regmap.c 71.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22
#include <linux/log2.h>
23
#include <linux/hwspinlock.h>
24

M
Mark Brown 已提交
25
#define CREATE_TRACE_POINTS
26
#include "trace.h"
M
Mark Brown 已提交
27

28
#include "internal.h"
29

30 31 32 33 34 35 36 37 38 39
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
40
			       bool *change, bool force_write);
41

42 43
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
44 45
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
46 47
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
48 49
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
50 51
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

67 68
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
69 70 71 72 73 74 75 76 77 78 79 80
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
81
EXPORT_SYMBOL_GPL(regmap_check_range_table);
82

83 84 85 86 87 88 89 90
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

91
	if (map->wr_table)
92
		return regmap_check_range_table(map, reg, map->wr_table);
93

94 95 96
	return true;
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
bool regmap_cached(struct regmap *map, unsigned int reg)
{
	int ret;
	unsigned int val;

	if (map->cache == REGCACHE_NONE)
		return false;

	if (!map->cache_ops)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	map->lock(map->lock_arg);
	ret = regcache_read(map, reg, &val);
	map->unlock(map->lock_arg);
	if (ret)
		return false;

	return true;
}

120 121
bool regmap_readable(struct regmap *map, unsigned int reg)
{
122 123 124
	if (!map->reg_read)
		return false;

125 126 127
	if (map->max_register && reg > map->max_register)
		return false;

128 129 130
	if (map->format.format_write)
		return false;

131 132 133
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

134
	if (map->rd_table)
135
		return regmap_check_range_table(map, reg, map->rd_table);
136

137 138 139 140 141
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
142
	if (!map->format.format_write && !regmap_readable(map, reg))
143 144 145 146 147
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

148
	if (map->volatile_table)
149
		return regmap_check_range_table(map, reg, map->volatile_table);
150

151 152 153 154
	if (map->cache_ops)
		return false;
	else
		return true;
155 156 157 158
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
159
	if (!regmap_readable(map, reg))
160 161 162 163 164
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

165
	if (map->precious_table)
166
		return regmap_check_range_table(map, reg, map->precious_table);
167

168 169 170
	return false;
}

171
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
172
	size_t num)
173 174 175 176 177 178 179 180 181 182
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

183 184 185 186 187 188 189 190
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

205 206 207 208 209 210 211 212 213 214
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

215
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
216 217 218
{
	u8 *b = buf;

219
	b[0] = val << shift;
220 221
}

222
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
223 224 225
{
	__be16 *b = buf;

226
	b[0] = cpu_to_be16(val << shift);
227 228
}

229 230 231 232 233 234 235
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

236 237 238 239 240 241
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

242
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
243 244 245
{
	u8 *b = buf;

246 247
	val <<= shift;

248 249 250 251 252
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

253
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
254 255 256
{
	__be32 *b = buf;

257
	b[0] = cpu_to_be32(val << shift);
258 259
}

260 261 262 263 264 265 266
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

267 268 269 270 271 272
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

X
Xiubo Li 已提交
273 274 275 276 277
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
	__be64 *b = buf;

278
	b[0] = cpu_to_be64((u64)val << shift);
X
Xiubo Li 已提交
279 280 281 282 283 284
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
	__le64 *b = buf;

285
	b[0] = cpu_to_le64((u64)val << shift);
X
Xiubo Li 已提交
286 287 288 289 290
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
291
	*(u64 *)buf = (u64)val << shift;
X
Xiubo Li 已提交
292 293 294
}
#endif

295
static void regmap_parse_inplace_noop(void *buf)
296
{
297 298 299 300 301
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
302 303 304 305

	return b[0];
}

306 307 308 309 310 311 312
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

313 314 315 316 317 318 319
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

320
static void regmap_parse_16_be_inplace(void *buf)
321 322 323 324 325 326
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

327 328 329 330 331 332 333
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

334
static unsigned int regmap_parse_16_native(const void *buf)
335 336 337 338
{
	return *(u16 *)buf;
}

339
static unsigned int regmap_parse_24(const void *buf)
340
{
341
	const u8 *b = buf;
342 343 344 345 346 347 348
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

349 350 351 352 353 354 355
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

356 357 358 359 360 361 362
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

363
static void regmap_parse_32_be_inplace(void *buf)
364 365 366 367 368 369
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

370 371 372 373 374 375 376
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

377
static unsigned int regmap_parse_32_native(const void *buf)
378 379 380 381
{
	return *(u32 *)buf;
}

