

890 891 892
	if (!d40c->busy)
		return 0;

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res == 0) {
		if (d40c->log_num != D40_PHY_CHAN) {
			d40_config_set_event(d40c, false);
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c))
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
		}
	}

	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

static int d40_resume(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

917 918 919
	if (!d40c->busy)
		return 0;

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->base->rev == 0)
		if (d40c->log_num != D40_PHY_CHAN) {
			res = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			goto no_suspend;
		}

	/* If bytes left to transfer or linked tx resume job */
	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {

		if (d40c->log_num != D40_PHY_CHAN)
			d40_config_set_event(d40c, true);

		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
	}

no_suspend:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
{
	/* TODO: Write */
}

static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
{
	struct d40_desc *d40d_prev = NULL;
	int i;
	u32 val;

	if (!list_empty(&d40c->queue))
		d40d_prev = d40_last_queued(d40c);
	else if (!list_empty(&d40c->active))
		d40d_prev = d40_first_active_get(d40c);

	if (!d40d_prev)
		return;

	/* Here we try to join this job with previous jobs */
	val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
		    d40c->phy_chan->num * D40_DREG_PCDELTA +
		    D40_CHAN_REG_SSLNK);

	/* Figure out which link we're currently transmitting */
	for (i = 0; i < d40d_prev->lli_len; i++)
		if (val == d40d_prev->lli_phy.src[i].reg_lnk)
			break;

	val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
		    d40c->phy_chan->num * D40_DREG_PCDELTA +
		    D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;

	if (i == (d40d_prev->lli_len - 1) && val > 0) {
		/* Change the current one */
		writel(virt_to_phys(d40d->lli_phy.src),
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SSLNK);
		writel(virt_to_phys(d40d->lli_phy.dst),
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SDLNK);

		d40d->is_hw_linked = true;

	} else if (i < d40d_prev->lli_len) {
		(void) dma_unmap_single(d40c->base->dev,
					virt_to_phys(d40d_prev->lli_phy.src),
					d40d_prev->lli_pool.size,
					DMA_TO_DEVICE);

		/* Keep the settings */
		val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
			~D40_SREG_LNK_PHYS_LNK_MASK;
		d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
			val | virt_to_phys(d40d->lli_phy.src);

		val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
			~D40_SREG_LNK_PHYS_LNK_MASK;
		d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
			val | virt_to_phys(d40d->lli_phy.dst);

		(void) dma_map_single(d40c->base->dev,
				      d40d_prev->lli_phy.src,
				      d40d_prev->lli_pool.size,
				      DMA_TO_DEVICE);
		d40d->is_hw_linked = true;
	}
}

1014 1015 1016 1017 1018 1019 1020 1021
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;

1022 1023
	(void) d40_pause(&d40c->chan);

1024 1025
	spin_lock_irqsave(&d40c->lock, flags);

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	d40c->chan.cookie++;

	if (d40c->chan.cookie < 0)
		d40c->chan.cookie = 1;

	d40d->txd.cookie = d40c->chan.cookie;

	if (d40c->log_num == D40_PHY_CHAN)
		d40_tx_submit_phy(d40c, d40d);
	else
		d40_tx_submit_log(d40c, d40d);
1037 1038 1039 1040 1041

	d40_desc_queue(d40c, d40d);

	spin_unlock_irqrestore(&d40c->lock, flags);

1042 1043
	(void) d40_resume(&d40c->chan);

1044 1045 1046 1047 1048
	return tx->cookie;
}

static int d40_start(struct d40_chan *d40c)
{
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (d40c->base->rev == 0) {
		int err;

		if (d40c->log_num != D40_PHY_CHAN) {
			err = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			if (err)
				return err;
		}
	}

1060
	if (d40c->log_num != D40_PHY_CHAN)
1061 1062
		d40_config_set_event(d40c, true);

1063
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
		d40c->busy = true;

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1083 1084 1085 1086
		/*
		 * If this job is already linked in hw,
		 * do not submit it.
		 */
1087

