ste_dma40.c 74.9 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8 9 10 11 12 13 14
 * License terms: GNU General Public License (GPL) version 2
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
15
#include <linux/err.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

#include <plat/ste_dma40.h>

#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

32 33
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
34 35 36 37 38

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

39 40 41 42
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
43 44 45 46 47
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

/* Hardware designer of the block */
48
#define D40_HW_DESIGNER 0x8
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
71
 * @dma_addr: DMA address, if mapped
72 73 74 75 76 77
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
78
	int	 size;
79
	dma_addr_t	dma_addr;
80
	/* Space for dst and src, plus an extra for padding */
81
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 83 84 85 86 87 88 89 90 91
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
92
 * @lli_len: Number of llis of current descriptor.
93 94
 * @lli_current: Number of transfered llis.
 * @lcla_alloc: Number of LCLA entries allocated.
95 96 97 98
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
99
 * the previous one.
100 101 102 103 104 105 106 107 108 109
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
110
	int				 lli_len;
111 112
	int				 lli_current;
	int				 lcla_alloc;
113 114 115 116 117 118 119 120 121 122

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
123 124 125 126 127
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
128
 * @lock: Lock to protect the content in this struct.
129
 * @alloc_map: big map over which LCLA entry is own by which job.
130 131 132
 */
struct d40_lcla_pool {
	void		*base;
133
	dma_addr_t	dma_addr;
134 135
	void		*base_unaligned;
	int		 pages;
136
	spinlock_t	 lock;
137
	struct d40_desc	**alloc_map;
138 139 140 141 142 143 144 145 146 147 148 149
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150
 * event line number.
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
 */
struct d40_phy_res {
	spinlock_t lock;
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @completed: Starts with 1, after first interrupt it is set to dma engine's
 * current cookie.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
171 172
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
173 174 175 176 177 178 179
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
 * @active: Active descriptor.
 * @queue: Queued jobs.
 * @dma_cfg: The client configuration of this dma channel.
180
 * @configured: whether the dma_cfg configuration is valid
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcla: Space for one dst src pair for logical channel transfers.
 * @lcpa: Pointer to dst and src lcpa settings.
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	/* ID of the most recent completed transfer */
	int				 completed;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
	struct list_head		 active;
	struct list_head		 queue;
	struct stedma40_chan_cfg	 dma_cfg;
204
	bool				 configured;
205 206 207 208 209 210
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
211 212 213
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
	enum dma_data_direction		runtime_direction;
214 215 216 217 218 219 220 221 222 223
};

/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
224
 * @rev: silicon revision detected.
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
249
 * @desc_slab: cache for descriptors.
250 251 252 253 254 255
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
256
	u8				  rev:4;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
277
	struct kmem_cache		 *desc_slab;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
};

/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

307 308 309 310 311
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

312 313 314 315 316 317 318 319 320 321
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

322 323 324 325 326 327
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

328 329 330 331 332 333
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

334
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
			      int lli_len, bool is_log)
{
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
350
		d40d->lli_pool.size = lli_len * 2 * align;
351 352 353 354 355 356 357 358 359

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
360
		d40d->lli_log.src = PTR_ALIGN(base, align);
361
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
362 363

		d40d->lli_pool.dma_addr = 0;
364
	} else {
R
Rabin Vincent 已提交
365
		d40d->lli_phy.src = PTR_ALIGN(base, align);
366
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
367 368 369 370 371 372 373 374 375 376 377 378 379

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
380 381 382 383 384
	}

	return 0;
}

385
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
386
{
387 388 389 390
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

391 392 393 394 395 396 397 398 399
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;
	int p;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

437
	if (chan_is_physical(d40c))
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

461 462 463 464 465 466 467
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
468
	struct d40_desc *desc = NULL;
469 470

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
471 472 473
		struct d40_desc *d;
		struct d40_desc *_d;

474 475
		list_for_each_entry_safe(d, _d, &d40c->client, node)
			if (async_tx_test_ack(&d->txd)) {
476
				d40_pool_lli_free(d40c, d);
477
				d40_desc_remove(d);
R
Rabin Vincent 已提交
478 479
				desc = d;
				memset(desc, 0, sizeof(*desc));
480
				break;
481 482
			}
	}
R
Rabin Vincent 已提交
483 484 485 486 487 488 489 490

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
491 492 493 494
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
495

496
	d40_pool_lli_free(d40c, d40d);
497
	d40_lcla_free_all(d40c, d40d);
498
	kmem_cache_free(d40c->base->desc_slab, d40d);
499 500 501 502 503 504 505
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

506 507 508 509
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
	int curr_lcla = -EINVAL, next_lcla;

