提交 8d318a50 编写于 作者: L Linus Walleij 提交者: Dan Williams

DMAENGINE: Support for ST-Ericssons DMA40 block v3

This is a straightforward driver for the ST-Ericsson DMA40 DMA
controller found in U8500, implemented akin to the existing
COH 901 318 driver.
Signed-off-by: NLinus Walleij <linus.walleij@stericsson.com>
Acked-by: NSrinidh Kasagar <srinidhi.kasagar@stericsson.com>
Cc: STEricsson_nomadik_linux@list.st.com
Cc: Alessandro Rubini <rubini@unipv.it>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NDan Williams <dan.j.williams@intel.com>
上级 6a3cd3ea
/*
* arch/arm/plat-nomadik/include/plat/ste_dma40.h
*
* Copyright (C) ST-Ericsson 2007-2010
* License terms: GNU General Public License (GPL) version 2
* Author: Per Friden <per.friden@stericsson.com>
* Author: Jonas Aaberg <jonas.aberg@stericsson.com>
*/
#ifndef STE_DMA40_H
#define STE_DMA40_H
#include <linux/dmaengine.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
/* dev types for memcpy */
#define STEDMA40_DEV_DST_MEMORY (-1)
#define STEDMA40_DEV_SRC_MEMORY (-1)
/*
* Description of bitfields of channel_type variable is available in
* the info structure.
*/
/* Priority */
#define STEDMA40_INFO_PRIO_TYPE_POS 2
#define STEDMA40_HIGH_PRIORITY_CHANNEL (0x1 << STEDMA40_INFO_PRIO_TYPE_POS)
#define STEDMA40_LOW_PRIORITY_CHANNEL (0x2 << STEDMA40_INFO_PRIO_TYPE_POS)
/* Mode */
#define STEDMA40_INFO_CH_MODE_TYPE_POS 6
#define STEDMA40_CHANNEL_IN_PHY_MODE (0x1 << STEDMA40_INFO_CH_MODE_TYPE_POS)
#define STEDMA40_CHANNEL_IN_LOG_MODE (0x2 << STEDMA40_INFO_CH_MODE_TYPE_POS)
#define STEDMA40_CHANNEL_IN_OPER_MODE (0x3 << STEDMA40_INFO_CH_MODE_TYPE_POS)
/* Mode options */
#define STEDMA40_INFO_CH_MODE_OPT_POS 8
#define STEDMA40_PCHAN_BASIC_MODE (0x1 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_PCHAN_MODULO_MODE (0x2 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_PCHAN_DOUBLE_DST_MODE (0x3 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_LCHAN_SRC_PHY_DST_LOG (0x1 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_LCHAN_SRC_LOG_DST_PHS (0x2 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_LCHAN_SRC_LOG_DST_LOG (0x3 << STEDMA40_INFO_CH_MODE_OPT_POS)
/* Interrupt */
#define STEDMA40_INFO_TIM_POS 10
#define STEDMA40_NO_TIM_FOR_LINK (0x0 << STEDMA40_INFO_TIM_POS)
#define STEDMA40_TIM_FOR_LINK (0x1 << STEDMA40_INFO_TIM_POS)
/* End of channel_type configuration */
#define STEDMA40_ESIZE_8_BIT 0x0
#define STEDMA40_ESIZE_16_BIT 0x1
#define STEDMA40_ESIZE_32_BIT 0x2
#define STEDMA40_ESIZE_64_BIT 0x3
/* The value 4 indicates that PEN-reg shall be set to 0 */
#define STEDMA40_PSIZE_PHY_1 0x4
#define STEDMA40_PSIZE_PHY_2 0x0
#define STEDMA40_PSIZE_PHY_4 0x1
#define STEDMA40_PSIZE_PHY_8 0x2
#define STEDMA40_PSIZE_PHY_16 0x3
/*
* The number of elements differ in logical and
* physical mode
*/
#define STEDMA40_PSIZE_LOG_1 STEDMA40_PSIZE_PHY_2
#define STEDMA40_PSIZE_LOG_4 STEDMA40_PSIZE_PHY_4
#define STEDMA40_PSIZE_LOG_8 STEDMA40_PSIZE_PHY_8
#define STEDMA40_PSIZE_LOG_16 STEDMA40_PSIZE_PHY_16
enum stedma40_flow_ctrl {
STEDMA40_NO_FLOW_CTRL,
STEDMA40_FLOW_CTRL,
};
enum stedma40_endianess {
STEDMA40_LITTLE_ENDIAN,
STEDMA40_BIG_ENDIAN
};
enum stedma40_periph_data_width {
STEDMA40_BYTE_WIDTH = STEDMA40_ESIZE_8_BIT,