1088 1089 1090
		if (!d40d->is_hw_linked) {
			/* Initiate DMA job */
			d40_desc_load(d40c, d40d);
1091

1092 1093
			/* Start dma job */
			err = d40_start(d40c);
1094

1095 1096 1097
			if (err)
				return NULL;
		}
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

1114
	d40_lcla_free_all(d40c, d40d);
1115

1116
	if (d40d->lli_current < d40d->lli_len) {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		d40_desc_load(d40c, d40d);
		/* Start dma job */
		(void) d40_start(d40c);
		return;
	}

	if (d40_queue_start(d40c) == NULL)
		d40c->busy = false;

	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1134
	struct d40_desc *d40d;
1135 1136 1137 1138 1139 1140 1141
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

	/* Get first active entry from list */
1142
	d40d = d40_first_active_get(d40c);
1143

1144
	if (d40d == NULL)
1145 1146
		goto err;

1147
	d40c->completed = d40d->txd.cookie;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1159 1160 1161 1162 1163 1164 1165
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

	if (async_tx_test_ack(&d40d->txd)) {
		d40_pool_lli_free(d40d);
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
1166
	} else {
1167 1168
		if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
1169
			d40_lcla_free_all(d40c, d40d);
1170 1171
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1182
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		callback(callback_param);

	return;

 err:
	/* Rescue manouver if receiving double interrupts */
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	static const struct d40_interrupt_lookup il[] = {
		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
	};

	int i;
	u32 regs[ARRAY_SIZE(il)];
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
	for (i = 0; i < ARRAY_SIZE(il); i++)
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);

		/* No more set bits found? */
		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		/* ACK interrupt */
1237
		writel(1 << idx, base->virtbase + il[row].clr);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1248 1249
			dev_err(base->dev,
				"[%s] IRQ chan: %ld offset %d idx %d\n",
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
				__func__, chan, il[row].offset, idx);

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1266
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	if (!conf->dir) {
		dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
			__func__);
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

		dev_err(&d40c->chan.dev->device,
			"[%s] Invalid TX channel address (%d)\n",
			__func__, conf->dst_dev_type);
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Invalid RX channel address (%d)\n",
			__func__, conf->src_dev_type);
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1294 1295 1296 1297 1298 1299
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
		dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
			__func__);
		res = -EINVAL;
	}

1300
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
		dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
			__func__);
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
		dev_err(&d40c->chan.dev->device,
			"[%s] No event line\n", __func__);
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Invalid event group\n", __func__);
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
		dev_err(&d40c->chan.dev->device,
			"[%s] periph to periph not supported\n",
			__func__);
		res = -EINVAL;
	}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

		dev_err(&d40c->chan.dev->device,
			"[%s] src (burst x width) != dst (burst x width)\n",
			__func__);
		res = -EINVAL;
	}

1347 1348 1349 1350
	return res;
}

static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1351
			       int log_event_line, bool is_log)
1352 1353 1354
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1355
	if (!is_log) {
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

static int d40_allocate_channel(struct d40_chan *d40c)
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
	bool is_src;
1445
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	phys = d40c->base->phy_res;

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
			for (i = 0; i < d40c->base->num_phy_chans; i++) {

1470 1471
				if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log))
1472 1473 1474 1475 1476 1477
					goto found_phy;
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1478 1479 1480 1481
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
							       is_log))
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1505
						       event_line, is_log))
1506 1507 1508 1509 1510
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1511
						       event_line, is_log))
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
			memcpy[d40c->chan.chan_id];

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
		dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
			__func__);
		return -EINVAL;
	}

	return 0;
}


static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1559
	u32 event;
1560 1561
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;
1562 1563 1564
	struct d40_desc *d;
	struct d40_desc *_d;