510
	if (chan_is_physical(d40c)) {
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
		d40_phy_lli_write(d40c->base->virtbase,
				  d40c->phy_chan->num,
				  d40d->lli_phy.dst,
				  d40d->lli_phy.src);
		d40d->lli_current = d40d->lli_len;
	} else {

		if ((d40d->lli_len - d40d->lli_current) > 1)
			curr_lcla = d40_lcla_alloc_one(d40c, d40d);

		d40_log_lli_lcpa_write(d40c->lcpa,
				       &d40d->lli_log.dst[d40d->lli_current],
				       &d40d->lli_log.src[d40d->lli_current],
				       curr_lcla);

		d40d->lli_current++;
		for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
528 529 530 531
			unsigned int lcla_offset = d40c->phy_chan->num * 1024 +
						   8 * curr_lcla * 2;
			struct d40_lcla_pool *pool = &d40c->base->lcla_pool;
			struct d40_log_lli *lcla = pool->base + lcla_offset;
532 533 534 535 536 537 538 539 540 541 542

			if (d40d->lli_current + 1 < d40d->lli_len)
				next_lcla = d40_lcla_alloc_one(d40c, d40d);
			else
				next_lcla = -EINVAL;

			d40_log_lli_lcla_write(lcla,
					       &d40d->lli_log.dst[d40d->lli_current],
					       &d40d->lli_log.src[d40d->lli_current],
					       next_lcla);

543 544 545 546
			dma_sync_single_range_for_device(d40c->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
547 548 549 550 551 552 553 554 555 556 557 558

			curr_lcla = next_lcla;

			if (curr_lcla == -EINVAL) {
				d40d->lli_current++;
				break;
			}

		}
	}
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->queue);
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
648

649
/* Support functions for logical channels */
650 651 652 653

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
654 655
	u32 status;
	int i;
656 657 658
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
659
	u32 wmask;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

677 678 679
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
701 702 703
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}


	d40c->pending_tx = 0;
	d40c->busy = false;
}

736 737 738
static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
				   u32 event, int reg)
{
739
	void __iomem *addr = chan_base(d40c) + reg;
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	int tries;

	if (!enable) {
		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
		return;
	}

	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
	tries = 100;
	while (--tries) {
		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		if (readl(addr) & D40_EVENTLINE_MASK(event))
			break;
	}

	if (tries != 99)
		dev_dbg(chan2dev(d40c),
			"[%s] workaround enable S%cLNK (%d tries)\n",
			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
			100 - tries);

	WARN_ON(!tries);
}

771 772 773 774 775 776 777 778 779 780 781
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
{
	unsigned long flags;

	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

782 783
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SSLNK);
784
	}
785

786 787 788
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

789 790
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SDLNK);
791 792 793 794 795
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
}

796
static u32 d40_chan_has_events(struct d40_chan *d40c)
797
{
798
	void __iomem *chanbase = chan_base(d40c);
799
	u32 val;
800

801 802
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
803

804
	return val;
805 806
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

826
	if (chan_is_physical(d40c))
827 828 829 830 831
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

832
static void d40_config_write(struct d40_chan *d40c)
833 834 835 836 837 838 839
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
840
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
841 842 843 844
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
845
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
846 847 848

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

849
	if (chan_is_logical(d40c)) {
850 851 852 853
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

854
		/* Set default config for CFG reg */
855 856
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
857

858
		/* Set LIDX for lcla */
859 860
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
861 862 863
	}
}

864 865 866 867
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

868
	if (chan_is_logical(d40c))
869 870
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
871 872 873 874 875 876
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

877 878 879 880 881 882 883
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

884
	if (chan_is_logical(d40c))
885 886
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
887 888 889
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

890 891 892 893 894 895 896 897 898 899
	return is_link;
}

static int d40_pause(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

900 901 902
	if (!d40c->busy)
		return 0;

903 904 905 906
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res == 0) {
907
		if (chan_is_logical(d40c)) {
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
			d40_config_set_event(d40c, false);
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c))
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
		}
	}

	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

static int d40_resume(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

927 928 929
	if (!d40c->busy)
		return 0;

930 931 932
	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->base->rev == 0)
933
		if (chan_is_logical(d40c)) {
934 935 936 937 938 939 940 941
			res = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			goto no_suspend;
		}

	/* If bytes left to transfer or linked tx resume job */
	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {

942
		if (chan_is_logical(d40c))
943 944 945 946 947 948 949 950 951 952
			d40_config_set_event(d40c, true);

		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
	}

no_suspend:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

953 954 955 956 957 958 959 960 961 962
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);

963 964 965 966 967 968 969
	d40c->chan.cookie++;

	if (d40c->chan.cookie < 0)
		d40c->chan.cookie = 1;

	d40d->txd.cookie = d40c->chan.cookie;

970 971 972 973 974 975 976 977 978
	d40_desc_queue(d40c, d40d);

	spin_unlock_irqrestore(&d40c->lock, flags);

	return tx->cookie;
}

static int d40_start(struct d40_chan *d40c)
{
979 980 981
	if (d40c->base->rev == 0) {
		int err;

