inode.c 151.3 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187

A
Al Viro 已提交
188
	if (inode->i_nlink) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
208 209
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
		    inode->i_ino != EXT4_JOURNAL_INO) {
210 211 212
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

213
			jbd2_complete_transaction(journal, commit_tid);
214 215
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
216
		truncate_inode_pages(&inode->i_data, 0);
217
		ext4_ioend_shutdown(inode);
A
Al Viro 已提交
218 219 220
		goto no_delete;
	}

221
	if (!is_bad_inode(inode))
222
		dquot_initialize(inode);
223

224 225
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
226
	truncate_inode_pages(&inode->i_data, 0);
227
	ext4_ioend_shutdown(inode);
228 229 230 231

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
				       struct inode *inode,
				       struct ext4_map_blocks *es_map,
				       struct ext4_map_blocks *map,
				       int flags)
{
	int retval;

	map->m_flags = 0;
	/*
	 * There is a race window that the result is not the same.
	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
	 * is that we lookup a block mapping in extent status tree with
	 * out taking i_data_sem.  So at the time the unwritten extent
	 * could be converted.
	 */
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	} else {
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	}
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
	/*
	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
	 * because it shouldn't be marked in es_map->m_flags.
	 */
	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);

	/*
	 * We don't check m_len because extent will be collpased in status
	 * tree.  So the m_len might not equal.
	 */
	if (es_map->m_lblk != map->m_lblk ||
	    es_map->m_flags != map->m_flags ||
	    es_map->m_pblk != map->m_pblk) {
		printk("ES cache assertation failed for inode: %lu "
		       "es_cached ex [%d/%d/%llu/%x] != "
		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
		       inode->i_ino, es_map->m_lblk, es_map->m_len,
		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
		       map->m_len, map->m_pblk, map->m_flags,
		       retval, flags);
	}
}
#endif /* ES_AGGRESSIVE_TEST */

537
/*
538
 * The ext4_map_blocks() function tries to look up the requested blocks,
539
 * and returns if the blocks are already mapped.
540 541 542 543 544
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
545 546
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547 548 549 550 551 552 553 554
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
555
 * that case, buffer head is unmapped
556 557 558
 *
 * It returns the error in case of allocation failure.
 */
559 560
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
561
{
562
	struct extent_status es;
563
	int retval;
564 565 566 567 568
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
569

570 571 572 573
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
			map->m_pblk = ext4_es_pblock(&es) +
					map->m_lblk - es.es_lblk;
			map->m_flags |= ext4_es_is_written(&es) ?
					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
			retval = es.es_len - (map->m_lblk - es.es_lblk);
			if (retval > map->m_len)
				retval = map->m_len;
			map->m_len = retval;
		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
			retval = 0;
		} else {
			BUG_ON(1);
		}
591 592 593 594
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(handle, inode, map,
					   &orig_map, flags);
#endif
595 596 597
		goto found;
	}

598
	/*
599 600
	 * Try to see if we can get the block without requesting a new
	 * file system block.
601
	 */
602 603
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
604
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605 606
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
607
	} else {
608 609
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
610
	}
611 612 613 614
	if (retval > 0) {
		int ret;
		unsigned long long status;

615 616 617 618 619 620 621 622 623
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

624 625 626 627 628 629 630 631 632 633 634
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
635 636
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
637

638
found:
639
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640
		int ret = check_block_validity(inode, map);
641 642 643 644
		if (ret != 0)
			return ret;
	}

645
	/* If it is only a block(s) look up */
646
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647 648 649 650 651 652
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
653
	 * ext4_ext_get_block() returns the create = 0
654 655
	 * with buffer head unmapped.
	 */
656
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657 658
		return retval;

659
	/*
660 661
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
662
	 */
663
	map->m_flags &= ~EXT4_MAP_FLAGS;
664

665
	/*
666 667 668 669
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
670 671
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
672 673 674 675 676 677 678

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
679
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681 682 683 684
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
685
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
687
	} else {
688
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
689

690
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691 692 693 694 695
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
696
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697
		}
698

699 700 701 702 703 704 705
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
706
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707 708
			ext4_da_update_reserve_space(inode, retval, 1);
	}
709
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711

712 713 714 715
	if (retval > 0) {
		int ret;
		unsigned long long status;

716 717 718 719 720 721 722 723 724
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (allocation)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

725 726 727 728 729 730 731 732 733
		/*
		 * If the extent has been zeroed out, we don't need to update
		 * extent status tree.
		 */
		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
			if (ext4_es_is_written(&es))
				goto has_zeroout;
		}
734 735 736 737 738 739 740 741 742 743
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
744 745
	}

746
has_zeroout:
747
	up_write((&EXT4_I(inode)->i_data_sem));
748
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749
		int ret = check_block_validity(inode, map);
750 751 752
		if (ret != 0)
			return ret;
	}
753 754 755
	return retval;
}

756 757 758
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

759 760
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
761
{
762
	handle_t *handle = ext4_journal_current_handle();
763
	struct ext4_map_blocks map;
J
Jan Kara 已提交
764
	int ret = 0, started = 0;
765
	int dio_credits;
766

T
Tao Ma 已提交
767 768 769
	if (ext4_has_inline_data(inode))
		return -ERANGE;

770 771 772
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

773
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
774
		/* Direct IO write... */
775 776 777
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778 779
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
780
		if (IS_ERR(handle)) {
781
			ret = PTR_ERR(handle);
782
			return ret;
783
		}
J
Jan Kara 已提交
784
		started = 1;
785 786
	}