X
Xiubo Li 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
	const __be64 *b = buf;

	return be64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_le(const void *buf)
{
	const __le64 *b = buf;

	return le64_to_cpu(b[0]);
}

static void regmap_parse_64_be_inplace(void *buf)
{
	__be64 *b = buf;

	b[0] = be64_to_cpu(b[0]);
}

static void regmap_parse_64_le_inplace(void *buf)
{
	__le64 *b = buf;

	b[0] = le64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_native(const void *buf)
{
	return *(u64 *)buf;
}
#endif

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static void regmap_lock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irqsave(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
				    &map->spinlock_flags);
}

static void regmap_unlock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock(map->hwlock);
}

static void regmap_unlock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irq(map->hwlock);
}

static void regmap_unlock_hwlock_irqrestore(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
}

460
static void regmap_lock_unlock_none(void *__map)
461 462 463
{

}
464

465
static void regmap_lock_mutex(void *__map)
466
{
467
	struct regmap *map = __map;
468 469 470
	mutex_lock(&map->mutex);
}

471
static void regmap_unlock_mutex(void *__map)
472
{
473
	struct regmap *map = __map;
474 475 476
	mutex_unlock(&map->mutex);
}

477
static void regmap_lock_spinlock(void *__map)
478
__acquires(&map->spinlock)
479
{
480
	struct regmap *map = __map;
481 482 483 484
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
485 486
}

487
static void regmap_unlock_spinlock(void *__map)
488
__releases(&map->spinlock)
489
{
490
	struct regmap *map = __map;
491
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
492 493
}

M
Mark Brown 已提交
494 495 496 497 498 499 500 501 502
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

503 504 505 506 507 508 509 510
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
511
			rb_entry(*new, struct regmap_range_node, node);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
535
			rb_entry(node, struct regmap_range_node, node);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
601

602 603 604 605 606 607 608 609
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

610 611 612
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
613
{
614
	struct device_node *np;
615
	enum regmap_endian endian;
616

617
	/* Retrieve the endianness specification from the regmap config */
618
	endian = config->val_format_endian;
619

620
	/* If the regmap config specified a non-default value, use that */
621 622
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
623

624 625 626
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
627

628 629 630 631 632
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;
633 634
		else if (of_property_read_bool(np, "native-endian"))
			endian = REGMAP_ENDIAN_NATIVE;
635 636 637 638 639

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
640 641

	/* Retrieve the endianness specification from the bus config */
642 643
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
644

645
	/* If the bus specified a non-default value, use that */
646 647
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
648 649

	/* Use this if no other value was found */
650
	return REGMAP_ENDIAN_BIG;
651
}
652
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
653

654 655 656 657 658 659
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
660
{
661
	struct regmap *map;
662
	int ret = -EINVAL;
663
	enum regmap_endian reg_endian, val_endian;
664
	int i, j;
665

666
	if (!config)
667
		goto err;
668 669 670 671 672 673 674

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

675 676 677 678 679 680 681 682
	if (config->name) {
		map->name = kstrdup_const(config->name, GFP_KERNEL);
		if (!map->name) {
			ret = -ENOMEM;
			goto err_map;
		}
	}

683
	if (config->disable_locking) {
684
		map->lock = map->unlock = regmap_lock_unlock_none;
685
		regmap_debugfs_disable(map);
686
	} else if (config->lock && config->unlock) {
687 688 689
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
690
	} else if (config->use_hwlock) {
691 692 693
		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
		if (!map->hwlock) {
			ret = -ENXIO;
694
			goto err_name;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
		}

		switch (config->hwlock_mode) {
		case HWLOCK_IRQSTATE:
			map->lock = regmap_lock_hwlock_irqsave;
			map->unlock = regmap_unlock_hwlock_irqrestore;
			break;
		case HWLOCK_IRQ:
			map->lock = regmap_lock_hwlock_irq;
			map->unlock = regmap_unlock_hwlock_irq;
			break;
		default:
			map->lock = regmap_lock_hwlock;
			map->unlock = regmap_unlock_hwlock;
			break;
		}

		map->lock_arg = map;
713
	} else {
714 715
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
716 717 718
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
719 720
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
721 722 723 724
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
725 726
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
727 728
		}
		map->lock_arg = map;
729
	}
730 731 732 733 734 735 736 737 738 739

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

740
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
741
	map->format.pad_bytes = config->pad_bits / 8;
742
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
743 744
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
745
	map->reg_shift = config->pad_bits % 8;
746 747 748 749
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
750 751 752 753
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
754 755
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
756
	map->can_multi_write = config->can_multi_write && bus && bus->write;
757 758 759 760
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
761 762
	map->dev = dev;
	map->bus = bus;
763
	map->bus_context = bus_context;
764
	map->max_register = config->max_register;
765 766 767 768
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
769 770 771
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
772
	map->precious_reg = config->precious_reg;
773
	map->cache_type = config->cache_type;
774

775 776
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
777
	INIT_LIST_HEAD(&map->async_free);
778 779
	init_waitqueue_head(&map->async_waitq);