1565 1566 1567 1568

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

1569 1570 1571 1572 1573 1574 1575 1576
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
			d40_pool_lli_free(d);
			d40_desc_remove(d);
			d40_desc_free(d40c, d);
		}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (phy == NULL) {
		dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
			__func__);
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
		dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
			__func__);
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
		dev_err(&d40c->chan.dev->device,
			"[%s] Unknown direction\n", __func__);
		return -EINVAL;
	}

1603 1604 1605 1606 1607 1608 1609
	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res) {
		dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
			__func__);
		return res;
	}

1610
	if (d40c->log_num != D40_PHY_CHAN) {
1611
		/* Release logical channel, deactivate the event line */
1612

1613
		d40_config_set_event(d40c, false);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;

		/*
		 * Check if there are more logical allocation
		 * on this phy channel.
		 */
		if (!d40_alloc_mask_free(phy, is_src, event)) {
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c)) {
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
				if (res) {
					dev_err(&d40c->chan.dev->device,
						"[%s] Executing RUN command\n",
						__func__);
					return res;
				}
			}
			return 0;
		}
1634 1635 1636
	} else {
		(void) d40_alloc_mask_free(phy, is_src, 0);
	}
1637 1638 1639 1640 1641 1642 1643 1644 1645

	/* Release physical channel */
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (res) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Failed to stop channel\n", __func__);
		return res;
	}
	d40c->phy_chan = NULL;
1646
	d40c->configured = false;
1647 1648 1649 1650 1651
	d40c->base->lookup_phy_chans[phy->num] = NULL;

	return 0;
}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
static bool d40_is_paused(struct d40_chan *d40c)
{
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->log_num == D40_PHY_CHAN) {
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1678
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1679
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1680 1681 1682 1683
		status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
			       d40c->phy_chan->num * D40_DREG_PCDELTA +
			       D40_CHAN_REG_SDLNK);
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1684
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1685 1686 1687 1688
		status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
			       d40c->phy_chan->num * D40_DREG_PCDELTA +
			       D40_CHAN_REG_SSLNK);
	} else {
1689 1690 1691 1692
		dev_err(&d40c->chan.dev->device,
			"[%s] Unknown direction\n", __func__);
		goto _exit;
	}
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}


1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
						   struct scatterlist *sgl_dst,
						   struct scatterlist *sgl_src,
						   unsigned int sgl_len,
1724
						   unsigned long dma_flags)
1725 1726 1727 1728 1729
{
	int res;
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1730
	unsigned long flags;
1731

1732 1733 1734 1735 1736 1737
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Unallocated channel.\n", __func__);
		return ERR_PTR(-EINVAL);
	}

1738
	spin_lock_irqsave(&d40c->lock, flags);
1739 1740 1741 1742 1743
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
		goto err;

1744 1745 1746 1747 1748 1749 1750 1751 1752
	d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Unaligned size\n", __func__);
		goto err;
	}

1753
	d40d->lli_current = 0;
1754
	d40d->txd.flags = dma_flags;
1755 1756 1757

	if (d40c->log_num != D40_PHY_CHAN) {

1758
		if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1759 1760 1761 1762 1763
			dev_err(&d40c->chan.dev->device,
				"[%s] Out of memory\n", __func__);
			goto err;
		}

1764
		(void) d40_log_sg_to_lli(sgl_src,
1765 1766 1767
					 sgl_len,
					 d40d->lli_log.src,
					 d40c->log_def.lcsp1,
1768 1769
					 d40c->dma_cfg.src_info.data_width,
					 d40c->dma_cfg.dst_info.data_width);
1770