787
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
788
	if (ret > 0) {
789 790 791
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
792
		ret = 0;
793
	}
J
Jan Kara 已提交
794 795
	if (started)
		ext4_journal_stop(handle);
796 797 798
	return ret;
}

799 800 801 802 803 804 805
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

806 807 808
/*
 * `handle' can be NULL if create is zero
 */
809
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
810
				ext4_lblk_t block, int create, int *errp)
811
{
812 813
	struct ext4_map_blocks map;
	struct buffer_head *bh;
814 815 816 817
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

818 819 820 821
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
822

823 824 825
	/* ensure we send some value back into *errp */
	*errp = 0;

826 827
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
828 829 830 831 832 833
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
834
	if (unlikely(!bh)) {
835
		*errp = -ENOMEM;
836
		return NULL;
837
	}
838 839 840
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
841

842 843 844 845 846 847 848 849 850 851 852 853 854
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
855
		}
856 857 858 859 860 861 862
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
863
	}
864 865 866 867 868 869
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
870 871
}

872
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
873
			       ext4_lblk_t block, int create, int *err)
874
{
875
	struct buffer_head *bh;
876

877
	bh = ext4_getblk(handle, inode, block, create, err);
878 879 880 881
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
882
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883 884 885 886 887 888 889 890
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

891 892 893 894 895 896 897
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
898 899 900 901 902 903 904
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

905 906
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
907
	     block_start = block_end, bh = next) {
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
925
 * close off a transaction and start a new one between the ext4_get_block()
926
 * and the commit_write().  So doing the jbd2_journal_start at the start of
927 928
 * prepare_write() is the right place.
 *
929 930 931 932
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
933
 *
934
 * By accident, ext4 can be reentered when a transaction is open via
935 936 937 938 939 940
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
941
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942 943 944 945
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
946 947
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
948
{
949 950 951
	int dirty = buffer_dirty(bh);
	int ret;

952 953
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
954
	/*
C
Christoph Hellwig 已提交
955
	 * __block_write_begin() could have dirtied some buffers. Clean
956 957
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
958
	 * by __block_write_begin() isn't a real problem here as we clear
959 960 961 962 963 964 965 966 967
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
968 969
}

970 971
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
972
static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 974
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
975
{
976
	struct inode *inode = mapping->host;
977
	int ret, needed_blocks;
978 979
	handle_t *handle;
	int retries = 0;
980
	struct page *page;
981
	pgoff_t index;
982
	unsigned from, to;
N
Nick Piggin 已提交
983

984
	trace_ext4_write_begin(inode, pos, len, flags);
985 986 987 988 989
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990
	index = pos >> PAGE_CACHE_SHIFT;
991 992
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
993

994 995 996 997
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
998 999 1000
			return ret;
		if (ret == 1)
			return 0;
1001 1002
	}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
1017
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018
	if (IS_ERR(handle)) {
1019 1020
		page_cache_release(page);
		return PTR_ERR(handle);
1021
	}
1022

1023 1024 1025 1026 1027
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
1028
		ext4_journal_stop(handle);
1029
		goto retry_grab;
1030
	}
1031
	wait_on_page_writeback(page);
1032

1033
	if (ext4_should_dioread_nolock(inode))
1034
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035
	else
1036
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1037 1038

	if (!ret && ext4_should_journal_data(inode)) {
1039 1040 1041
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
1042
	}
N
Nick Piggin 已提交
1043 1044

	if (ret) {
1045
		unlock_page(page);
1046
		/*
1047
		 * __block_write_begin may have instantiated a few blocks
1048 1049
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1050 1051 1052
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1053
		 */
1054
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055 1056 1057 1058
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1059
			ext4_truncate_failed_write(inode);
1060
			/*
1061
			 * If truncate failed early the inode might
1062 1063 1064 1065 1066 1067 1068
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1069

1070 1071 1072 1073 1074 1075 1076
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
1077 1078 1079
	return ret;
}

N
Nick Piggin 已提交
1080 1081
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 1083 1084 1085
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1086
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 1088
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 * buffers are managed internally.
 */
static int ext4_write_end(struct file *file,
			  struct address_space *mapping,
			  loff_t pos, unsigned len, unsigned copied,
			  struct page *page, void *fsdata)
1100 1101
{
	handle_t *handle = ext4_journal_current_handle();
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	int i_size_changed = 0;

	trace_ext4_write_end(inode, pos, len, copied);
	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
		ret = ext4_jbd2_file_inode(handle, inode);
		if (ret) {
			unlock_page(page);
			page_cache_release(page);
			goto errout;
		}
	}
1115

1116 1117 1118 1119 1120 1121
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
1122 1123 1124

	/*
	 * No need to use i_size_read() here, the i_size
1125
	 * cannot change under us because we hole i_mutex.
1126 1127 1128 1129 1130 1131 1132 1133 1134
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

1135
	if (pos + copied > EXT4_I(inode)->i_disksize) {
1136 1137
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
1138
		 * but greater than i_disksize. (hint delalloc)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

1155 1156
	if (copied < 0)
		ret = copied;
1157
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1158 1159 1160 1161 1162
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);
1163
errout:
1164
	ret2 = ext4_journal_stop(handle);
1165 1166
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1167

1168
	if (pos + len > inode->i_size) {
1169
		ext4_truncate_failed_write(inode);
1170
		/*
1171
		 * If truncate failed early the inode might still be
1172 1173 1174 1175 1176 1177 1178
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1179
	return ret ? ret : copied;
1180 1181
}