780 781 782
	if (config->read_flag_mask ||
	    config->write_flag_mask ||
	    config->zero_flag_mask) {
783 784
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
785
	} else if (bus) {
786 787 788
		map->read_flag_mask = bus->read_flag_mask;
	}

789 790 791 792
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

793 794 795 796 797 798
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

799 800 801 802
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
803
		map->reg_update_bits = bus->reg_update_bits;
804
	}
805

806 807
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
808

809
	switch (config->reg_bits + map->reg_shift) {
810 811 812 813 814 815
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
816
			goto err_hwlock;
817 818 819
		}
		break;

820 821 822 823 824 825
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
826
			goto err_hwlock;
827 828 829 830 831 832 833 834 835
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
836
			goto err_hwlock;
837 838 839
		}
		break;

840 841 842 843 844 845
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
846
			goto err_hwlock;
847 848 849
		}
		break;

850 851 852 853 854
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
855 856 857 858
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
859 860 861
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_16_le;
			break;
862 863 864 865
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
866
			goto err_hwlock;
867
		}
868 869
		break;

870 871
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
872
			goto err_hwlock;
873 874 875
		map->format.format_reg = regmap_format_24;
		break;

876
	case 32:
877 878 879 880
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
881 882 883
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_32_le;
			break;
884 885 886 887
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
888
			goto err_hwlock;
889
		}
890 891
		break;

X
Xiubo Li 已提交
892 893 894 895 896 897
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
898 899 900
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_64_le;
			break;
X
Xiubo Li 已提交
901 902 903 904
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
905
			goto err_hwlock;
X
Xiubo Li 已提交
906 907 908 909
		}
		break;
#endif

910
	default:
911
		goto err_hwlock;
912 913
	}

914 915 916
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

917 918 919 920
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
921
		map->format.parse_inplace = regmap_parse_inplace_noop;
922 923
		break;
	case 16:
924 925 926 927
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
928
			map->format.parse_inplace = regmap_parse_16_be_inplace;
929
			break;
930 931 932 933 934
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
935 936 937 938 939
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
940
			goto err_hwlock;
941
		}
942
		break;
943
	case 24:
944
		if (val_endian != REGMAP_ENDIAN_BIG)
945
			goto err_hwlock;
946 947 948
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
949
	case 32:
950 951 952 953
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
954
			map->format.parse_inplace = regmap_parse_32_be_inplace;
955
			break;
956 957 958 959 960
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
961 962 963 964 965
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
966
			goto err_hwlock;
967
		}
968
		break;
X
Xiubo Li 已提交
969
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
970
	case 64:
X
Xiubo Li 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
987
			goto err_hwlock;
X
Xiubo Li 已提交
988 989 990
		}
		break;
#endif
991 992
	}

993 994 995
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
996
			goto err_hwlock;
997
		map->use_single_write = true;
998
	}
999

1000 1001
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
1002
		goto err_hwlock;
1003

1004
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1005 1006
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
1007
		goto err_hwlock;
1008 1009
	}

1010 1011
	if (map->format.format_write) {
		map->defer_caching = false;
1012
		map->reg_write = _regmap_bus_formatted_write;
1013 1014
	} else if (map->format.format_val) {
		map->defer_caching = true;
1015
		map->reg_write = _regmap_bus_raw_write;
1016 1017 1018
	}

skip_format_initialization:
1019

1020
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
1021
	for (i = 0; i < config->num_ranges; i++) {
1022 1023 1024 1025
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
1026 1027 1028
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
1029
			goto err_range;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
1049 1050 1051

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
1052
		for (j = 0; j < config->num_ranges; j++) {
1053 1054 1055 1056 1057
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

1058 1059 1060 1061
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

1062 1063
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
1064 1065 1066
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
1067 1068 1069 1070 1071
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
1072 1073 1074
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

1085
		new->map = map;
M
Mark Brown 已提交
1086
		new->name = range_cfg->name;
1087 1088 1089 1090 1091 1092 1093 1094
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
1095
		if (!_regmap_range_add(map, new)) {
1096
			dev_err(map->dev, "Failed to add range %d\n", i);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
1110

1111
	ret = regcache_init(map, config);
1112
	if (ret != 0)
1113 1114
		goto err_range;

1115
	if (dev) {
1116 1117 1118
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1119
	}
M
Mark Brown 已提交
1120

1121 1122
	return map;

1123
err_regcache:
M
Mark Brown 已提交
1124
	regcache_exit(map);
1125 1126
err_range:
	regmap_range_exit(map);
1127
	kfree(map->work_buf);
1128
err_hwlock:
1129
	if (map->hwlock)
1130
		hwspin_lock_free(map->hwlock);
1131 1132
err_name:
	kfree_const(map->name);
1133 1134 1135 1136 1137
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1138
EXPORT_SYMBOL_GPL(__regmap_init);
1139