STEDMA40_HALFWORD_WIDTH = STEDMA40_ESIZE_16_BIT,
STEDMA40_WORD_WIDTH = STEDMA40_ESIZE_32_BIT,
STEDMA40_DOUBLEWORD_WIDTH = STEDMA40_ESIZE_64_BIT
};
struct stedma40_half_channel_info {
enum stedma40_endianess endianess;
enum stedma40_periph_data_width data_width;
int psize;
enum stedma40_flow_ctrl flow_ctrl;
};
enum stedma40_xfer_dir {
STEDMA40_MEM_TO_MEM,
STEDMA40_MEM_TO_PERIPH,
STEDMA40_PERIPH_TO_MEM,
STEDMA40_PERIPH_TO_PERIPH
};
/**
* struct stedma40_chan_cfg - Structure to be filled by client drivers.
*
* @dir: MEM 2 MEM, PERIPH 2 MEM , MEM 2 PERIPH, PERIPH 2 PERIPH
* @channel_type: priority, mode, mode options and interrupt configuration.
* @src_dev_type: Src device type
* @dst_dev_type: Dst device type
* @src_info: Parameters for dst half channel
* @dst_info: Parameters for dst half channel
* @pre_transfer_data: Data to be passed on to the pre_transfer() function.
* @pre_transfer: Callback used if needed before preparation of transfer.
* Only called if device is set. size of bytes to transfer
* (in case of multiple element transfer size is size of the first element).
*
*
* This structure has to be filled by the client drivers.
* It is recommended to do all dma configurations for clients in the machine.
*
*/
struct stedma40_chan_cfg {
enum stedma40_xfer_dir dir;
unsigned int channel_type;
int src_dev_type;
int dst_dev_type;
struct stedma40_half_channel_info src_info;
struct stedma40_half_channel_info dst_info;
void *pre_transfer_data;
int (*pre_transfer) (struct dma_chan *chan,
void *data,
int size);
};
/**
* struct stedma40_platform_data - Configuration struct for the dma device.
*
* @dev_len: length of dev_tx and dev_rx
* @dev_tx: mapping between destination event line and io address
* @dev_rx: mapping between source event line and io address
* @memcpy: list of memcpy event lines
* @memcpy_len: length of memcpy
* @memcpy_conf_phy: default configuration of physical channel memcpy
* @memcpy_conf_log: default configuration of logical channel memcpy
* @llis_per_log: number of max linked list items per logical channel
*
*/
struct stedma40_platform_data {
u32 dev_len;
const dma_addr_t *dev_tx;
const dma_addr_t *dev_rx;
int *memcpy;
u32 memcpy_len;
struct stedma40_chan_cfg *memcpy_conf_phy;
struct stedma40_chan_cfg *memcpy_conf_log;
unsigned int llis_per_log;
};
/**
* setdma40_set_psize() - Used for changing the package size of an
* already configured dma channel.
*
* @chan: dmaengine handle
* @src_psize: new package side for src. (STEDMA40_PSIZE*)
* @src_psize: new package side for dst. (STEDMA40_PSIZE*)
*
* returns 0 on ok, otherwise negative error number.
*/
int stedma40_set_psize(struct dma_chan *chan,
int src_psize,
int dst_psize);
/**
* stedma40_filter() - Provides stedma40_chan_cfg to the
* ste_dma40 dma driver via the dmaengine framework.
* does some checking of what's provided.
*
* Never directly called by client. It used by dmaengine.
* @chan: dmaengine handle.
* @data: Must be of type: struct stedma40_chan_cfg and is
* the configuration of the framework.
*
*
*/
bool stedma40_filter(struct dma_chan *chan, void *data);
/**
* stedma40_memcpy_sg() - extension of the dma framework, memcpy to/from
* scattergatter lists.