N
Nick Piggin 已提交
1182
static int ext4_journalled_write_end(struct file *file,
1183 1184 1185
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1186
{
1187
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1188
	struct inode *inode = mapping->host;
1189 1190
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1191
	unsigned from, to;
1192
	loff_t new_i_size;
1193

1194
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1195 1196 1197
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1198 1199
	BUG_ON(!ext4_handle_valid(handle));

1200 1201 1202 1203 1204 1205 1206 1207 1208
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1209

1210 1211 1212 1213 1214
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1215 1216
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1217
		i_size_write(inode, pos+copied);
1218
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220 1221
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1222
		ret2 = ext4_mark_inode_dirty(handle, inode);
1223 1224 1225
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1226

1227
	unlock_page(page);
1228
	page_cache_release(page);
1229
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1230 1231 1232 1233 1234 1235
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1236
	ret2 = ext4_journal_stop(handle);
1237 1238
	if (!ret)
		ret = ret2;
1239
	if (pos + len > inode->i_size) {
1240
		ext4_truncate_failed_write(inode);
1241
		/*
1242
		 * If truncate failed early the inode might still be
1243 1244 1245 1246 1247 1248
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1249 1250

	return ret ? ret : copied;
1251
}
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Reserve a metadata for a single block located at lblock
 */
static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
{
	int retries = 0;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int md_needed;
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
repeat:
	spin_lock(&ei->i_block_reservation_lock);
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
	trace_ext4_da_reserve_space(inode, md_needed);

	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			cond_resched();
			goto repeat;
		}
		return -ENOSPC;
	}
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);

	return 0;       /* success */
}

1302
/*
1303
 * Reserve a single cluster located at lblock
1304
 */
1305
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1306
{
A
Aneesh Kumar K.V 已提交
1307
	int retries = 0;
1308
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309
	struct ext4_inode_info *ei = EXT4_I(inode);
1310
	unsigned int md_needed;
1311
	int ret;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1323 1324 1325 1326 1327 1328

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1329
repeat:
1330
	spin_lock(&ei->i_block_reservation_lock);
1331 1332 1333 1334 1335 1336
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1337 1338
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1339
	trace_ext4_da_reserve_space(inode, md_needed);
1340

1341 1342 1343 1344
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1345
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1346 1347 1348
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1349
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
L
Lukas Czerner 已提交
1350
			cond_resched();
A
Aneesh Kumar K.V 已提交
1351 1352
			goto repeat;
		}
1353
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1354 1355
		return -ENOSPC;
	}
1356
	ei->i_reserved_data_blocks++;
1357 1358
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1359

1360 1361 1362
	return 0;       /* success */
}

1363
static void ext4_da_release_space(struct inode *inode, int to_free)
1364 1365
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366
	struct ext4_inode_info *ei = EXT4_I(inode);
1367

1368 1369 1370
	if (!to_free)
		return;		/* Nothing to release, exit */

1371
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1372

L
Li Zefan 已提交
1373
	trace_ext4_da_release_space(inode, to_free);
1374
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1375
		/*
1376 1377 1378 1379
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1380
		 */
1381
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1382
			 "ino %lu, to_free %d with only %d reserved "
1383
			 "data blocks", inode->i_ino, to_free,
1384 1385 1386
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1387
	}
1388
	ei->i_reserved_data_blocks -= to_free;
1389

1390 1391 1392 1393 1394
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1395 1396
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1397
		 */
1398
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1399
				   ei->i_reserved_meta_blocks);
1400
		ei->i_reserved_meta_blocks = 0;
1401
		ei->i_da_metadata_calc_len = 0;
1402
	}
1403

1404
	/* update fs dirty data blocks counter */
1405
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1406 1407

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1408

1409
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1410 1411 1412
}

static void ext4_da_page_release_reservation(struct page *page,
1413
					     unsigned long offset)
1414 1415 1416 1417
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1418 1419 1420
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1421
	ext4_fsblk_t lblk;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1434

1435 1436 1437 1438 1439
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1440 1441 1442 1443 1444 1445 1446
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1447
		    !ext4_find_delalloc_cluster(inode, lblk))
1448 1449 1450 1451
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1452
}
1453

1454 1455 1456 1457 1458 1459
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1460
 * them with writepage() call back
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1471 1472
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1473
{
1474 1475 1476 1477 1478
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1479
	loff_t size = i_size_read(inode);
1480 1481
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1482
	sector_t pblock = 0, cur_logical = 0;
1483
	struct ext4_io_submit io_submit;
1484 1485

	BUG_ON(mpd->next_page <= mpd->first_page);
1486
	memset(&io_submit, 0, sizeof(io_submit));
1487 1488 1489
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1490
	 * If we look at mpd->b_blocknr we would only be looking
1491 1492
	 * at the currently mapped buffer_heads.
	 */
1493 1494 1495
	index = mpd->first_page;
	end = mpd->next_page - 1;

1496
	pagevec_init(&pvec, 0);
1497
	while (index <= end) {
1498
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1499 1500 1501
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1502
			int skip_page = 0;
1503 1504
			struct page *page = pvec.pages[i];

1505 1506 1507
			index = page->index;
			if (index > end)
				break;
1508 1509 1510 1511 1512

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1513 1514 1515 1516 1517 1518
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1519 1520 1521 1522 1523
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1524 1525
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1526
			do {
1527 1528 1529
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1530 1531 1532 1533
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1534 1535 1536 1537 1538 1539 1540
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1541

1542 1543 1544 1545 1546
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1547
					skip_page = 1;
1548 1549
				bh = bh->b_this_page;
				block_start += bh->b_size;
1550 1551
				cur_logical++;
				pblock++;
1552 1553
			} while (bh != page_bufs);