1771
		(void) d40_log_sg_to_lli(sgl_dst,
1772 1773 1774
					 sgl_len,
					 d40d->lli_log.dst,
					 d40c->log_def.lcsp3,
1775 1776
					 d40c->dma_cfg.dst_info.data_width,
					 d40c->dma_cfg.src_info.data_width);
1777
	} else {
1778
		if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1779 1780 1781 1782 1783 1784 1785 1786 1787
			dev_err(&d40c->chan.dev->device,
				"[%s] Out of memory\n", __func__);
			goto err;
		}

		res = d40_phy_sg_to_lli(sgl_src,
					sgl_len,
					0,
					d40d->lli_phy.src,
1788
					virt_to_phys(d40d->lli_phy.src),
1789 1790
					d40c->src_def_cfg,
					d40c->dma_cfg.src_info.data_width,
1791
					d40c->dma_cfg.dst_info.data_width,
1792
					d40c->dma_cfg.src_info.psize);
1793 1794 1795 1796 1797 1798 1799 1800

		if (res < 0)
			goto err;

		res = d40_phy_sg_to_lli(sgl_dst,
					sgl_len,
					0,
					d40d->lli_phy.dst,
1801
					virt_to_phys(d40d->lli_phy.dst),
1802 1803
					d40c->dst_def_cfg,
					d40c->dma_cfg.dst_info.data_width,
1804
					d40c->dma_cfg.src_info.data_width,
1805
					d40c->dma_cfg.dst_info.psize);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

		if (res < 0)
			goto err;

		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
				      d40d->lli_pool.size, DMA_TO_DEVICE);
	}

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

1818
	spin_unlock_irqrestore(&d40c->lock, flags);
1819 1820 1821

	return &d40d->txd;
err:
1822 1823
	if (d40d)
		d40_desc_free(d40c, d40d);
1824
	spin_unlock_irqrestore(&d40c->lock, flags);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	return NULL;
}
EXPORT_SYMBOL(stedma40_memcpy_sg);

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

1843 1844 1845
	if (!err)
		d40c->configured = true;

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
1857
	bool is_free_phy;
1858 1859 1860 1861
	spin_lock_irqsave(&d40c->lock, flags);

	d40c->completed = chan->cookie = 1;

1862 1863
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
1864
		err = d40_config_memcpy(d40c);
1865 1866 1867 1868 1869 1870
		if (err) {
			dev_err(&d40c->chan.dev->device,
				"[%s] Failed to configure memcpy channel\n",
				__func__);
			goto fail;
		}
1871
	}
1872
	is_free_phy = (d40c->phy_chan == NULL);
1873 1874 1875 1876 1877

	err = d40_allocate_channel(d40c);
	if (err) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Failed to allocate channel\n", __func__);
1878
		goto fail;
1879 1880
	}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
		    &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);

	if (d40c->log_num != D40_PHY_CHAN) {
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
		else
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.dst_dev_type *
			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
	}

	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
1903 1904
	if (is_free_phy)
		d40_config_write(d40c);
1905
fail:
1906
	spin_unlock_irqrestore(&d40c->lock, flags);
1907
	return err;
1908 1909 1910 1911 1912 1913 1914 1915 1916
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

1917 1918 1919 1920 1921 1922 1923
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Cannot free unallocated channel\n", __func__);
		return;
	}


1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
		dev_err(&d40c->chan.dev->device,
			"[%s] Failed to free channel\n", __func__);
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
1938
						       unsigned long dma_flags)
1939 1940 1941 1942
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1943
	unsigned long flags;
1944

1945 1946 1947 1948 1949 1950
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Channel is not allocated.\n", __func__);
		return ERR_PTR(-EINVAL);
	}

1951
	spin_lock_irqsave(&d40c->lock, flags);
1952 1953 1954 1955 1956 1957 1958 1959
	d40d = d40_desc_get(d40c);

	if (d40d == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Descriptor is NULL\n", __func__);
		goto err;
	}

1960
	d40d->txd.flags = dma_flags;
1961 1962 1963 1964 1965 1966 1967 1968 1969
	d40d->lli_len = d40_size_2_dmalen(size,
					  d40c->dma_cfg.src_info.data_width,
					  d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Unaligned size\n", __func__);
		goto err;
	}

1970 1971 1972 1973 1974 1975 1976

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

	if (d40c->log_num != D40_PHY_CHAN) {

1977
		if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1978 1979 1980 1981
			dev_err(&d40c->chan.dev->device,
				"[%s] Out of memory\n", __func__);
			goto err;
		}
1982
		d40d->lli_current = 0;
1983