*
* @chan: dmaengine handle
* @sgl_dst: Destination scatter list
* @sgl_src: Source scatter list
* @sgl_len: The length of each scatterlist. Both lists must be of equal length
* and each element must match the corresponding element in the other scatter
* list.
* @flags: is actually enum dma_ctrl_flags. See dmaengine.h
*/
struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
struct scatterlist *sgl_dst,
struct scatterlist *sgl_src,
unsigned int sgl_len,
unsigned long flags);
/**
* stedma40_slave_mem() - Transfers a raw data buffer to or from a slave
* (=device)
*
* @chan: dmaengine handle
* @addr: source or destination physicall address.
* @size: bytes to transfer
* @direction: direction of transfer
* @flags: is actually enum dma_ctrl_flags. See dmaengine.h
*/
static inline struct
dma_async_tx_descriptor *stedma40_slave_mem(struct dma_chan *chan,
dma_addr_t addr,
unsigned int size,
enum dma_data_direction direction,
unsigned long flags)
{
struct scatterlist sg;
sg_init_table(&sg, 1);
sg.dma_address = addr;
sg.length = size;
return chan->device->device_prep_slave_sg(chan, &sg, 1,
direction, flags);
}
#endif
......@@ -141,6 +141,13 @@ config COH901318
help
Enable support for ST-Ericsson COH 901 318 DMA.
config STE_DMA40
bool "ST-Ericsson DMA40 support"
depends on ARCH_U8500
select DMA_ENGINE
help
Support for ST-Ericsson DMA40 controller
config AMCC_PPC440SPE_ADMA
tristate "AMCC PPC440SPe ADMA support"
depends on 440SPe || 440SP
......
......@@ -21,3 +21,4 @@ obj-$(CONFIG_SH_DMAE) += shdma.o
obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o
obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
obj-$(CONFIG_TIMB_DMA) += timb_dma.o
obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o
此差异已折叠。
/*
* driver/dma/ste_dma40_ll.c
*
* Copyright (C) ST-Ericsson 2007-2010
* License terms: GNU General Public License (GPL) version 2
* Author: Per Friden <per.friden@stericsson.com>
* Author: Jonas Aaberg <jonas.aberg@stericsson.com>
*/
#include <linux/kernel.h>
#include <plat/ste_dma40.h>
#include "ste_dma40_ll.h"
/* Sets up proper LCSP1 and LCSP3 register for a logical channel */
void d40_log_cfg(struct stedma40_chan_cfg *cfg,
u32 *lcsp1, u32 *lcsp3)
{
u32 l3 = 0; /* dst */
u32 l1 = 0; /* src */
/* src is mem? -> increase address pos */
if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
cfg->dir == STEDMA40_MEM_TO_MEM)
l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
/* dst is mem? -> increase address pos */
if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
cfg->dir == STEDMA40_MEM_TO_MEM)
l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
/* src is hw? -> master port 1 */
if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
/* dst is hw? -> master port 1 */
if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
l3 |= 1 << D40_MEM_LCSP3_DCFG_TIM_POS;
l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
l3 |= 1 << D40_MEM_LCSP3_DTCP_POS;
l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
l1 |= 1 << D40_MEM_LCSP1_STCP_POS;
*lcsp1 = l1;
*lcsp3 = l3;
}
/* Sets up SRC and DST CFG register for both logical and physical channels */
void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
u32 *src_cfg, u32 *dst_cfg, bool is_log)
{
u32 src = 0;
u32 dst = 0;
if (!is_log) {
/* Physical channel */
if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) ||
(cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
/* Set master port to 1 */
src |= 1 << D40_SREG_CFG_MST_POS;
src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
src |= 1 << D40_SREG_CFG_PHY_TM_POS;
else
src |= 3 << D40_SREG_CFG_PHY_TM_POS;
}
if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) ||
(cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
/* Set master port to 1 */
dst |= 1 << D40_SREG_CFG_MST_POS;
dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
else
dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
}
/* Interrupt on end of transfer for destination */
dst |= 1 << D40_SREG_CFG_TIM_POS;
/* Generate interrupt on error */
src |= 1 << D40_SREG_CFG_EIM_POS;
dst |= 1 << D40_SREG_CFG_EIM_POS;
/* PSIZE */
if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
}
if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
}
/* Element size */
src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
} else {
/* Logical channel */
dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
}
if (cfg->channel_type & STEDMA40_HIGH_PRIORITY_CHANNEL) {
src |= 1 << D40_SREG_CFG_PRI_POS;
dst |= 1 << D40_SREG_CFG_PRI_POS;
}
src |= cfg->src_info.endianess << D40_SREG_CFG_LBE_POS;
dst |= cfg->dst_info.endianess << D40_SREG_CFG_LBE_POS;
*src_cfg = src;
*dst_cfg = dst;
}
int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data,
u32 data_size,
int psize,
dma_addr_t next_lli,
u32 reg_cfg,
bool term_int,
u32 data_width,
bool is_device)
{
int num_elems;
if (psize == STEDMA40_PSIZE_PHY_1)
num_elems = 1;
else
num_elems = 2 << psize;
/*
* Size is 16bit. data_width is 8, 16, 32 or 64 bit
* Block large than 64 KiB must be split.