1554 1555 1556 1557
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1558

1559
			clear_page_dirty_for_io(page);
1560 1561
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1562
			if (!err)
1563
				mpd->pages_written++;
1564 1565 1566 1567 1568 1569 1570 1571 1572
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1573
	ext4_io_submit(&io_submit);
1574 1575 1576
	return ret;
}

1577
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1578 1579 1580 1581 1582 1583
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1584
	ext4_lblk_t start, last;
1585

1586 1587
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1588 1589 1590 1591 1592

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1593
	pagevec_init(&pvec, 0);
1594 1595 1596 1597 1598 1599
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1600
			if (page->index > end)
1601 1602 1603 1604 1605 1606 1607
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1608 1609
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1610 1611 1612 1613
	}
	return;
}

1614 1615 1616
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617
	struct super_block *sb = inode->i_sb;
1618
	struct ext4_inode_info *ei = EXT4_I(inode);
1619 1620

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1621
	       EXT4_C2B(EXT4_SB(inode->i_sb),
1622
			ext4_count_free_clusters(sb)));
1623 1624
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1625
	       (long long) EXT4_C2B(EXT4_SB(sb),
1626
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1627
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1628
	       (long long) EXT4_C2B(EXT4_SB(sb),
1629
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1630 1631
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1632
		 ei->i_reserved_data_blocks);
1633
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1634 1635 1636
	       ei->i_reserved_meta_blocks);
	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
	       ei->i_allocated_meta_blocks);
1637 1638 1639
	return;
}

1640
/*
1641 1642
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1643
 *
1644
 * @mpd - bh describing space
1645 1646 1647 1648
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1649
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1650
{
1651
	int err, blks, get_blocks_flags;
1652
	struct ext4_map_blocks map, *mapp = NULL;
1653 1654 1655 1656
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1657 1658

	/*
1659 1660
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1661
	 */
1662 1663 1664 1665 1666
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1667 1668 1669 1670

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1671
	/*
1672
	 * Call ext4_map_blocks() to allocate any delayed allocation
1673 1674 1675 1676 1677 1678 1679 1680
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1681
	 * want to change *many* call functions, so ext4_map_blocks()
1682
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1683 1684 1685 1686 1687
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1688
	 */
1689 1690
	map.m_lblk = next;
	map.m_len = max_blocks;
L
Lukas Czerner 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * We're in delalloc path and it is possible that we're going to
	 * need more metadata blocks than previously reserved. However
	 * we must not fail because we're in writeback and there is
	 * nothing we can do about it so it might result in data loss.
	 * So use reserved blocks to allocate metadata if possible.
	 */
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
1700 1701
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1702
	if (mpd->b_state & (1 << BH_Delay))
1703 1704
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

L
Lukas Czerner 已提交
1705

1706
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1707
	if (blks < 0) {
1708 1709
		struct super_block *sb = mpd->inode->i_sb;

1710
		err = blks;
1711
		/*
1712
		 * If get block returns EAGAIN or ENOSPC and there
1713 1714
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1715 1716
		 */
		if (err == -EAGAIN)
1717
			goto submit_io;
1718

1719
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1720
			mpd->retval = err;
1721
			goto submit_io;
1722 1723
		}

1724
		/*
1725 1726 1727 1728 1729
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1730
		 */
1731 1732 1733 1734 1735 1736 1737 1738
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1739
				"This should not happen!! Data will be lost");
1740 1741
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1742
		}
1743
		/* invalidate all the pages */
1744
		ext4_da_block_invalidatepages(mpd);
1745 1746 1747

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1748
		return;
1749
	}
1750 1751
	BUG_ON(blks == 0);

1752
	mapp = &map;
1753 1754 1755
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1756

1757 1758
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1759 1760 1761
	}

	/*
1762
	 * Update on-disk size along with block allocation.
1763 1764 1765 1766 1767 1768
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1769 1770 1771 1772 1773
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1774 1775
	}

1776
submit_io:
1777
	mpage_da_submit_io(mpd, mapp);
1778
	mpd->io_done = 1;
1779 1780
}

1781 1782
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1783 1784 1785 1786 1787 1788

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1789
 * @b_state - b_state of the buffer head added
1790 1791 1792
 *
 * the function is used to collect contig. blocks in same state
 */
1793
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1794
				   unsigned long b_state)
1795 1796
{
	sector_t next;
1797 1798
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1799

1800 1801 1802 1803
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1804
	 * ext4_map_blocks() multiple times in a loop
1805
	 */
1806
	if (nrblocks >= (8*1024*1024 >> blkbits))
1807 1808
		goto flush_it;

1809 1810
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1821 1822 1823
	/*
	 * First block in the extent
	 */
1824 1825
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1826
		mpd->b_size = 1 << blkbits;
1827
		mpd->b_state = b_state & BH_FLAGS;
1828 1829 1830
		return;
	}

1831
	next = mpd->b_blocknr + nrblocks;
1832 1833 1834
	/*
	 * Can we merge the block to our big extent?
	 */
1835
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1836
		mpd->b_size += 1 << blkbits;
1837 1838 1839
		return;
	}

1840
flush_it:
1841 1842 1843 1844
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1845
	mpage_da_map_and_submit(mpd);
1846
	return;
1847 1848
}

1849
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1850
{
1851
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1852 1853
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
1864
	struct extent_status es;
1865 1866
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);
1867 1868 1869 1870 1871
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
1872 1873 1874 1875 1876 1877 1878 1879