982
		if (chan_is_logical(d40c)) {
983 984 985 986 987 988 989
			err = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			if (err)
				return err;
		}
	}

990
	if (chan_is_logical(d40c))
991 992
		d40_config_set_event(d40c, true);

993
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
		d40c->busy = true;

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1013 1014
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1015

1016 1017
		/* Start dma job */
		err = d40_start(d40c);
1018

1019 1020
		if (err)
			return NULL;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

1037
	d40_lcla_free_all(d40c, d40d);
1038

1039
	if (d40d->lli_current < d40d->lli_len) {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		d40_desc_load(d40c, d40d);
		/* Start dma job */
		(void) d40_start(d40c);
		return;
	}

	if (d40_queue_start(d40c) == NULL)
		d40c->busy = false;

	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1057
	struct d40_desc *d40d;
1058 1059 1060 1061 1062 1063 1064
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

	/* Get first active entry from list */
1065
	d40d = d40_first_active_get(d40c);
1066

1067
	if (d40d == NULL)
1068 1069
		goto err;

1070
	d40c->completed = d40d->txd.cookie;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1082 1083 1084 1085
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

	if (async_tx_test_ack(&d40d->txd)) {
1086
		d40_pool_lli_free(d40c, d40d);
1087 1088
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
1089
	} else {
1090 1091
		if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
1092
			d40_lcla_free_all(d40c, d40d);
1093 1094
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1105
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		callback(callback_param);

	return;

 err:
	/* Rescue manouver if receiving double interrupts */
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	static const struct d40_interrupt_lookup il[] = {
		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
	};

	int i;
	u32 regs[ARRAY_SIZE(il)];
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
	for (i = 0; i < ARRAY_SIZE(il); i++)
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);

		/* No more set bits found? */
		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		/* ACK interrupt */
1160
		writel(1 << idx, base->virtbase + il[row].clr);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1171 1172
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1188
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1189

1190
	if (!conf->dir) {
1191
		chan_err(d40c, "Invalid direction.\n");
1192 1193 1194 1195 1196 1197 1198
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

1199 1200
		chan_err(d40c, "Invalid TX channel address (%d)\n",
			 conf->dst_dev_type);
1201 1202 1203 1204 1205 1206
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
1207 1208
		chan_err(d40c, "Invalid RX channel address (%d)\n",
			conf->src_dev_type);
1209 1210 1211 1212
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1213
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1214
		chan_err(d40c, "Invalid dst\n");
1215 1216 1217
		res = -EINVAL;
	}

1218
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1219
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1220
		chan_err(d40c, "Invalid src\n");
1221 1222 1223 1224 1225
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1226
		chan_err(d40c, "No event line\n");
1227 1228 1229 1230 1231
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
1232
		chan_err(d40c, "Invalid event group\n");
1233 1234 1235 1236 1237 1238 1239 1240
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1241
		chan_err(d40c, "periph to periph not supported\n");
1242 1243 1244
		res = -EINVAL;
	}

1245 1246 1247 1248 1249 1250 1251 1252 1253
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1254
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1255 1256 1257
		res = -EINVAL;
	}

1258 1259 1260 1261
	return res;
}

static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1262
			       int log_event_line, bool is_log)
1263 1264 1265
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1266
	if (!is_log) {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

static int d40_allocate_channel(struct d40_chan *d40c)
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
	bool is_src;
1356
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	phys = d40c->base->phy_res;

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
			for (i = 0; i < d40c->base->num_phy_chans; i++) {

1381 1382
				if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log))
1383 1384 1385 1386 1387 1388
					goto found_phy;
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1389 1390 1391 1392
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
							       is_log))
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1416
						       event_line, is_log))
1417 1418 1419 1420 1421
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1422
						       event_line, is_log))
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
			memcpy[d40c->chan.chan_id];

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
1457
		chan_err(d40c, "No memcpy\n");
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
		return -EINVAL;
	}

	return 0;
}


static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1469
	u32 event;
1470 1471
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;
1472 1473 1474
	struct d40_desc *d;
	struct d40_desc *_d;

1475 1476 1477 1478

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

1479 1480 1481
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
1482
			d40_pool_lli_free(d40c, d);
1483 1484 1485 1486
			d40_desc_remove(d);
			d40_desc_free(d40c, d);
		}

1487
	if (phy == NULL) {
1488
		chan_err(d40c, "phy == null\n");
1489 1490 1491 1492 1493
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
1494
		chan_err(d40c, "channel already free\n");
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
1506
		chan_err(d40c, "Unknown direction\n");
1507 1508 1509
		return -EINVAL;
	}

1510 1511
	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res) {
1512
		chan_err(d40c, "suspend failed\n");
1513 1514 1515
		return res;
	}

1516
	if (chan_is_logical(d40c)) {
1517
		/* Release logical channel, deactivate the event line */
1518