1984 1985 1986 1987 1988 1989 1990 1991
		if (d40_log_buf_to_lli(d40d->lli_log.src,
				       src,
				       size,
				       d40c->log_def.lcsp1,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       true) == NULL)
			goto err;
1992

1993 1994 1995 1996 1997 1998 1999 2000
		if (d40_log_buf_to_lli(d40d->lli_log.dst,
				       dst,
				       size,
				       d40c->log_def.lcsp3,
				       d40c->dma_cfg.dst_info.data_width,
				       d40c->dma_cfg.src_info.data_width,
				       true) == NULL)
			goto err;
2001 2002 2003

	} else {

2004
		if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
2005 2006 2007 2008 2009
			dev_err(&d40c->chan.dev->device,
				"[%s] Out of memory\n", __func__);
			goto err;
		}

2010
		if (d40_phy_buf_to_lli(d40d->lli_phy.src,
2011 2012 2013 2014 2015 2016 2017
				       src,
				       size,
				       d40c->dma_cfg.src_info.psize,
				       0,
				       d40c->src_def_cfg,
				       true,
				       d40c->dma_cfg.src_info.data_width,
2018 2019 2020
				       d40c->dma_cfg.dst_info.data_width,
				       false) == NULL)
			goto err;
2021

2022
		if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
2023 2024 2025 2026 2027 2028 2029
				       dst,
				       size,
				       d40c->dma_cfg.dst_info.psize,
				       0,
				       d40c->dst_def_cfg,
				       true,
				       d40c->dma_cfg.dst_info.data_width,
2030 2031 2032
				       d40c->dma_cfg.src_info.data_width,
				       false) == NULL)
			goto err;
2033 2034 2035 2036 2037

		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
				      d40d->lli_pool.size, DMA_TO_DEVICE);
	}

2038
	spin_unlock_irqrestore(&d40c->lock, flags);
2039 2040 2041
	return &d40d->txd;

err:
2042 2043
	if (d40d)
		d40_desc_free(d40c, d40d);
2044
	spin_unlock_irqrestore(&d40c->lock, flags);
2045 2046 2047
	return NULL;
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *chan,
	    struct scatterlist *dst_sg, unsigned int dst_nents,
	    struct scatterlist *src_sg, unsigned int src_nents,
	    unsigned long dma_flags)
{
	if (dst_nents != src_nents)
		return NULL;

	return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
}

2060 2061 2062 2063 2064
static int d40_prep_slave_sg_log(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sg_len,
				 enum dma_data_direction direction,
2065
				 unsigned long dma_flags)
2066 2067 2068 2069
{
	dma_addr_t dev_addr = 0;
	int total_size;

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Unaligned size\n", __func__);
		return -EINVAL;
	}

	if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
2080 2081 2082 2083 2084
		dev_err(&d40c->chan.dev->device,
			"[%s] Out of memory\n", __func__);
		return -ENOMEM;
	}

2085
	d40d->lli_current = 0;
2086

2087
	if (direction == DMA_FROM_DEVICE)
2088 2089 2090 2091
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2092
	else if (direction == DMA_TO_DEVICE)
2093 2094 2095 2096 2097
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];

2098
	else
2099
		return -EINVAL;
2100

2101
	total_size = d40_log_sg_to_dev(sgl, sg_len,
2102 2103 2104 2105 2106
				       &d40d->lli_log,
				       &d40c->log_def,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       direction,
2107
				       dev_addr);
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (total_size < 0)
		return -EINVAL;

	return 0;
}

static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sgl_len,
				 enum dma_data_direction direction,
2120
				 unsigned long dma_flags)
2121 2122 2123 2124 2125
{
	dma_addr_t src_dev_addr;
	dma_addr_t dst_dev_addr;
	int res;