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, iblock, &es)) {

		if (ext4_es_is_hole(&es)) {
			retval = 0;
			down_read((&EXT4_I(inode)->i_data_sem));
			goto add_delayed;
		}

		/*
		 * Delayed extent could be allocated by fallocate.
		 * So we need to check it.
		 */
		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
			map_bh(bh, inode->i_sb, invalid_block);
			set_buffer_new(bh);
			set_buffer_delay(bh);
			return 0;
		}

		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
		retval = es.es_len - (iblock - es.es_lblk);
		if (retval > map->m_len)
			retval = map->m_len;
		map->m_len = retval;
		if (ext4_es_is_written(&es))
			map->m_flags |= EXT4_MAP_MAPPED;
		else if (ext4_es_is_unwritten(&es))
			map->m_flags |= EXT4_MAP_UNWRITTEN;
		else
			BUG_ON(1);

1913 1914 1915
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
1916 1917 1918
		return retval;
	}

1919 1920 1921 1922 1923
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1937 1938
		retval = ext4_ext_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1939
	else
1940 1941
		retval = ext4_ind_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1942

1943
add_delayed:
1944
	if (retval == 0) {
1945
		int ret;
1946 1947 1948 1949
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
1950 1951 1952 1953 1954
		/*
		 * If the block was allocated from previously allocated cluster,
		 * then we don't need to reserve it again. However we still need
		 * to reserve metadata for every block we're going to write.
		 */
1955
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1956 1957
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
1958
				/* not enough space to reserve */
1959
				retval = ret;
1960
				goto out_unlock;
1961
			}
1962 1963 1964 1965 1966 1967 1968
		} else {
			ret = ext4_da_reserve_metadata(inode, iblock);
			if (ret) {
				/* not enough space to reserve */
				retval = ret;
				goto out_unlock;
			}
1969 1970
		}

1971 1972 1973 1974
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
1975
			goto out_unlock;
1976
		}
1977

1978 1979 1980 1981 1982 1983 1984 1985
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
1986 1987 1988 1989
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

1990 1991 1992 1993 1994 1995 1996 1997 1998
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

1999 2000 2001 2002 2003 2004
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
2005 2006 2007 2008 2009 2010 2011 2012
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

2013
/*
2014 2015 2016
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2017 2018 2019 2020 2021 2022 2023
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2024
 */
2025 2026
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
2027
{
2028
	struct ext4_map_blocks map;
2029 2030 2031
	int ret = 0;

	BUG_ON(create == 0);
2032 2033 2034 2035
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2036 2037 2038 2039 2040 2041

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2042 2043
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
2044
		return ret;
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2057
		set_buffer_mapped(bh);
2058 2059
	}
	return 0;
2060
}
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
2079
	struct buffer_head *page_bufs = NULL;
2080
	handle_t *handle = NULL;
2081 2082 2083
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
2084

2085
	ClearPageChecked(page);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
2102 2103 2104 2105
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

2106 2107
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
2108 2109 2110 2111 2112
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2113 2114
	BUG_ON(!ext4_handle_valid(handle));

2115 2116
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
2117

2118 2119 2120 2121 2122 2123 2124 2125 2126
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
2127 2128
	if (ret == 0)
		ret = err;
2129
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2130 2131 2132 2133
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

2134 2135 2136
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
2137
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2138
out:
2139
	brelse(inode_bh);
2140 2141 2142
	return ret;
}

2143
/*
2144 2145 2146 2147
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2148
 * we are writing back data modified via mmap(), no one guarantees in which
2149 2150 2151 2152
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2153 2154 2155
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2156
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2157
 *   - grab_page_cache when doing write_begin (have journal handle)
2158 2159 2160 2161 2162 2163 2164 2165 2166
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2167
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2183
 */
2184
static int ext4_writepage(struct page *page,
2185
			  struct writeback_control *wbc)
2186
{
2187
	int ret = 0;
2188
	loff_t size;
2189
	unsigned int len;
2190
	struct buffer_head *page_bufs = NULL;
2191
	struct inode *inode = page->mapping->host;
2192
	struct ext4_io_submit io_submit;
2193

L
Lukas Czerner 已提交
2194
	trace_ext4_writepage(page);
2195 2196 2197 2198 2199
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2200

T
Theodore Ts'o 已提交
2201 2202
	page_bufs = page_buffers(page);
	/*
2203 2204 2205 2206 2207
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
T
Theodore Ts'o 已提交
2208
	 */
2209 2210
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2211
		redirty_page_for_writepage(wbc, page);
2212 2213 2214 2215 2216 2217 2218 2219
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
2220 2221 2222
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2223
	}
2224

2225
	if (PageChecked(page) && ext4_should_journal_data(inode))
2226 2227 2228 2229
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2230
		return __ext4_journalled_writepage(page, len);
2231

2232 2233 2234
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2235 2236 2237
	return ret;
}

2238
/*
2239
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2240
 * calculate the total number of credits to reserve to fit
2241 2242 2243
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2244
 */
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2256
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2257 2258 2259 2260 2261
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2262

2263 2264
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2265
 * address space and accumulate pages that need writing, and call
2266 2267
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2268
 */
2269 2270
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2271
				struct writeback_control *wbc,
2272 2273
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2274
{
2275
	struct buffer_head	*bh, *head;
2276
	struct inode		*inode = mapping->host;
2277 2278 2279 2280 2281 2282
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2283

2284 2285 2286
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2287 2288 2289 2290
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2291
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2292 2293 2294 2295
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2296
	*done_index = index;
2297
	while (index <= end) {
2298
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2299 2300
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2301
			return 0;
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2313 2314
			if (page->index > end)
				goto out;
2315