1519
		d40_config_set_event(d40c, false);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;

		/*
		 * Check if there are more logical allocation
		 * on this phy channel.
		 */
		if (!d40_alloc_mask_free(phy, is_src, event)) {
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c)) {
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
				if (res) {
1532 1533
					chan_err(d40c,
						"Executing RUN command\n");
1534 1535 1536 1537 1538
					return res;
				}
			}
			return 0;
		}
1539 1540 1541
	} else {
		(void) d40_alloc_mask_free(phy, is_src, 0);
	}
1542 1543 1544 1545

	/* Release physical channel */
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (res) {
1546
		chan_err(d40c, "Failed to stop channel\n");
1547 1548 1549
		return res;
	}
	d40c->phy_chan = NULL;
1550
	d40c->configured = false;
1551 1552 1553 1554 1555
	d40c->base->lookup_phy_chans[phy->num] = NULL;

	return 0;
}

1556 1557
static bool d40_is_paused(struct d40_chan *d40c)
{
1558
	void __iomem *chanbase = chan_base(d40c);
1559 1560 1561 1562 1563 1564 1565 1566
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

1567
	if (chan_is_physical(d40c)) {
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1583
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1584
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1585
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1586
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1587
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1588
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1589
	} else {
1590
		chan_err(d40c, "Unknown direction\n");
1591 1592
		goto _exit;
	}
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}


1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
						   struct scatterlist *sgl_dst,
						   struct scatterlist *sgl_src,
						   unsigned int sgl_len,
1624
						   unsigned long dma_flags)
1625 1626 1627 1628 1629
{
	int res;
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1630
	unsigned long flags;
1631

1632
	if (d40c->phy_chan == NULL) {
1633
		chan_err(d40c, "Unallocated channel.\n");
1634 1635 1636
		return ERR_PTR(-EINVAL);
	}

1637
	spin_lock_irqsave(&d40c->lock, flags);
1638 1639 1640 1641 1642
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
		goto err;

1643 1644 1645 1646
	d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1647
		chan_err(d40c, "Unaligned size\n");
1648 1649 1650
		goto err;
	}

1651
	d40d->lli_current = 0;
1652
	d40d->txd.flags = dma_flags;
1653

1654
	if (chan_is_logical(d40c)) {
1655

1656
		if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, true) < 0) {
1657
			chan_err(d40c, "Out of memory\n");
1658 1659 1660
			goto err;
		}

1661
		(void) d40_log_sg_to_lli(sgl_src,
1662 1663 1664
					 sgl_len,
					 d40d->lli_log.src,
					 d40c->log_def.lcsp1,
1665 1666
					 d40c->dma_cfg.src_info.data_width,
					 d40c->dma_cfg.dst_info.data_width);
1667

1668
		(void) d40_log_sg_to_lli(sgl_dst,
1669 1670 1671
					 sgl_len,
					 d40d->lli_log.dst,
					 d40c->log_def.lcsp3,
1672 1673
					 d40c->dma_cfg.dst_info.data_width,
					 d40c->dma_cfg.src_info.data_width);
1674
	} else {
1675
		if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, false) < 0) {
1676
			chan_err(d40c, "Out of memory\n");
1677 1678 1679 1680 1681 1682 1683
			goto err;
		}

		res = d40_phy_sg_to_lli(sgl_src,
					sgl_len,
					0,
					d40d->lli_phy.src,
1684
					virt_to_phys(d40d->lli_phy.src),
1685 1686
					d40c->src_def_cfg,
					d40c->dma_cfg.src_info.data_width,
1687
					d40c->dma_cfg.dst_info.data_width,
1688
					d40c->dma_cfg.src_info.psize);
1689 1690 1691 1692 1693 1694 1695 1696

		if (res < 0)
			goto err;

		res = d40_phy_sg_to_lli(sgl_dst,
					sgl_len,
					0,
					d40d->lli_phy.dst,
1697
					virt_to_phys(d40d->lli_phy.dst),
1698 1699
					d40c->dst_def_cfg,
					d40c->dma_cfg.dst_info.data_width,
1700
					d40c->dma_cfg.src_info.data_width,
1701
					d40c->dma_cfg.dst_info.psize);
1702 1703 1704 1705

		if (res < 0)
			goto err;

1706 1707 1708
		dma_sync_single_for_device(d40c->base->dev,
					   d40d->lli_pool.dma_addr,
					   d40d->lli_pool.size, DMA_TO_DEVICE);
1709 1710 1711 1712 1713 1714
	}

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

1715
	spin_unlock_irqrestore(&d40c->lock, flags);
1716 1717 1718

	return &d40d->txd;
err:
1719 1720
	if (d40d)
		d40_desc_free(d40c, d40d);
1721
	spin_unlock_irqrestore(&d40c->lock, flags);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	return NULL;
}
EXPORT_SYMBOL(stedma40_memcpy_sg);