*/
if (data_size > (0xffff << data_width))
return -EINVAL;
/* Must be aligned */
if (!IS_ALIGNED(data, 0x1 << data_width))
return -EINVAL;
/* Transfer size can't be smaller than (num_elms * elem_size) */
if (data_size < num_elems * (0x1 << data_width))
return -EINVAL;
/* The number of elements. IE now many chunks */
lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
/*
* Distance to next element sized entry.
* Usually the size of the element unless you want gaps.
*/
if (!is_device)
lli->reg_elt |= (0x1 << data_width) <<
D40_SREG_ELEM_PHY_EIDX_POS;
/* Where the data is */
lli->reg_ptr = data;
lli->reg_cfg = reg_cfg;
/* If this scatter list entry is the last one, no next link */
if (next_lli == 0)
lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
else
lli->reg_lnk = next_lli;
/* Set/clear interrupt generation on this link item.*/
if (term_int)
lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
else
lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
/* Post link */
lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
return 0;
}
int d40_phy_sg_to_lli(struct scatterlist *sg,
int sg_len,
dma_addr_t target,
struct d40_phy_lli *lli,
dma_addr_t lli_phys,
u32 reg_cfg,
u32 data_width,
int psize,
bool term_int)
{
int total_size = 0;
int i;
struct scatterlist *current_sg = sg;
dma_addr_t next_lli_phys;
dma_addr_t dst;
int err = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/* If this scatter list entry is the last one, no next link */
if (sg_len - 1 == i)
next_lli_phys = 0;
else
next_lli_phys = ALIGN(lli_phys + (i + 1) *
sizeof(struct d40_phy_lli),
D40_LLI_ALIGN);
if (target)
dst = target;
else
dst = sg_phys(current_sg);
err = d40_phy_fill_lli(&lli[i],
dst,
sg_dma_len(current_sg),
psize,
next_lli_phys,
reg_cfg,
!next_lli_phys,
data_width,
target == dst);
if (err)
goto err;
}
return total_size;
err:
return err;
}
void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num,
struct d40_phy_lli *lli_dst,
struct d40_phy_lli *lli_src)
{
writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG);
writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR);
writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK);
writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG);
writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR);
writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK);
}
/* DMA logical lli operations */
void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size,
u32 lli_next_off, u32 reg_cfg,
u32 data_width,
bool term_int, bool addr_inc)
{
lli->lcsp13 = reg_cfg;
/* The number of elements to transfer */
lli->lcsp02 = ((data_size >> data_width) <<
D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
/* 16 LSBs address of the current element */
lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
/* 16 MSBs address of the current element */
lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
if (addr_inc)
lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
lli->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
/* If this scatter list entry is the last one, no next link */
lli->lcsp13 |= (lli_next_off << D40_MEM_LCSP1_SLOS_POS) &
D40_MEM_LCSP1_SLOS_MASK;
if (term_int)
lli->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
else
lli->lcsp13 &= ~D40_MEM_LCSP1_SCFG_TIM_MASK;
}
int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli_bidir *lli,
struct d40_def_lcsp *lcsp,
u32 src_data_width,
u32 dst_data_width,
enum dma_data_direction direction,
bool term_int, dma_addr_t dev_addr, int max_len,
int llis_per_log)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
u32 next_lli_off_dst;
u32 next_lli_off_src;
next_lli_off_src = 0;
next_lli_off_dst = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/*
* If this scatter list entry is the last one or
* max length, terminate link.