1140 1141 1142 1143 1144
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1145 1146 1147 1148 1149 1150
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1151 1152 1153 1154 1155 1156 1157
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1158 1159
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1160 1161 1162 1163 1164 1165 1166 1167 1168
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1169
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1170

1171 1172 1173 1174 1175 1176
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1177
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1178 1179
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1180 1181 1182
}

/**
1183
 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
1209 1210
 * devm_regmap_field_free() - Free a register field allocated using
 *                            devm_regmap_field_alloc.
1211 1212 1213
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
1214 1215 1216 1217
 *
 * Free register field allocated using devm_regmap_field_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cyle.
1218 1219 1220 1221 1222 1223 1224 1225 1226
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
1227
 * regmap_field_alloc() - Allocate and initialise a register field.
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
1251 1252
 * regmap_field_free() - Free register field allocated using
 *                       regmap_field_alloc.
1253 1254 1255 1256 1257 1258 1259 1260 1261
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1262
/**
1263
 * regmap_reinit_cache() - Reinitialise the current register cache
1264 1265 1266 1267 1268 1269 1270 1271
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1272 1273 1274
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1275 1276 1277 1278
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1279
	regmap_debugfs_exit(map);
1280 1281 1282 1283 1284 1285 1286 1287

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1288
	regmap_debugfs_init(map, config->name);
1289

1290 1291 1292
	map->cache_bypass = false;
	map->cache_only = false;

1293
	return regcache_init(map, config);
1294
}
1295
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1296

1297
/**
1298 1299 1300
 * regmap_exit() - Free a previously allocated register map
 *
 * @map: Register map to operate on.
1301 1302 1303
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1304 1305
	struct regmap_async *async;

1306
	regcache_exit(map);
1307
	regmap_debugfs_exit(map);
1308
	regmap_range_exit(map);
1309
	if (map->bus && map->bus->free_context)
1310
		map->bus->free_context(map->bus_context);
1311
	kfree(map->work_buf);
M
Mark Brown 已提交
1312 1313 1314 1315 1316 1317 1318 1319
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1320
	if (map->hwlock)
1321
		hwspin_lock_free(map->hwlock);
1322
	kfree_const(map->name);
1323 1324 1325 1326
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
1343
 * dev_get_regmap() - Obtain the regmap (if any) for a device
M
Mark Brown 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1365
/**
1366
 * regmap_get_device() - Obtain the device from a regmap
T
Tuomas Tynkkynen 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1376
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1377

1378
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1379
			       struct regmap_range_node *range,
1380 1381 1382 1383 1384 1385 1386 1387
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1388 1389
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1390

1391 1392 1393 1394
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1395

1396 1397 1398 1399
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1400

1401 1402 1403 1404 1405 1406 1407 1408
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1409

1410 1411 1412
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1413
					  &page_chg, false);
1414

1415
		map->work_buf = orig_work_buf;
1416

1417
		if (ret != 0)
1418
			return ret;
1419 1420
	}

1421 1422
	*reg = range->window_start + win_offset;

1423 1424 1425
	return 0;
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
					  unsigned long mask)
{
	u8 *buf;
	int i;

	if (!mask || !map->work_buf)
		return;

	buf = map->work_buf;

	for (i = 0; i < max_bytes; i++)
		buf[i] |= (mask >> (8 * i)) & 0xff;
}

1441
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1442
		      const void *val, size_t val_len)
1443
{
1444
	struct regmap_range_node *range;
1445 1446 1447
	unsigned long flags;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1448 1449 1450
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1451 1452
	int i;

1453
	WARN_ON(!map->bus);
1454

1455 1456 1457
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1458
			if (!map->writeable_reg(map->dev,
1459
					       reg + regmap_get_offset(map, i)))
1460
				return -EINVAL;
1461

1462 1463 1464 1465
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1466
			ival = map->format.parse_val(val + (i * val_bytes));
1467 1468
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1469
					     ival);
1470 1471
			if (ret) {
				dev_err(map->dev,
1472
					"Error in caching of register: %x ret: %d\n",
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1483 1484
	range = _regmap_range_lookup(map, reg);
	if (range) {
1485 1486 1487 1488 1489 1490
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1491
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1492 1493
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1494
						map->format.val_bytes);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1509
		if (ret != 0)
1510 1511
			return ret;
	}
1512

1513
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1514 1515
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->write_flag_mask);
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1527
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1528
		struct regmap_async *async;
1529

1530
		trace_regmap_async_write_start(map, reg, val_len);
1531

M
Mark Brown 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1575 1576 1577 1578 1579 1580