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

1740 1741 1742
	if (!err)
		d40c->configured = true;

1743 1744 1745 1746
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
	u32 bit = 1 << event;

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);

	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
}

1779 1780 1781 1782 1783 1784 1785
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
1786
	bool is_free_phy;
1787 1788 1789 1790
	spin_lock_irqsave(&d40c->lock, flags);

	d40c->completed = chan->cookie = 1;

1791 1792
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
1793
		err = d40_config_memcpy(d40c);
1794
		if (err) {
1795
			chan_err(d40c, "Failed to configure memcpy channel\n");
1796 1797
			goto fail;
		}
1798
	}
1799
	is_free_phy = (d40c->phy_chan == NULL);
1800 1801 1802

	err = d40_allocate_channel(d40c);
	if (err) {
1803
		chan_err(d40c, "Failed to allocate channel\n");
1804
		goto fail;
1805 1806
	}

1807 1808
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1809
		    &d40c->dst_def_cfg, chan_is_logical(d40c));
1810

1811 1812
	d40_set_prio_realtime(d40c);

1813
	if (chan_is_logical(d40c)) {
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
		else
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.dst_dev_type *
			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
	}

	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
1831 1832
	if (is_free_phy)
		d40_config_write(d40c);
1833
fail:
1834
	spin_unlock_irqrestore(&d40c->lock, flags);
1835
	return err;
1836 1837 1838 1839 1840 1841 1842 1843 1844
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

1845
	if (d40c->phy_chan == NULL) {
1846
		chan_err(d40c, "Cannot free unallocated channel\n");
1847 1848 1849 1850
		return;
	}


1851 1852 1853 1854 1855
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
1856
		chan_err(d40c, "Failed to free channel\n");
1857 1858 1859 1860 1861 1862 1863
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
1864
						       unsigned long dma_flags)
1865 1866 1867 1868
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1869
	unsigned long flags;
1870

1871
	if (d40c->phy_chan == NULL) {
1872
		chan_err(d40c, "Channel is not allocated.\n");
1873 1874 1875
		return ERR_PTR(-EINVAL);
	}

1876
	spin_lock_irqsave(&d40c->lock, flags);
1877 1878 1879
	d40d = d40_desc_get(d40c);

	if (d40d == NULL) {
1880
		chan_err(d40c, "Descriptor is NULL\n");
1881 1882 1883
		goto err;
	}

1884
	d40d->txd.flags = dma_flags;
1885 1886 1887 1888
	d40d->lli_len = d40_size_2_dmalen(size,
					  d40c->dma_cfg.src_info.data_width,
					  d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1889
		chan_err(d40c, "Unaligned size\n");
1890 1891 1892
		goto err;
	}

1893 1894 1895 1896 1897

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

1898
	if (chan_is_logical(d40c)) {
1899

1900
		if (d40_pool_lli_alloc(d40c,d40d, d40d->lli_len, true) < 0) {
1901
			chan_err(d40c, "Out of memory\n");
1902 1903
			goto err;
		}
1904
		d40d->lli_current = 0;
1905

1906 1907 1908 1909 1910 1911 1912 1913
		if (d40_log_buf_to_lli(d40d->lli_log.src,
				       src,
				       size,
				       d40c->log_def.lcsp1,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       true) == NULL)
			goto err;
1914

1915 1916 1917 1918 1919 1920 1921 1922
		if (d40_log_buf_to_lli(d40d->lli_log.dst,
				       dst,
				       size,
				       d40c->log_def.lcsp3,
				       d40c->dma_cfg.dst_info.data_width,
				       d40c->dma_cfg.src_info.data_width,
				       true) == NULL)
			goto err;
1923 1924 1925

	} else {

1926
		if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, false) < 0) {
1927
			chan_err(d40c, "Out of memory\n");
1928 1929 1930
			goto err;
		}

1931
		if (d40_phy_buf_to_lli(d40d->lli_phy.src,
1932 1933 1934 1935 1936 1937 1938
				       src,
				       size,
				       d40c->dma_cfg.src_info.psize,
				       0,
				       d40c->src_def_cfg,
				       true,
				       d40c->dma_cfg.src_info.data_width,
1939 1940 1941
				       d40c->dma_cfg.dst_info.data_width,
				       false) == NULL)
			goto err;
1942

1943
		if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
1944 1945 1946 1947 1948 1949 1950
				       dst,
				       size,
				       d40c->dma_cfg.dst_info.psize,
				       0,
				       d40c->dst_def_cfg,
				       true,
				       d40c->dma_cfg.dst_info.data_width,
1951 1952 1953
				       d40c->dma_cfg.src_info.data_width,
				       false) == NULL)
			goto err;
1954

1955 1956 1957
		dma_sync_single_for_device(d40c->base->dev,
					   d40d->lli_pool.dma_addr,
					   d40d->lli_pool.size, DMA_TO_DEVICE);
1958 1959
	}