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Unaligned size\n", __func__);
		return -EINVAL;
	}

	if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
2136 2137 2138 2139 2140
		dev_err(&d40c->chan.dev->device,
			"[%s] Out of memory\n", __func__);
		return -ENOMEM;
	}

2141
	d40d->lli_current = 0;
2142 2143 2144

	if (direction == DMA_FROM_DEVICE) {
		dst_dev_addr = 0;
2145 2146 2147 2148
		if (d40c->runtime_addr)
			src_dev_addr = d40c->runtime_addr;
		else
			src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2149
	} else if (direction == DMA_TO_DEVICE) {
2150 2151 2152 2153
		if (d40c->runtime_addr)
			dst_dev_addr = d40c->runtime_addr;
		else
			dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2154 2155 2156 2157 2158 2159 2160 2161
		src_dev_addr = 0;
	} else
		return -EINVAL;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				src_dev_addr,
				d40d->lli_phy.src,
2162
				virt_to_phys(d40d->lli_phy.src),
2163 2164
				d40c->src_def_cfg,
				d40c->dma_cfg.src_info.data_width,
2165
				d40c->dma_cfg.dst_info.data_width,
2166
				d40c->dma_cfg.src_info.psize);
2167 2168 2169 2170 2171 2172 2173
	if (res < 0)
		return res;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				dst_dev_addr,
				d40d->lli_phy.dst,
2174
				virt_to_phys(d40d->lli_phy.dst),
2175 2176
				d40c->dst_def_cfg,
				d40c->dma_cfg.dst_info.data_width,
2177
				d40c->dma_cfg.src_info.data_width,
2178
				d40c->dma_cfg.dst_info.psize);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	if (res < 0)
		return res;

	(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
			      d40d->lli_pool.size, DMA_TO_DEVICE);
	return 0;
}

static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
							 enum dma_data_direction direction,
2191
							 unsigned long dma_flags)
2192 2193 2194 2195
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
2196
	unsigned long flags;
2197 2198
	int err;

2199 2200 2201 2202 2203 2204
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Cannot prepare unallocated channel\n", __func__);
		return ERR_PTR(-EINVAL);
	}

2205
	spin_lock_irqsave(&d40c->lock, flags);
2206 2207 2208
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
2209
		goto err;
2210 2211 2212

	if (d40c->log_num != D40_PHY_CHAN)
		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2213
					    direction, dma_flags);
2214 2215
	else
		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2216
					    direction, dma_flags);
2217 2218 2219 2220 2221
	if (err) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Failed to prepare %s slave sg job: %d\n",
			__func__,
			d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2222
		goto err;
2223 2224
	}

2225
	d40d->txd.flags = dma_flags;
2226 2227 2228 2229 2230

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

2231
	spin_unlock_irqrestore(&d40c->lock, flags);
2232
	return &d40d->txd;
2233 2234 2235 2236 2237 2238

err:
	if (d40d)
		d40_desc_free(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);
	return NULL;
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
}

static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	int ret;

2250 2251 2252 2253 2254 2255 2256
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Cannot read status of unallocated channel\n",
			__func__);
		return -EINVAL;
	}

2257 2258 2259
	last_complete = d40c->completed;
	last_used = chan->cookie;

2260 2261 2262 2263
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
	else
		ret = dma_async_is_complete(cookie, last_complete, last_used);
2264

2265 2266
	dma_set_tx_state(txstate, last_complete, last_used,
			 stedma40_residue(chan));
2267 2268 2269 2270 2271 2272 2273 2274 2275

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2276 2277 2278 2279 2280 2281
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Channel is not allocated!\n", __func__);
		return;
	}

2282 2283 2284 2285 2286 2287 2288 2289 2290
	spin_lock_irqsave(&d40c->lock, flags);

	/* Busy means that pending jobs are already being processed */
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/* Runtime reconfiguration extension */
static void d40_set_runtime_config(struct dma_chan *chan,
			       struct dma_slave_config *config)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
	enum dma_slave_buswidth config_addr_width;
	dma_addr_t config_addr;
	u32 config_maxburst;
	enum stedma40_periph_data_width addr_width;
	int psize;

	if (config->direction == DMA_FROM_DEVICE) {
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

		config_addr_width = config->src_addr_width;
		config_maxburst = config->src_maxburst;