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1581
			list_move(&async->list, &map->async_free);
1582 1583
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1584 1585

		return ret;
1586 1587
	}

1588
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1589

1590 1591 1592 1593
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1594
	if (val == work_val)
1595
		ret = map->bus->write(map->bus_context, map->work_buf,
1596 1597 1598
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1599
	else if (map->bus->gather_write)
1600
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1601 1602
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1603 1604
					     val, val_len);

1605
	/* If that didn't work fall back on linearising by hand. */
1606
	if (ret == -ENOTSUPP) {
1607 1608
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1609 1610 1611 1612
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1613 1614
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1615
		ret = map->bus->write(map->bus_context, buf, len);
1616 1617

		kfree(buf);
1618
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1619 1620 1621 1622 1623
		/* regcache_drop_region() takes lock that we already have,
		 * thus call map->cache_ops->drop() directly
		 */
		if (map->cache_ops && map->cache_ops->drop)
			map->cache_ops->drop(map, reg, reg + 1);
1624 1625
	}

1626
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1627

1628 1629 1630
	return ret;
}

1631 1632 1633 1634 1635 1636 1637
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1638 1639
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1640 1641 1642
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1665 1666 1667 1668 1669 1670 1671
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1672
	WARN_ON(!map->bus || !map->format.format_write);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1683
	trace_regmap_hw_write_start(map, reg, 1);
1684 1685 1686 1687

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1688
	trace_regmap_hw_write_done(map, reg, 1);
1689 1690 1691 1692

	return ret;
}

1693 1694 1695 1696 1697 1698 1699 1700
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1701 1702 1703 1704 1705
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1706
	WARN_ON(!map->bus || !map->format.format_val);
1707 1708 1709 1710 1711 1712 1713

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1714
				 map->format.val_bytes);
1715 1716
}

1717 1718 1719 1720 1721
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1722 1723
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1724
{
M
Mark Brown 已提交
1725
	int ret;
1726
	void *context = _regmap_map_get_context(map);
1727

1728 1729 1730
	if (!regmap_writeable(map, reg))
		return -EIO;

1731
	if (!map->cache_bypass && !map->defer_caching) {
1732 1733 1734
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1735 1736
		if (map->cache_only) {
			map->cache_dirty = true;
1737
			return 0;
1738
		}
1739 1740
	}

1741
#ifdef LOG_DEVICE
1742
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1743 1744 1745
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1746
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1747

1748
	return map->reg_write(context, reg, val);
1749 1750 1751
}

/**
1752
 * regmap_write() - Write a value to a single register
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1765
	if (!IS_ALIGNED(reg, map->reg_stride))
1766 1767
		return -EINVAL;

1768
	map->lock(map->lock_arg);
1769 1770 1771

	ret = _regmap_write(map, reg, val);

1772
	map->unlock(map->lock_arg);
1773 1774 1775 1776 1777

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1778
/**
1779
 * regmap_write_async() - Write a value to a single register asynchronously
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1792
	if (!IS_ALIGNED(reg, map->reg_stride))
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1809
/**
1810
 * regmap_raw_write() - Write raw values to one or more registers
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1830
	if (!regmap_can_raw_write(map))
1831
		return -EINVAL;
1832 1833
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1834
	if (map->max_raw_write && map->max_raw_write < val_len)
1835
		return -E2BIG;
1836

1837
	map->lock(map->lock_arg);
1838

1839
	ret = _regmap_raw_write(map, reg, val, val_len);
1840

1841
	map->unlock(map->lock_arg);
1842 1843 1844 1845 1846

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1847
/**
1848 1849
 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
 *                                   register field.
1850 1851 1852 1853
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
1854 1855 1856
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1857
 *
1858 1859 1860
 * Perform a read/modify/write cycle on the register field with change,
 * async, force option.
 *
1861 1862 1863
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1864 1865 1866
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
1867 1868 1869
{
	mask = (mask << field->shift) & field->mask;

1870 1871 1872
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
1873
}
1874
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1875

1876
/**
1877 1878
 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
 *                                    register field with port ID
1879 1880 1881 1882 1883
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
1884 1885 1886
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1887 1888 1889 1890
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1891 1892 1893
int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
1894 1895 1896 1897 1898 1899
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

1900 1901 1902 1903
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
1904
}
1905
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1906

1907 1908
/**
 * regmap_bulk_write() - Write multiple registers to the device
1909 1910 1911 1912 1913 1914 1915
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1916
 * data to the device either in single transfer or multiple transfer.
1917 1918 1919 1920 1921 1922 1923 1924 1925
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1926
	size_t total_size = val_bytes * val_count;
1927