1960
	spin_unlock_irqrestore(&d40c->lock, flags);
1961 1962 1963
	return &d40d->txd;

err:
1964 1965
	if (d40d)
		d40_desc_free(d40c, d40d);
1966
	spin_unlock_irqrestore(&d40c->lock, flags);
1967 1968 1969
	return NULL;
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *chan,
	    struct scatterlist *dst_sg, unsigned int dst_nents,
	    struct scatterlist *src_sg, unsigned int src_nents,
	    unsigned long dma_flags)
{
	if (dst_nents != src_nents)
		return NULL;

	return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
}

1982 1983 1984 1985 1986
static int d40_prep_slave_sg_log(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sg_len,
				 enum dma_data_direction direction,
1987
				 unsigned long dma_flags)
1988 1989 1990 1991
{
	dma_addr_t dev_addr = 0;
	int total_size;

1992 1993 1994 1995
	d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1996
		chan_err(d40c, "Unaligned size\n");
1997 1998 1999
		return -EINVAL;
	}

2000
	if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, true) < 0) {
2001
		chan_err(d40c, "Out of memory\n");
2002 2003 2004
		return -ENOMEM;
	}

2005
	d40d->lli_current = 0;
2006

2007
	if (direction == DMA_FROM_DEVICE)
2008 2009 2010 2011
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2012
	else if (direction == DMA_TO_DEVICE)
2013 2014 2015 2016 2017
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];

2018
	else
2019
		return -EINVAL;
2020

2021
	total_size = d40_log_sg_to_dev(sgl, sg_len,
2022 2023 2024 2025 2026
				       &d40d->lli_log,
				       &d40c->log_def,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       direction,
2027
				       dev_addr);
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (total_size < 0)
		return -EINVAL;

	return 0;
}

static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sgl_len,
				 enum dma_data_direction direction,
2040
				 unsigned long dma_flags)
2041 2042 2043 2044 2045
{
	dma_addr_t src_dev_addr;
	dma_addr_t dst_dev_addr;
	int res;

2046 2047 2048 2049
	d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
2050
		chan_err(d40c, "Unaligned size\n");
2051 2052 2053
		return -EINVAL;
	}

2054
	if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, false) < 0) {
2055
		chan_err(d40c, "Out of memory\n");
2056 2057 2058
		return -ENOMEM;
	}

2059
	d40d->lli_current = 0;
2060 2061 2062

	if (direction == DMA_FROM_DEVICE) {
		dst_dev_addr = 0;
2063 2064 2065 2066
		if (d40c->runtime_addr)
			src_dev_addr = d40c->runtime_addr;
		else
			src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2067
	} else if (direction == DMA_TO_DEVICE) {
2068 2069 2070 2071
		if (d40c->runtime_addr)
			dst_dev_addr = d40c->runtime_addr;
		else
			dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2072 2073 2074 2075 2076 2077 2078 2079
		src_dev_addr = 0;
	} else
		return -EINVAL;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				src_dev_addr,
				d40d->lli_phy.src,
2080
				virt_to_phys(d40d->lli_phy.src),
2081 2082
				d40c->src_def_cfg,
				d40c->dma_cfg.src_info.data_width,
2083
				d40c->dma_cfg.dst_info.data_width,
2084
				d40c->dma_cfg.src_info.psize);
2085 2086 2087 2088 2089 2090 2091
	if (res < 0)
		return res;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				dst_dev_addr,
				d40d->lli_phy.dst,
2092
				virt_to_phys(d40d->lli_phy.dst),
2093 2094
				d40c->dst_def_cfg,
				d40c->dma_cfg.dst_info.data_width,
2095
				d40c->dma_cfg.src_info.data_width,
2096
				d40c->dma_cfg.dst_info.psize);
2097 2098 2099
	if (res < 0)
		return res;

2100 2101
	dma_sync_single_for_device(d40c->base->dev, d40d->lli_pool.dma_addr,
				   d40d->lli_pool.size, DMA_TO_DEVICE);
2102 2103 2104 2105 2106 2107 2108
	return 0;
}

static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
							 enum dma_data_direction direction,
2109
							 unsigned long dma_flags)
2110 2111 2112 2113
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
2114
	unsigned long flags;
2115 2116
	int err;

2117
	if (d40c->phy_chan == NULL) {
2118
		chan_err(d40c, "Cannot prepare unallocated channel\n");
2119 2120 2121
		return ERR_PTR(-EINVAL);
	}

2122
	spin_lock_irqsave(&d40c->lock, flags);
2123 2124 2125
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
2126
		goto err;
2127

2128
	if (chan_is_logical(d40c))
2129
		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2130
					    direction, dma_flags);
2131 2132
	else
		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2133
					    direction, dma_flags);
2134
	if (err) {
2135
		chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
2136
			chan_is_logical(d40c) ? "log" : "phy", err);
2137
		goto err;
2138 2139
	}