	} else if (config->direction == DMA_TO_DEVICE) {
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

		config_addr_width = config->dst_addr_width;
		config_maxburst = config->dst_maxburst;

	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
		return;
	}

	switch (config_addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			config->src_addr_width);
		return;
	}

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	if (d40c->log_num != D40_PHY_CHAN) {
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
2387 2388
		else if (config_maxburst >= 2)
			psize = STEDMA40_PSIZE_PHY_2;
2389 2390 2391
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}
2392 2393 2394 2395

	/* Set up all the endpoint configs */
	cfg->src_info.data_width = addr_width;
	cfg->src_info.psize = psize;
2396
	cfg->src_info.big_endian = false;
2397 2398 2399
	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
	cfg->dst_info.data_width = addr_width;
	cfg->dst_info.psize = psize;
2400
	cfg->dst_info.big_endian = false;
2401 2402
	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;

2403 2404 2405 2406 2407 2408 2409
	/* Fill in register values */
	if (d40c->log_num != D40_PHY_CHAN)
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
		"configured channel %s for %s, data width %d, "
		"maxburst %d bytes, LE, no flow control\n",
		dma_chan_name(chan),
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		config_addr_width,
		config_maxburst);
}

2422 2423
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2424 2425 2426 2427
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2428 2429 2430 2431 2432 2433
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Channel is not allocated!\n", __func__);
		return -EINVAL;
	}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	switch (cmd) {
	case DMA_TERMINATE_ALL:
		spin_lock_irqsave(&d40c->lock, flags);
		d40_term_all(d40c);
		spin_unlock_irqrestore(&d40c->lock, flags);
		return 0;
	case DMA_PAUSE:
		return d40_pause(chan);
	case DMA_RESUME:
		return d40_resume(chan);
2444 2445 2446 2447 2448 2449
	case DMA_SLAVE_CONFIG:
		d40_set_runtime_config(chan,
			(struct dma_slave_config *) arg);
		return 0;
	default:
		break;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
		INIT_LIST_HEAD(&d40c->client);

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);

	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2502
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_slave.device_tx_status = d40_tx_status;
	base->dma_slave.device_issue_pending = d40_issue_pending;
	base->dma_slave.device_control = d40_control;
	base->dma_slave.dev = base->dev;

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
		dev_err(base->dev,
			"[%s] Failed to register slave channels\n",
			__func__);
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
		      base->num_log_chans, base->plat_data->memcpy_len);

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2523
	dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2524 2525 2526 2527

	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2528
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_memcpy.device_tx_status = d40_tx_status;
	base->dma_memcpy.device_issue_pending = d40_issue_pending;
	base->dma_memcpy.device_control = d40_control;
	base->dma_memcpy.dev = base->dev;
	/*
	 * This controller can only access address at even
	 * 32bit boundaries, i.e. 2^2
	 */
	base->dma_memcpy.copy_align = 2;

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
		dev_err(base->dev,
			"[%s] Failed to regsiter memcpy only channels\n",
			__func__);
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2555
	dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2556 2557 2558 2559

	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2560
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_both.device_tx_status = d40_tx_status;
	base->dma_both.device_issue_pending = d40_issue_pending;
	base->dma_both.device_control = d40_control;
	base->dma_both.dev = base->dev;
	base->dma_both.copy_align = 2;
	err = dma_async_device_register(&base->dma_both);

	if (err) {
		dev_err(base->dev,
			"[%s] Failed to register logical and physical capable channels\n",
			__func__);
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
2610 2611 2612

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2613 2614 2615 2616 2617
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
		num_phy_chans_avail--;
2618 2619
	}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	static const struct d40_reg_val dma_id_regs[] = {
		/* Peripheral Id */
		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
		/*
		 * D40_DREG_PERIPHID2 Depends on HW revision:
		 *  MOP500/HREF ED has 0x0008,
		 *  ? has 0x0018,
		 *  HREF V1 has 0x0028
		 */
		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},