1928
	if (!IS_ALIGNED(reg, map->reg_stride))
1929
		return -EINVAL;
1930

1931 1932
	/*
	 * Some devices don't support bulk write, for
1933 1934 1935 1936 1937
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
1938 1939
	 * The second one is for busses that do not provide raw I/O.
	 * The third one is used for busses which do not have these limitations
1940
	 * and can write arbitrary value lengths.
1941
	 */
1942
	if (!map->bus) {
1943
		map->lock(map->lock_arg);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1966

1967 1968 1969
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
1970 1971 1972
			if (ret != 0)
				goto out;
		}
1973 1974
out:
		map->unlock(map->lock_arg);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	} else if (map->bus && !map->format.parse_inplace) {
		const u8 *u8 = val;
		const u16 *u16 = val;
		const u32 *u32 = val;
		unsigned int ival;

		for (i = 0; i < val_count; i++) {
			switch (map->format.val_bytes) {
			case 4:
				ival = u32[i];
				break;
			case 2:
				ival = u16[i];
				break;
			case 1:
				ival = u8[i];
				break;
			default:
				return -EINVAL;
			}

1996
			ret = regmap_write(map, reg + regmap_get_offset(map, i),
1997 1998 1999 2000
					   ival);
			if (ret)
				return ret;
		}
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

2015
		map->lock(map->lock_arg);
2016 2017
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
2018
			ret = _regmap_raw_write(map,
2019 2020 2021
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
2022 2023 2024
			if (ret)
				break;
		}
2025 2026 2027 2028 2029 2030 2031

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
2032
		map->unlock(map->lock_arg);
2033
	} else {
2034 2035
		void *wval;

2036 2037 2038
		if (!val_count)
			return -EINVAL;

2039
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2040 2041
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
2042
			return -ENOMEM;
2043 2044
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2045
			map->format.parse_inplace(wval + i);
2046

2047
		map->lock(map->lock_arg);
2048
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
2049
		map->unlock(map->lock_arg);
2050 2051

		kfree(wval);
2052
	}
2053 2054 2055 2056
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

2057 2058 2059 2060 2061
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
2062
 * relative. The page register has been written if that was necessary.
2063 2064
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
2065
				       const struct reg_sequence *regs,
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

2078 2079 2080
	if (!len)
		return -EINVAL;

2081 2082 2083 2084 2085 2086 2087 2088 2089
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
2090 2091
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
2092
		trace_regmap_hw_write_start(map, reg, 1);
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
2107
		trace_regmap_hw_write_done(map, reg, 1);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2122
					       struct reg_sequence *regs,
2123 2124 2125 2126
					       size_t num_regs)
{
	int ret;
	int i, n;
2127
	struct reg_sequence *base;
2128
	unsigned int this_page = 0;
2129
	unsigned int page_change = 0;
2130 2131 2132
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
2133 2134
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2170 2171 2172
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2173 2174 2175 2176

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

2177 2178
				base += n;
				n = 0;
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2190
		}
2191

2192 2193 2194 2195 2196 2197
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2198
static int _regmap_multi_reg_write(struct regmap *map,
2199
				   const struct reg_sequence *regs,
2200
				   size_t num_regs)
2201
{
2202 2203 2204 2205 2206 2207 2208 2209
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2210 2211 2212

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2225
			if (!IS_ALIGNED(reg, map->reg_stride))
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2248 2249

	for (i = 0; i < num_regs; i++) {
2250 2251
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2252 2253 2254 2255

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2256
		range = _regmap_range_lookup(map, reg);
2257
		if (range || regs[i].delay_us) {
2258 2259
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2260 2261 2262 2263 2264 2265 2266
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2267 2268 2269
			return ret;
		}
	}
2270
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2271 2272
}

2273 2274
/**
 * regmap_multi_reg_write() - Write multiple registers to the device
2275 2276 2277 2278 2279
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2280 2281 2282
 * Write multiple registers to the device where the set of register, value
 * pairs are supplied in any order, possibly not all in a single range.
 *
2283
 * The 'normal' block write mode will send ultimately send data on the
2284
 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2285 2286 2287
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2288
 *
2289 2290
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2291
 */
2292
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2293
			   int num_regs)
2294
{
2295
	int ret;
2296 2297 2298

	map->lock(map->lock_arg);

2299 2300
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2301 2302 2303 2304 2305 2306
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2307 2308 2309
/**
 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
 *                                     device but not the cache
2310 2311 2312 2313 2314
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2315 2316 2317
 * Write multiple registers to the device but not the cache where the set
 * of register are supplied in any order.
 *
2318 2319 2320 2321 2322 2323 2324
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2325
int regmap_multi_reg_write_bypassed(struct regmap *map,
2326
				    const struct reg_sequence *regs,
2327
				    int num_regs)
2328
{
2329 2330
	int ret;
	bool bypass;
2331 2332 2333

	map->lock(map->lock_arg);