*/
if (sg_len - 1 == i || ((i+1) % max_len == 0)) {
next_lli_off_src = 0;
next_lli_off_dst = 0;
} else {
if (next_lli_off_dst == 0 &&
next_lli_off_src == 0) {
/* The first lli will be at next_lli_off */
next_lli_off_dst = (lcla->dst_id *
llis_per_log + 1);
next_lli_off_src = (lcla->src_id *
llis_per_log + 1);
} else {
next_lli_off_dst++;
next_lli_off_src++;
}
}
if (direction == DMA_TO_DEVICE) {
d40_log_fill_lli(&lli->src[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off_src,
lcsp->lcsp1, src_data_width,
term_int && !next_lli_off_src,
true);
d40_log_fill_lli(&lli->dst[i],
dev_addr,
sg_dma_len(current_sg),
next_lli_off_dst,
lcsp->lcsp3, dst_data_width,
/* No next == terminal interrupt */
term_int && !next_lli_off_dst,
false);
} else {
d40_log_fill_lli(&lli->dst[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off_dst,
lcsp->lcsp3, dst_data_width,
/* No next == terminal interrupt */
term_int && !next_lli_off_dst,
true);
d40_log_fill_lli(&lli->src[i],
dev_addr,
sg_dma_len(current_sg),
next_lli_off_src,
lcsp->lcsp1, src_data_width,
term_int && !next_lli_off_src,
false);
}
}
return total_size;
}
int d40_log_sg_to_lli(int lcla_id,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/
u32 data_width,
bool term_int, int max_len, int llis_per_log)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
u32 next_lli_off = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/*
* If this scatter list entry is the last one or
* max length, terminate link.
*/
if (sg_len - 1 == i || ((i+1) % max_len == 0))
next_lli_off = 0;
else {
if (next_lli_off == 0)
/* The first lli will be at next_lli_off */
next_lli_off = lcla_id * llis_per_log + 1;
else
next_lli_off++;
}
d40_log_fill_lli(&lli_sg[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off,
lcsp13, data_width,
term_int && !next_lli_off,
true);
}
return total_size;
}
void d40_log_lli_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lcla_src,
struct d40_log_lli *lcla_dst,
struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src,
int llis_per_log)
{
u32 slos = 0;
u32 dlos = 0;
int i;
lcpa->lcsp0 = lli_src->lcsp02;
lcpa->lcsp1 = lli_src->lcsp13;
lcpa->lcsp2 = lli_dst->lcsp02;
lcpa->lcsp3 = lli_dst->lcsp13;
slos = lli_src->lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
dlos = lli_dst->lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
for (i = 0; (i < llis_per_log) && slos && dlos; i++) {
writel(lli_src[i+1].lcsp02, &lcla_src[i].lcsp02);
writel(lli_src[i+1].lcsp13, &lcla_src[i].lcsp13);
writel(lli_dst[i+1].lcsp02, &lcla_dst[i].lcsp02);
writel(lli_dst[i+1].lcsp13, &lcla_dst[i].lcsp13);
slos = lli_src[i+1].lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
dlos = lli_dst[i+1].lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
}
}
/*
* driver/dma/ste_dma40_ll.h
*
* Copyright (C) ST-Ericsson 2007-2010