2316 2317
			*done_index = page->index + 1;

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2328 2329 2330
			lock_page(page);

			/*
2331 2332 2333 2334 2335 2336
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2337
			 */
2338 2339 2340 2341
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2342 2343 2344 2345
				unlock_page(page);
				continue;
			}

2346
			wait_on_page_writeback(page);
2347 2348
			BUG_ON(PageWriteback(page));

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2360
			if (mpd->next_page != page->index)
2361 2362 2363 2364 2365
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2366 2367 2368 2369 2370
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2371
				/*
2372 2373 2374
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2375
				 */
2376 2377 2378 2379 2380 2381 2382
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2383
					/*
2384 2385 2386 2387 2388 2389 2390
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2391
					 */
2392 2393 2394 2395 2396 2397
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2398 2399 2400 2401

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2402
				    wbc->sync_mode == WB_SYNC_NONE)
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2413
					goto out;
2414 2415 2416 2417 2418
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2419 2420 2421
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2422 2423 2424
out:
	pagevec_release(&pvec);
	cond_resched();
2425 2426 2427 2428
	return ret;
}


2429
static int ext4_da_writepages(struct address_space *mapping,
2430
			      struct writeback_control *wbc)
2431
{
2432 2433
	pgoff_t	index;
	int range_whole = 0;
2434
	handle_t *handle = NULL;
2435
	struct mpage_da_data mpd;
2436
	struct inode *inode = mapping->host;
2437
	int pages_written = 0;
2438
	unsigned int max_pages;
2439
	int range_cyclic, cycled = 1, io_done = 0;
2440 2441
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2442
	loff_t range_start = wbc->range_start;
2443
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2444
	pgoff_t done_index = 0;
2445
	pgoff_t end;
S
Shaohua Li 已提交
2446
	struct blk_plug plug;
2447

2448
	trace_ext4_da_writepages(inode, wbc);
2449

2450 2451 2452 2453 2454
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2455
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2456
		return 0;
2457 2458 2459 2460 2461

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2462
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2463 2464 2465 2466 2467
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2468
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2469 2470
		return -EROFS;

2471 2472
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2473

2474 2475
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2476
		index = mapping->writeback_index;
2477 2478 2479 2480 2481
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2482 2483
		end = -1;
	} else {
2484
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2485 2486
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2487

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2505 2506 2507 2508 2509 2510
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2521
retry:
2522
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2523 2524
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2525
	blk_start_plug(&plug);
2526
	while (!ret && wbc->nr_to_write > 0) {
2527 2528 2529 2530 2531 2532 2533 2534

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2535
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2536

2537
		/* start a new transaction*/
2538 2539
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2540 2541
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2542
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2543
			       "%ld pages, ino %lu; err %d", __func__,
2544
				wbc->nr_to_write, inode->i_ino, ret);
2545
			blk_finish_plug(&plug);
2546 2547
			goto out_writepages;
		}
2548 2549

		/*
2550
		 * Now call write_cache_pages_da() to find the next
2551
		 * contiguous region of logical blocks that need
2552
		 * blocks to be allocated by ext4 and submit them.
2553
		 */
2554 2555
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2556
		/*
2557
		 * If we have a contiguous extent of pages and we
2558 2559 2560 2561
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2562
			mpage_da_map_and_submit(&mpd);
2563 2564
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2565
		trace_ext4_da_write_pages(inode, &mpd);
2566
		wbc->nr_to_write -= mpd.pages_written;
2567

2568
		ext4_journal_stop(handle);
2569

2570
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2571 2572 2573 2574
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2575
			jbd2_journal_force_commit_nested(sbi->s_journal);
2576 2577
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2578
			/*
2579 2580 2581
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2582
			 */
2583
			pages_written += mpd.pages_written;
2584
			ret = mpd.retval;
2585
			io_done = 1;
2586
		} else if (wbc->nr_to_write)
2587 2588 2589 2590 2591 2592
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2593
	}
S
Shaohua Li 已提交
2594
	blk_finish_plug(&plug);
2595 2596 2597 2598 2599 2600 2601
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2602 2603

	/* Update index */
2604
	wbc->range_cyclic = range_cyclic;
2605 2606 2607 2608 2609
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2610
		mapping->writeback_index = done_index;
2611

2612
out_writepages:
2613
	wbc->nr_to_write -= nr_to_writebump;
2614
	wbc->range_start = range_start;
2615
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2616
	return ret;
2617 2618
}

2619 2620
static int ext4_nonda_switch(struct super_block *sb)
{
2621
	s64 free_clusters, dirty_clusters;
2622 2623 2624 2625 2626
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2627
	 * counters can get slightly wrong with percpu_counter_batch getting
2628 2629 2630 2631
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2632 2633 2634 2635
	free_clusters =
		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
	dirty_clusters =
		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2636 2637 2638
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
2639
	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2640
		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2641

2642 2643
	if (2 * free_clusters < 3 * dirty_clusters ||
	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2644
		/*
2645 2646
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2647 2648 2649 2650 2651 2652
		 */
		return 1;
	}
	return 0;
}

2653
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2654 2655
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2656
{
2657
	int ret, retries = 0;
2658 2659 2660 2661 2662 2663
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2664 2665 2666 2667 2668 2669 2670

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2671
	trace_ext4_da_write_begin(inode, pos, len, flags);
2672 2673 2674 2675 2676 2677