2334 2335 2336 2337 2338 2339 2340
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2341 2342 2343 2344
	map->unlock(map->lock_arg);

	return ret;
}
2345
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2346

2347
/**
2348 2349
 * regmap_raw_write_async() - Write raw values to one or more registers
 *                            asynchronously
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2376
	if (!IS_ALIGNED(reg, map->reg_stride))
2377 2378 2379 2380
		return -EINVAL;

	map->lock(map->lock_arg);

2381 2382 2383 2384 2385
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2386 2387 2388 2389 2390 2391 2392

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2393 2394 2395
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2396
	struct regmap_range_node *range;
2397 2398
	int ret;

2399
	WARN_ON(!map->bus);
2400

2401 2402 2403
	if (!map->bus || !map->bus->read)
		return -EINVAL;

2404 2405 2406 2407
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2408
		if (ret != 0)
2409 2410
			return ret;
	}
2411

2412
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2413 2414
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->read_flag_mask);
2415
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2416

2417
	ret = map->bus->read(map->bus_context, map->work_buf,
2418
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2419
			     val, val_len);
2420

2421
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2422 2423

	return ret;
2424 2425
}

2426 2427 2428 2429 2430 2431 2432 2433
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2434 2435 2436 2437 2438
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;
2439 2440
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
2441 2442 2443 2444

	if (!map->format.parse_val)
		return -EINVAL;

2445
	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2446
	if (ret == 0)
2447
		*val = map->format.parse_val(work_val);
2448 2449 2450 2451

	return ret;
}

2452 2453 2454 2455
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2456 2457
	void *context = _regmap_map_get_context(map);

2458 2459 2460 2461 2462 2463 2464 2465 2466
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2467 2468 2469
	if (!regmap_readable(map, reg))
		return -EIO;

2470
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2471
	if (ret == 0) {
2472
#ifdef LOG_DEVICE
2473
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2474 2475 2476
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2477
		trace_regmap_reg_read(map, reg, *val);
2478

2479 2480 2481
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2482

2483 2484 2485 2486
	return ret;
}

/**
2487
 * regmap_read() - Read a value from a single register
2488
 *
2489
 * @map: Register map to read from
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2500
	if (!IS_ALIGNED(reg, map->reg_stride))
2501 2502
		return -EINVAL;

2503
	map->lock(map->lock_arg);
2504 2505 2506

	ret = _regmap_read(map, reg, val);

2507
	map->unlock(map->lock_arg);
2508 2509 2510 2511 2512 2513

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
2514
 * regmap_raw_read() - Read raw data from the device
2515
 *
2516
 * @map: Register map to read from
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2527 2528 2529 2530
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2531

2532 2533
	if (!map->bus)
		return -EINVAL;
2534 2535
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2536
	if (!IS_ALIGNED(reg, map->reg_stride))
2537
		return -EINVAL;
2538 2539
	if (val_count == 0)
		return -EINVAL;
2540

2541
	map->lock(map->lock_arg);
2542

2543 2544
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2545 2546
		size_t chunk_count, chunk_bytes;
		size_t chunk_regs = val_count;
2547

2548 2549 2550 2551
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
2552

2553 2554 2555 2556
		if (map->use_single_read)
			chunk_regs = 1;
		else if (map->max_raw_read && val_len > map->max_raw_read)
			chunk_regs = map->max_raw_read / val_bytes;
2557

2558 2559 2560 2561
		chunk_count = val_count / chunk_regs;
		chunk_bytes = chunk_regs * val_bytes;

		/* Read bytes that fit into whole chunks */
2562
		for (i = 0; i < chunk_count; i++) {
2563
			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2564
			if (ret != 0)
2565 2566 2567 2568 2569
				goto out;

			reg += regmap_get_offset(map, chunk_regs);
			val += chunk_bytes;
			val_len -= chunk_bytes;
2570
		}
2571

2572
		/* Read remaining bytes */
2573 2574
		if (val_len) {
			ret = _regmap_raw_read(map, reg, val, val_len);
2575
			if (ret != 0)
2576
				goto out;
2577
		}
2578 2579 2580 2581 2582
	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2583
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2584
					   &v);
2585 2586 2587
			if (ret != 0)
				goto out;

2588
			map->format.format_val(val + (i * val_bytes), v, 0);
2589 2590
		}
	}
2591

2592
 out:
2593
	map->unlock(map->lock_arg);
2594 2595 2596 2597 2598

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2599
/**
2600
 * regmap_field_read() - Read a value to a single register field
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2624
/**
2625
 * regmap_fields_read() - Read a value to a single register field with port ID
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2657
/**
2658
 * regmap_bulk_read() - Read multiple registers from the device
2659
 *
2660
 * @map: Register map to read from
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2673
	bool vol = regmap_volatile_range(map, reg, val_count);
2674