* License terms: GNU General Public License (GPL) version 2
* Author: Per Friden <per.friden@stericsson.com>
* Author: Jonas Aaberg <jonas.aberg@stericsson.com>
*/
#ifndef STE_DMA40_LL_H
#define STE_DMA40_LL_H
#define D40_DREG_PCBASE 0x400
#define D40_DREG_PCDELTA (8 * 4)
#define D40_LLI_ALIGN 16 /* LLI alignment must be 16 bytes. */
#define D40_TYPE_TO_GROUP(type) (type / 16)
#define D40_TYPE_TO_EVENT(type) (type % 16)
/* Most bits of the CFG register are the same in log as in phy mode */
#define D40_SREG_CFG_MST_POS 15
#define D40_SREG_CFG_TIM_POS 14
#define D40_SREG_CFG_EIM_POS 13
#define D40_SREG_CFG_LOG_INCR_POS 12
#define D40_SREG_CFG_PHY_PEN_POS 12
#define D40_SREG_CFG_PSIZE_POS 10
#define D40_SREG_CFG_ESIZE_POS 8
#define D40_SREG_CFG_PRI_POS 7
#define D40_SREG_CFG_LBE_POS 6
#define D40_SREG_CFG_LOG_GIM_POS 5
#define D40_SREG_CFG_LOG_MFU_POS 4
#define D40_SREG_CFG_PHY_TM_POS 4
#define D40_SREG_CFG_PHY_EVTL_POS 0
/* Standard channel parameters - basic mode (element register) */
#define D40_SREG_ELEM_PHY_ECNT_POS 16
#define D40_SREG_ELEM_PHY_EIDX_POS 0
#define D40_SREG_ELEM_PHY_ECNT_MASK (0xFFFF << D40_SREG_ELEM_PHY_ECNT_POS)
/* Standard channel parameters - basic mode (Link register) */
#define D40_SREG_LNK_PHY_TCP_POS 0
#define D40_SREG_LNK_PHY_LMP_POS 1
#define D40_SREG_LNK_PHY_PRE_POS 2
/*
* Source destination link address. Contains the
* 29-bit byte word aligned address of the reload area.
*/
#define D40_SREG_LNK_PHYS_LNK_MASK 0xFFFFFFF8UL
/* Standard basic channel logical mode */
/* Element register */
#define D40_SREG_ELEM_LOG_ECNT_POS 16
#define D40_SREG_ELEM_LOG_LIDX_POS 8
#define D40_SREG_ELEM_LOG_LOS_POS 1
#define D40_SREG_ELEM_LOG_TCP_POS 0
#define D40_SREG_ELEM_LOG_LIDX_MASK (0xFF << D40_SREG_ELEM_LOG_LIDX_POS)
/* Link register */
#define D40_DEACTIVATE_EVENTLINE 0x0
#define D40_ACTIVATE_EVENTLINE 0x1
#define D40_EVENTLINE_POS(i) (2 * i)
#define D40_EVENTLINE_MASK(i) (0x3 << D40_EVENTLINE_POS(i))
/* Standard basic channel logical params in memory */
/* LCSP0 */
#define D40_MEM_LCSP0_ECNT_POS 16
#define D40_MEM_LCSP0_SPTR_POS 0
#define D40_MEM_LCSP0_ECNT_MASK (0xFFFF << D40_MEM_LCSP0_ECNT_POS)
#define D40_MEM_LCSP0_SPTR_MASK (0xFFFF << D40_MEM_LCSP0_SPTR_POS)
/* LCSP1 */
#define D40_MEM_LCSP1_SPTR_POS 16
#define D40_MEM_LCSP1_SCFG_MST_POS 15
#define D40_MEM_LCSP1_SCFG_TIM_POS 14
#define D40_MEM_LCSP1_SCFG_EIM_POS 13
#define D40_MEM_LCSP1_SCFG_INCR_POS 12
#define D40_MEM_LCSP1_SCFG_PSIZE_POS 10
#define D40_MEM_LCSP1_SCFG_ESIZE_POS 8
#define D40_MEM_LCSP1_SLOS_POS 1
#define D40_MEM_LCSP1_STCP_POS 0
#define D40_MEM_LCSP1_SPTR_MASK (0xFFFF << D40_MEM_LCSP1_SPTR_POS)
#define D40_MEM_LCSP1_SCFG_TIM_MASK (0x1 << D40_MEM_LCSP1_SCFG_TIM_POS)
#define D40_MEM_LCSP1_SCFG_INCR_MASK (0x1 << D40_MEM_LCSP1_SCFG_INCR_POS)