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2678 2679 2680
			return ret;
		if (ret == 1)
			return 0;
2681 2682
	}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2696 2697 2698 2699 2700 2701
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2702
retry_journal:
2703
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2704
	if (IS_ERR(handle)) {
2705 2706
		page_cache_release(page);
		return PTR_ERR(handle);
2707 2708
	}

2709 2710 2711 2712 2713
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2714
		ext4_journal_stop(handle);
2715
		goto retry_grab;
2716
	}
2717 2718
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2719

2720
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2721 2722 2723
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2724 2725 2726 2727 2728 2729
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2730
			ext4_truncate_failed_write(inode);
2731 2732 2733 2734 2735 2736 2737

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2738 2739
	}

2740
	*pagep = page;
2741 2742 2743
	return ret;
}

2744 2745 2746 2747 2748
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2749
					    unsigned long offset)
2750 2751 2752 2753 2754 2755 2756 2757 2758
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2759
	for (i = 0; i < idx; i++)
2760 2761
		bh = bh->b_this_page;

2762
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2763 2764 2765 2766
		return 0;
	return 1;
}

2767
static int ext4_da_write_end(struct file *file,
2768 2769 2770
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2771 2772 2773 2774 2775
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2776
	unsigned long start, end;
2777 2778
	int write_mode = (int)(unsigned long)fsdata;

2779 2780 2781
	if (write_mode == FALL_BACK_TO_NONDELALLOC)
		return ext4_write_end(file, mapping, pos,
				      len, copied, page, fsdata);
2782

2783
	trace_ext4_da_write_end(inode, pos, len, copied);
2784
	start = pos & (PAGE_CACHE_SIZE - 1);
2785
	end = start + copied - 1;
2786 2787 2788 2789 2790 2791 2792

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2793
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2794 2795
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2796
			down_write(&EXT4_I(inode)->i_data_sem);
2797
			if (new_i_size > EXT4_I(inode)->i_disksize)
2798 2799
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2800 2801 2802 2803 2804
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2805
		}
2806
	}
2807 2808 2809 2810 2811 2812 2813 2814

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2815
							page, fsdata);
2816

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2836
	ext4_da_page_release_reservation(page, offset);
2837 2838 2839 2840 2841 2842 2843

out:
	ext4_invalidatepage(page, offset);

	return;
}

2844 2845 2846 2847 2848
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2849 2850
	trace_ext4_alloc_da_blocks(inode);

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2861
	 *
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2874
	 * the pages by calling redirty_page_for_writepage() but that
2875 2876
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2877
	 * simplifying them because we wouldn't actually intend to
2878 2879 2880
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2881
	 *
2882 2883 2884 2885 2886 2887
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2888

2889 2890 2891 2892 2893
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2894
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2895 2896 2897 2898 2899 2900 2901 2902
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2903
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2904 2905 2906 2907 2908
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2909 2910 2911 2912 2913 2914
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2925 2926
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2938
		 * NB. EXT4_STATE_JDATA is not set on files other than
2939 2940 2941 2942 2943 2944
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2945
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2946
		journal = EXT4_JOURNAL(inode);
2947 2948 2949
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2950 2951 2952 2953 2954

		if (err)
			return 0;
	}

2955
	return generic_block_bmap(mapping, block, ext4_get_block);
2956 2957
}

2958
static int ext4_readpage(struct file *file, struct page *page)
2959
{
T
Tao Ma 已提交
2960 2961 2962
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2963
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2964 2965 2966 2967 2968 2969 2970 2971

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2972 2973 2974
}

static int
2975
ext4_readpages(struct file *file, struct address_space *mapping,
2976 2977
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2978 2979 2980 2981 2982 2983
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2984
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2985 2986
}

2987
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2988
{
2989 2990
	trace_ext4_invalidatepage(page, offset);

2991 2992 2993 2994 2995 2996
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2997 2998
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2999 3000 3001 3002 3003
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

3004 3005 3006 3007 3008 3009
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3010 3011 3012 3013 3014 3015 3016 3017
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3018 3019
}

3020
static int ext4_releasepage(struct page *page, gfp_t wait)
3021
{
3022
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3023

3024 3025
	trace_ext4_releasepage(page);

3026 3027
	/* Page has dirty journalled data -> cannot release */
	if (PageChecked(page))
3028
		return 0;
3029 3030 3031 3032
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3033 3034
}

3035 3036 3037 3038 3039
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3040
int ext4_get_block_write(struct inode *inode, sector_t iblock,
3041 3042
		   struct buffer_head *bh_result, int create)
{
3043
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3044
		   inode->i_ino, create);
3045 3046
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3047 3048
}

3049
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3050
		   struct buffer_head *bh_result, int create)
3051
{
3052 3053 3054 3055
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
3056 3057
}

3058
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3059 3060
			    ssize_t size, void *private, int ret,
			    bool is_async)
3061
{
A
Al Viro 已提交
3062
	struct inode *inode = file_inode(iocb->ki_filp);
3063 3064
        ext4_io_end_t *io_end = iocb->private;

3065 3066
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3067
		goto out;
3068

3069
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3070
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3071 3072 3073
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

3074 3075
	iocb->private = NULL;

3076
	/* if not aio dio with unwritten extents, just free io and return */
3077
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3078
		ext4_free_io_end(io_end);
3079
out:
3080
		inode_dio_done(inode);
3081 3082 3083
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3084 3085
	}

3086 3087
	io_end->offset = offset;
	io_end->size = size;
3088 3089 3090 3091
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3092