		/* PCell Id */
		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
	};
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
	int i;
2668
	u32 val;
2669
	u32 rev;
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

	clk = clk_get(&pdev->dev, NULL);

	if (IS_ERR(clk)) {
		dev_err(&pdev->dev, "[%s] No matching clock found\n",
			__func__);
		goto failure;
	}

	clk_enable(clk);

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

	/* HW version check */
	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
		if (dma_id_regs[i].val !=
		    readl(virtbase + dma_id_regs[i].reg)) {
			dev_err(&pdev->dev,
				"[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
				__func__,
				dma_id_regs[i].val,
				dma_id_regs[i].reg,
				readl(virtbase + dma_id_regs[i].reg));
			goto failure;
		}
	}

2708
	/* Get silicon revision and designer */
2709
	val = readl(virtbase + D40_DREG_PERIPHID2);
2710

2711 2712
	if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
	    D40_HW_DESIGNER) {
2713 2714
		dev_err(&pdev->dev,
			"[%s] Unknown designer! Got %x wanted %x\n",
2715 2716
			__func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
			D40_HW_DESIGNER);
2717 2718 2719
		goto failure;
	}

2720 2721 2722
	rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
		D40_DREG_PERIPHID2_REV_POS;

2723 2724 2725 2726
	/* The number of physical channels on this HW */
	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;

	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2727
		 rev, res->start);
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

	plat_data = pdev->dev.platform_data;

	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
		dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
		goto failure;
	}

2749
	base->rev = rev;
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

	if (num_log_chans + plat_data->memcpy_len) {
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
2783 2784 2785 2786

	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
					    sizeof(struct d40_desc *) *
					    D40_LCLA_LINK_PER_EVENT_GRP,
2787 2788 2789 2790
					    GFP_KERNEL);
	if (!base->lcla_pool.alloc_map)
		goto failure;

2791 2792 2793 2794 2795 2796
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

2797 2798 2799
	return base;

failure:
2800
	if (!IS_ERR(clk)) {
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
		clk_disable(clk);
		clk_put(clk);
	}
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	static const struct d40_reg_val dma_init_reg[] = {
		/* Clock every part of the DMA block from start */
		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},

		/* Interrupts on all logical channels */
		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
	};
	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;

	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
	writel(pcmis, base->virtbase + D40_DREG_PCMIS);

	/* Write which interrupt to clear */
	writel(pcicr, base->virtbase + D40_DREG_PCICR);

}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
static int __init d40_lcla_allocate(struct d40_base *base)
{
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

			dev_err(base->dev,
				"[%s] Failed to allocate %d pages.\n",
				__func__, base->lcla_pool.pages);

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
2937 2938 2939 2940
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
		dev_err(&pdev->dev,
			"[%s] No \"lcpa\" memory resource\n",
			__func__);
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
		dev_err(&pdev->dev,
			"[%s] Failed to request LCPA region 0x%x-0x%x\n",
			__func__, res->start, res->end);
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
		dev_err(&pdev->dev,
			"[%s] Failed to ioremap LCPA region\n",
			__func__);
		goto failure;
	}

3024 3025 3026 3027
	ret = d40_lcla_allocate(base);
	if (ret) {
		dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
			__func__);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
		goto failure;
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);

	if (ret) {
		dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
		goto failure;
	}

	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
3053 3054
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
3055 3056
		if (base->virtbase)
			iounmap(base->virtbase);
3057 3058 3059
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
3060 3061 3062

		kfree(base->lcla_pool.base_unaligned);

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
			clk_disable(base->clk);
			clk_put(base->clk);
		}

		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
	},
};

R
Rabin Vincent 已提交
3092
static int __init stedma40_init(void)
3093 3094 3095 3096
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
arch_initcall(stedma40_init);