#define D40_MEM_LCSP1_SCFG_PSIZE_MASK (0x3 << D40_MEM_LCSP1_SCFG_PSIZE_POS)
#define D40_MEM_LCSP1_SLOS_MASK (0x7F << D40_MEM_LCSP1_SLOS_POS)
#define D40_MEM_LCSP1_STCP_MASK (0x1 << D40_MEM_LCSP1_STCP_POS)
/* LCSP2 */
#define D40_MEM_LCSP2_ECNT_POS 16
#define D40_MEM_LCSP2_ECNT_MASK (0xFFFF << D40_MEM_LCSP2_ECNT_POS)
/* LCSP3 */
#define D40_MEM_LCSP3_DCFG_MST_POS 15
#define D40_MEM_LCSP3_DCFG_TIM_POS 14
#define D40_MEM_LCSP3_DCFG_EIM_POS 13
#define D40_MEM_LCSP3_DCFG_INCR_POS 12
#define D40_MEM_LCSP3_DCFG_PSIZE_POS 10
#define D40_MEM_LCSP3_DCFG_ESIZE_POS 8
#define D40_MEM_LCSP3_DLOS_POS 1
#define D40_MEM_LCSP3_DTCP_POS 0
#define D40_MEM_LCSP3_DLOS_MASK (0x7F << D40_MEM_LCSP3_DLOS_POS)
#define D40_MEM_LCSP3_DTCP_MASK (0x1 << D40_MEM_LCSP3_DTCP_POS)
/* Standard channel parameter register offsets */
#define D40_CHAN_REG_SSCFG 0x00
#define D40_CHAN_REG_SSELT 0x04
#define D40_CHAN_REG_SSPTR 0x08
#define D40_CHAN_REG_SSLNK 0x0C
#define D40_CHAN_REG_SDCFG 0x10
#define D40_CHAN_REG_SDELT 0x14
#define D40_CHAN_REG_SDPTR 0x18
#define D40_CHAN_REG_SDLNK 0x1C
/* DMA Register Offsets */
#define D40_DREG_GCC 0x000
#define D40_DREG_PRTYP 0x004
#define D40_DREG_PRSME 0x008
#define D40_DREG_PRSMO 0x00C
#define D40_DREG_PRMSE 0x010
#define D40_DREG_PRMSO 0x014
#define D40_DREG_PRMOE 0x018
#define D40_DREG_PRMOO 0x01C
#define D40_DREG_LCPA 0x020
#define D40_DREG_LCLA 0x024
#define D40_DREG_ACTIVE 0x050
#define D40_DREG_ACTIVO 0x054
#define D40_DREG_FSEB1 0x058
#define D40_DREG_FSEB2 0x05C
#define D40_DREG_PCMIS 0x060
#define D40_DREG_PCICR 0x064
#define D40_DREG_PCTIS 0x068
#define D40_DREG_PCEIS 0x06C
#define D40_DREG_LCMIS0 0x080
#define D40_DREG_LCMIS1 0x084
#define D40_DREG_LCMIS2 0x088
#define D40_DREG_LCMIS3 0x08C
#define D40_DREG_LCICR0 0x090
#define D40_DREG_LCICR1 0x094
#define D40_DREG_LCICR2 0x098
#define D40_DREG_LCICR3 0x09C
#define D40_DREG_LCTIS0 0x0A0
#define D40_DREG_LCTIS1 0x0A4
#define D40_DREG_LCTIS2 0x0A8
#define D40_DREG_LCTIS3 0x0AC
#define D40_DREG_LCEIS0 0x0B0
#define D40_DREG_LCEIS1 0x0B4
#define D40_DREG_LCEIS2 0x0B8
#define D40_DREG_LCEIS3 0x0BC
#define D40_DREG_STFU 0xFC8
#define D40_DREG_ICFG 0xFCC
#define D40_DREG_PERIPHID0 0xFE0
#define D40_DREG_PERIPHID1 0xFE4
#define D40_DREG_PERIPHID2 0xFE8
#define D40_DREG_PERIPHID3 0xFEC
#define D40_DREG_CELLID0 0xFF0
#define D40_DREG_CELLID1 0xFF4
#define D40_DREG_CELLID2 0xFF8
#define D40_DREG_CELLID3 0xFFC
/* LLI related structures */
/**
* struct d40_phy_lli - The basic configration register for each physical
* channel.
*
* @reg_cfg: The configuration register.
* @reg_elt: The element register.
* @reg_ptr: The pointer register.
* @reg_lnk: The link register.
*
* These registers are set up for both physical and logical transfers
* Note that the bit in each register means differently in logical and
* physical(standard) mode.