2675
	if (!IS_ALIGNED(reg, map->reg_stride))
2676
		return -EINVAL;
2677 2678
	if (val_count == 0)
		return -EINVAL;
2679

2680
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2681 2682 2683
		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
		if (ret != 0)
			return ret;
2684 2685

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2686
			map->format.parse_inplace(val + i);
2687
	} else {
2688 2689 2690 2691 2692 2693 2694
#ifdef CONFIG_64BIT
		u64 *u64 = val;
#endif
		u32 *u32 = val;
		u16 *u16 = val;
		u8 *u8 = val;

2695 2696
		map->lock(map->lock_arg);

2697
		for (i = 0; i < val_count; i++) {
2698
			unsigned int ival;
2699

2700 2701
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
					   &ival);
2702
			if (ret != 0)
2703
				goto out;
2704

2705
			switch (map->format.val_bytes) {
X
Xiubo Li 已提交
2706
#ifdef CONFIG_64BIT
2707 2708 2709
			case 8:
				u64[i] = ival;
				break;
X
Xiubo Li 已提交
2710
#endif
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
			case 4:
				u32[i] = ival;
				break;
			case 2:
				u16[i] = ival;
				break;
			case 1:
				u8[i] = ival;
				break;
			default:
2721 2722
				ret = -EINVAL;
				goto out;
2723
			}
2724
		}
2725 2726 2727

out:
		map->unlock(map->lock_arg);
2728
	}
2729

2730
	return ret;
2731 2732 2733
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2734 2735
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2736
			       bool *change, bool force_write)
2737 2738
{
	int ret;
2739
	unsigned int tmp, orig;
2740

2741 2742
	if (change)
		*change = false;
2743

2744 2745 2746
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
2747
			*change = true;
2748
	} else {
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
2761
	}
2762 2763 2764

	return ret;
}
2765 2766

/**
2767
 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2768 2769 2770 2771 2772 2773
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
2774 2775
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2776
 *
2777 2778 2779 2780 2781 2782 2783 2784
 * Perform a read/modify/write cycle on a register map with change, async, force
 * options.
 *
 * If async is true:
 *
 * With most buses the read must be done synchronously so this is most useful
 * for devices with a cache which do not need to interact with the hardware to
 * determine the current register value.
2785 2786 2787
 *
 * Returns zero for success, a negative number on error.
 */
2788 2789 2790
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
2791 2792 2793 2794 2795
{
	int ret;

	map->lock(map->lock_arg);

2796
	map->async = async;
2797

2798
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2799 2800 2801 2802 2803 2804 2805

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
2806
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2807

2808 2809 2810 2811 2812
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2813
	trace_regmap_async_io_complete(map);
2814

2815
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2816
	list_move(&async->list, &map->async_free);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2827
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
2842
 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2855
	if (!map->bus || !map->bus->async_write)
2856 2857
		return 0;

2858
	trace_regmap_async_complete_start(map);
2859

2860 2861 2862 2863 2864 2865 2866
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2867
	trace_regmap_async_complete_done(map);
2868

2869 2870
	return ret;
}
2871
EXPORT_SYMBOL_GPL(regmap_async_complete);
2872

M
Mark Brown 已提交
2873
/**
2874 2875
 * regmap_register_patch - Register and apply register updates to be applied
 *                         on device initialistion
M
Mark Brown 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2886 2887 2888
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2889
 */
2890
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
2891 2892
			  int num_regs)
{
2893
	struct reg_sequence *p;
2894
	int ret;
M
Mark Brown 已提交
2895 2896
	bool bypass;

2897 2898 2899 2900
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2901
	p = krealloc(map->patch,
2902
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2903 2904 2905 2906 2907
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2908
	} else {
2909
		return -ENOMEM;
M
Mark Brown 已提交
2910 2911
	}

2912
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2913 2914 2915 2916

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2917
	map->async = true;
M
Mark Brown 已提交
2918

2919
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2920

2921
	map->async = false;
M
Mark Brown 已提交
2922 2923
	map->cache_bypass = bypass;

2924
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2925

2926 2927
	regmap_async_complete(map);

M
Mark Brown 已提交
2928 2929 2930 2931
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2932 2933 2934 2935
/**
 * regmap_get_val_bytes() - Report the size of a register value
 *
 * @map: Register map to operate on.
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2949
/**
2950 2951 2952
 * regmap_get_max_register() - Report the max register value
 *
 * @map: Register map to operate on.
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2963
/**
2964 2965 2966
 * regmap_get_reg_stride() - Report the register address stride
 *
 * @map: Register map to operate on.
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2989 2990 2991 2992 2993 2994 2995
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);