2140
	d40d->txd.flags = dma_flags;
2141 2142 2143 2144 2145

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

2146
	spin_unlock_irqrestore(&d40c->lock, flags);
2147
	return &d40d->txd;
2148 2149 2150 2151 2152 2153

err:
	if (d40d)
		d40_desc_free(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);
	return NULL;
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
}

static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	int ret;

2165
	if (d40c->phy_chan == NULL) {
2166
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2167 2168 2169
		return -EINVAL;
	}

2170 2171 2172
	last_complete = d40c->completed;
	last_used = chan->cookie;

2173 2174 2175 2176
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
	else
		ret = dma_async_is_complete(cookie, last_complete, last_used);
2177

2178 2179
	dma_set_tx_state(txstate, last_complete, last_used,
			 stedma40_residue(chan));
2180 2181 2182 2183 2184 2185 2186 2187 2188

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2189
	if (d40c->phy_chan == NULL) {
2190
		chan_err(d40c, "Channel is not allocated!\n");
2191 2192 2193
		return;
	}

2194 2195 2196 2197 2198 2199 2200 2201 2202
	spin_lock_irqsave(&d40c->lock, flags);

	/* Busy means that pending jobs are already being processed */
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
/* Runtime reconfiguration extension */
static void d40_set_runtime_config(struct dma_chan *chan,
			       struct dma_slave_config *config)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
	enum dma_slave_buswidth config_addr_width;
	dma_addr_t config_addr;
	u32 config_maxburst;
	enum stedma40_periph_data_width addr_width;
	int psize;

	if (config->direction == DMA_FROM_DEVICE) {
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

		config_addr_width = config->src_addr_width;
		config_maxburst = config->src_maxburst;

	} else if (config->direction == DMA_TO_DEVICE) {
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

		config_addr_width = config->dst_addr_width;
		config_maxburst = config->dst_maxburst;

	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
		return;
	}

	switch (config_addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			config->src_addr_width);
		return;
	}

2283
	if (chan_is_logical(d40c)) {
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
2299 2300
		else if (config_maxburst >= 2)
			psize = STEDMA40_PSIZE_PHY_2;
2301 2302 2303
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}
2304 2305 2306 2307

	/* Set up all the endpoint configs */
	cfg->src_info.data_width = addr_width;
	cfg->src_info.psize = psize;
2308
	cfg->src_info.big_endian = false;
2309 2310 2311
	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
	cfg->dst_info.data_width = addr_width;
	cfg->dst_info.psize = psize;
2312
	cfg->dst_info.big_endian = false;
2313 2314
	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;

2315
	/* Fill in register values */
2316
	if (chan_is_logical(d40c))
2317 2318 2319 2320 2321
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
		"configured channel %s for %s, data width %d, "
		"maxburst %d bytes, LE, no flow control\n",
		dma_chan_name(chan),
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		config_addr_width,
		config_maxburst);
}

2334 2335
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2336 2337 2338 2339
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2340
	if (d40c->phy_chan == NULL) {
2341
		chan_err(d40c, "Channel is not allocated!\n");
2342 2343 2344
		return -EINVAL;
	}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	switch (cmd) {
	case DMA_TERMINATE_ALL:
		spin_lock_irqsave(&d40c->lock, flags);
		d40_term_all(d40c);
		spin_unlock_irqrestore(&d40c->lock, flags);
		return 0;
	case DMA_PAUSE:
		return d40_pause(chan);
	case DMA_RESUME:
		return d40_resume(chan);
2355 2356 2357 2358 2359 2360
	case DMA_SLAVE_CONFIG:
		d40_set_runtime_config(chan,
			(struct dma_slave_config *) arg);
		return 0;
	default:
		break;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
		INIT_LIST_HEAD(&d40c->client);

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);

	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2413
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2414 2415 2416 2417 2418 2419 2420 2421 2422
	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_slave.device_tx_status = d40_tx_status;
	base->dma_slave.device_issue_pending = d40_issue_pending;
	base->dma_slave.device_control = d40_control;
	base->dma_slave.dev = base->dev;

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2423
		d40_err(base->dev, "Failed to register slave channels\n");
2424 2425 2426 2427 2428 2429 2430 2431
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
		      base->num_log_chans, base->plat_data->memcpy_len);

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2432
	dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2433 2434 2435 2436

	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2437
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_memcpy.device_tx_status = d40_tx_status;
	base->dma_memcpy.device_issue_pending = d40_issue_pending;
	base->dma_memcpy.device_control = d40_control;
	base->dma_memcpy.dev = base->dev;
	/*
	 * This controller can only access address at even
	 * 32bit boundaries, i.e. 2^2
	 */
	base->dma_memcpy.copy_align = 2;

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2452 2453
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2454 2455 2456 2457 2458 2459 2460 2461 2462
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2463
	dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2464 2465 2466 2467