*
* This struct must be 16 bytes aligned, and only contain physical registers
* since it will be directly accessed by the DMA.
*/
struct d40_phy_lli {
u32 reg_cfg;
u32 reg_elt;
u32 reg_ptr;
u32 reg_lnk;
};
/**
* struct d40_phy_lli_bidir - struct for a transfer.
*
* @src: Register settings for src channel.
* @dst: Register settings for dst channel.
* @dst_addr: Physical destination address.
* @src_addr: Physical source address.
*
* All DMA transfers have a source and a destination.
*/
struct d40_phy_lli_bidir {
struct d40_phy_lli *src;
struct d40_phy_lli *dst;
dma_addr_t dst_addr;
dma_addr_t src_addr;
};
/**
* struct d40_log_lli - logical lli configuration
*
* @lcsp02: Either maps to register lcsp0 if src or lcsp2 if dst.
* @lcsp13: Either maps to register lcsp1 if src or lcsp3 if dst.
*
* This struct must be 8 bytes aligned since it will be accessed directy by
* the DMA. Never add any none hw mapped registers to this struct.
*/
struct d40_log_lli {
u32 lcsp02;
u32 lcsp13;
};
/**
* struct d40_log_lli_bidir - For both src and dst
*
* @src: pointer to src lli configuration.
* @dst: pointer to dst lli configuration.
*
* You always have a src and a dst when doing DMA transfers.
*/
struct d40_log_lli_bidir {
struct d40_log_lli *src;
struct d40_log_lli *dst;
};
/**
* struct d40_log_lli_full - LCPA layout
*
* @lcsp0: Logical Channel Standard Param 0 - Src.
* @lcsp1: Logical Channel Standard Param 1 - Src.
* @lcsp2: Logical Channel Standard Param 2 - Dst.
* @lcsp3: Logical Channel Standard Param 3 - Dst.
*
* This struct maps to LCPA physical memory layout. Must map to
* the hw.
*/
struct d40_log_lli_full {
u32 lcsp0;
u32 lcsp1;
u32 lcsp2;
u32 lcsp3;
};
/**
* struct d40_def_lcsp - Default LCSP1 and LCSP3 settings
*
* @lcsp3: The default configuration for dst.
* @lcsp1: The default configuration for src.
*/
struct d40_def_lcsp {
u32 lcsp3;
u32 lcsp1;
};
/**
* struct d40_lcla_elem - Info for one LCA element.
*
* @src_id: logical channel src id
* @dst_id: logical channel dst id
* @src: LCPA formated src parameters
* @dst: LCPA formated dst parameters
*
*/
struct d40_lcla_elem {
int src_id;
int dst_id;
struct d40_log_lli *src;
struct d40_log_lli *dst;
};
/* Physical channels */
void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
u32 *src_cfg, u32 *dst_cfg, bool is_log);
void d40_log_cfg(struct stedma40_chan_cfg *cfg,
u32 *lcsp1, u32 *lcsp2);
int d40_phy_sg_to_lli(struct scatterlist *sg,
int sg_len,
dma_addr_t target,
struct d40_phy_lli *lli,
dma_addr_t lli_phys,
u32 reg_cfg,
u32 data_width,
int psize,
bool term_int);
int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data,
u32 data_size,
int psize,
dma_addr_t next_lli,
u32 reg_cfg,
bool term_int,
u32 data_width,
bool is_device);
void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num,
struct d40_phy_lli *lli_dst,
struct d40_phy_lli *lli_src);
/* Logical channels */
void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size,
u32 lli_next_off, u32 reg_cfg,
u32 data_width,
bool term_int, bool addr_inc);
int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli_bidir *lli,
struct d40_def_lcsp *lcsp,
u32 src_data_width,
u32 dst_data_width,
enum dma_data_direction direction,
bool term_int, dma_addr_t dev_addr, int max_len,
int llis_per_log);
void d40_log_lli_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lcla_src,
struct d40_log_lli *lcla_dst,
struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src,
int llis_per_log);
int d40_log_sg_to_lli(int lcla_id,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/
u32 data_width,
bool term_int, int max_len, int llis_per_log);
#endif /* STE_DMA40_LLI_H */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册