	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2468
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2469 2470 2471 2472 2473 2474 2475 2476 2477
	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_both.device_tx_status = d40_tx_status;
	base->dma_both.device_issue_pending = d40_issue_pending;
	base->dma_both.device_control = d40_control;
	base->dma_both.dev = base->dev;
	base->dma_both.copy_align = 2;
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2478 2479
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
2517 2518 2519

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2520 2521 2522 2523 2524
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
		num_phy_chans_avail--;
2525 2526
	}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	static const struct d40_reg_val dma_id_regs[] = {
		/* Peripheral Id */
		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
		/*
		 * D40_DREG_PERIPHID2 Depends on HW revision:
2555
		 *  DB8500ed has 0x0008,
2556
		 *  ? has 0x0018,
2557 2558
		 *  DB8500v1 has 0x0028
		 *  DB8500v2 has 0x0038
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
		 */
		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},

		/* PCell Id */
		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
	};
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
	int i;
2576
	u32 val;
2577
	u32 rev;
2578 2579 2580 2581

	clk = clk_get(&pdev->dev, NULL);

	if (IS_ERR(clk)) {
2582
		d40_err(&pdev->dev, "No matching clock found\n");
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
		goto failure;
	}

	clk_enable(clk);

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

	/* HW version check */
	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
		if (dma_id_regs[i].val !=
		    readl(virtbase + dma_id_regs[i].reg)) {
2605 2606
			d40_err(&pdev->dev,
				"Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2607 2608 2609 2610 2611 2612 2613
				dma_id_regs[i].val,
				dma_id_regs[i].reg,
				readl(virtbase + dma_id_regs[i].reg));
			goto failure;
		}
	}

2614
	/* Get silicon revision and designer */
2615
	val = readl(virtbase + D40_DREG_PERIPHID2);
2616

2617 2618
	if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
	    D40_HW_DESIGNER) {
2619 2620
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
			val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2621
			D40_HW_DESIGNER);
2622 2623 2624
		goto failure;
	}

2625 2626 2627
	rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
		D40_DREG_PERIPHID2_REV_POS;

2628 2629 2630 2631
	/* The number of physical channels on this HW */
	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;

	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2632
		 rev, res->start);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

	plat_data = pdev->dev.platform_data;

	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
2650
		d40_err(&pdev->dev, "Out of memory\n");
2651 2652 2653
		goto failure;
	}

2654
	base->rev = rev;
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

	if (num_log_chans + plat_data->memcpy_len) {
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
2688 2689 2690 2691

	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
					    sizeof(struct d40_desc *) *
					    D40_LCLA_LINK_PER_EVENT_GRP,
2692 2693 2694 2695
					    GFP_KERNEL);
	if (!base->lcla_pool.alloc_map)
		goto failure;

2696 2697 2698 2699 2700 2701
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

2702 2703 2704
	return base;

failure:
2705
	if (!IS_ERR(clk)) {
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		clk_disable(clk);
		clk_put(clk);
	}
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	static const struct d40_reg_val dma_init_reg[] = {
		/* Clock every part of the DMA block from start */
		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},

		/* Interrupts on all logical channels */
		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
	};
	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;

	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
	writel(pcmis, base->virtbase + D40_DREG_PCMIS);

	/* Write which interrupt to clear */
	writel(pcicr, base->virtbase + D40_DREG_PCICR);

}

2795 2796
static int __init d40_lcla_allocate(struct d40_base *base)
{
2797
	struct d40_lcla_pool *pool = &base->lcla_pool;
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

2823 2824
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
2842 2843 2844 2845
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

2862 2863 2864 2865 2866 2867 2868 2869 2870
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

2871 2872 2873 2874 2875 2876 2877
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
2903
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2904 2905 2906 2907 2908 2909 2910 2911
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
2912 2913 2914
		d40_err(&pdev->dev,
			"Failed to request LCPA region 0x%x-0x%x\n",
			res->start, res->end);
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
2930
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2931 2932 2933
		goto failure;
	}

2934 2935
	ret = d40_lcla_allocate(base);
	if (ret) {
2936
		d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2937 2938 2939 2940 2941 2942 2943 2944 2945
		goto failure;
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
2946
		d40_err(&pdev->dev, "No IRQ defined\n");
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		goto failure;
	}

	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
2961 2962
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
2963 2964
		if (base->virtbase)
			iounmap(base->virtbase);
2965 2966 2967 2968 2969 2970

		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

2971 2972 2973
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
2974 2975 2976

		kfree(base->lcla_pool.base_unaligned);

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
			clk_disable(base->clk);
			clk_put(base->clk);
		}

		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

2995
	d40_err(&pdev->dev, "probe failed\n");
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
	},
};

R
Rabin Vincent 已提交
3006
static int __init stedma40_init(void)
3007 3008 3009 3010
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
arch_initcall(stedma40_init);