3093
	ext4_add_complete_io(io_end);
3094
}
3095

3096 3097 3098 3099 3100
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3101
 * For holes, we fallocate those blocks, mark them as uninitialized
3102
 * If those blocks were preallocated, we mark sure they are split, but
3103
 * still keep the range to write as uninitialized.
3104
 *
3105
 * The unwritten extents will be converted to written when DIO is completed.
3106
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3107
 * set up an end_io call back function, which will do the conversion
3108
 * when async direct IO completed.
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
3123 3124 3125
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
3126
	loff_t final_size = offset + count;
3127

3128 3129 3130
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3131

3132
	BUG_ON(iocb->private == NULL);
3133

3134 3135
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3136

3137 3138 3139 3140 3141
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3142

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3169
		}
3170 3171
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3172
		/*
3173 3174 3175 3176
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3177
		 */
3178 3179
		ext4_inode_aio_set(inode, io_end);
	}
3180

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3227

3228 3229 3230 3231 3232 3233
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3234
	}
3235

3236
	return ret;
3237 3238 3239 3240 3241 3242 3243 3244
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3245
	ssize_t ret;
3246

3247 3248 3249 3250 3251 3252
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3253 3254 3255 3256
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3257
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3258
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3259 3260 3261 3262 3263 3264
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3265 3266
}

3267
/*
3268
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3280
static int ext4_journalled_set_page_dirty(struct page *page)
3281 3282 3283 3284 3285
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3286
static const struct address_space_operations ext4_aops = {
3287 3288
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3289
	.writepage		= ext4_writepage,
3290
	.write_begin		= ext4_write_begin,
3291
	.write_end		= ext4_write_end,
3292 3293 3294 3295 3296 3297
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3298
	.error_remove_page	= generic_error_remove_page,
3299 3300
};

3301
static const struct address_space_operations ext4_journalled_aops = {
3302 3303
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3304
	.writepage		= ext4_writepage,
3305 3306 3307 3308
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3309
	.invalidatepage		= ext4_journalled_invalidatepage,
3310
	.releasepage		= ext4_releasepage,
3311
	.direct_IO		= ext4_direct_IO,
3312
	.is_partially_uptodate  = block_is_partially_uptodate,
3313
	.error_remove_page	= generic_error_remove_page,
3314 3315
};

3316
static const struct address_space_operations ext4_da_aops = {
3317 3318
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3319
	.writepage		= ext4_writepage,
3320 3321 3322 3323 3324 3325 3326 3327 3328
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3329
	.error_remove_page	= generic_error_remove_page,
3330 3331
};

3332
void ext4_set_aops(struct inode *inode)
3333
{
3334 3335
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
3336
		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3337 3338
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
3339
		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3340 3341
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3342
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3343
		return;
3344 3345 3346
	default:
		BUG();
	}
3347 3348 3349 3350
	if (test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else
		inode->i_mapping->a_ops = &ext4_aops;
3351 3352
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3373
		return -ENOMEM;
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3402
 * from:   The starting byte offset (from the beginning of the file)
3403 3404 3405 3406 3407 3408 3409
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3410
 *         for updating the contents of a page whose blocks may
3411 3412 3413
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3414
 * Returns zero on success or negative on failure.
3415
 */
E
Eric Sandeen 已提交
3416
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3442 3443
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3456 3457
		unsigned int end_of_block, range_to_discard;

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3543
		} else
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3567 3568 3569 3570 3571 3572 3573 3574
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3575
 * Returns: 0 on success or negative on failure
3576 3577 3578 3579
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
A
Al Viro 已提交
3580
	struct inode *inode = file_inode(file);
T
Theodore Ts'o 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589
	struct super_block *sb = inode->i_sb;
	ext4_lblk_t first_block, stop_block;
	struct address_space *mapping = inode->i_mapping;
	loff_t first_page, last_page, page_len;
	loff_t first_page_offset, last_page_offset;
	handle_t *handle;
	unsigned int credits;
	int ret = 0;

3590
	if (!S_ISREG(inode->i_mode))
3591
		return -EOPNOTSUPP;
3592

T
Theodore Ts'o 已提交
3593
	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3594
		/* TODO: Add support for bigalloc file systems */
3595
		return -EOPNOTSUPP;
3596 3597
	}

3598 3599
	trace_ext4_punch_hole(inode, offset, length);

T
Theodore Ts'o 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	/*
	 * Write out all dirty pages to avoid race conditions
	 * Then release them.
	 */
	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
		ret = filemap_write_and_wait_range(mapping, offset,
						   offset + length - 1);
		if (ret)
			return ret;
	}

	mutex_lock(&inode->i_mutex);
	/* It's not possible punch hole on append only file */
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
		ret = -EPERM;
		goto out_mutex;
	}
	if (IS_SWAPFILE(inode)) {
		ret = -ETXTBSY;
		goto out_mutex;
	}

	/* No need to punch hole beyond i_size */
	if (offset >= inode->i_size)
		goto out_mutex;

	/*
	 * If the hole extends beyond i_size, set the hole
	 * to end after the page that contains i_size
	 */
	if (offset + length > inode->i_size) {
		length = inode->i_size +
		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
		   offset;
	}

	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
	last_page = (offset + length) >> PAGE_CACHE_SHIFT;

	first_page_offset = first_page << PAGE_CACHE_SHIFT;
	last_page_offset = last_page << PAGE_CACHE_SHIFT;

	/* Now release the pages */
	if (last_page_offset > first_page_offset) {
		truncate_pagecache_range(inode, first_page_offset,
					 last_page_offset - 1);
	}

	/* Wait all existing dio workers, newcomers will block on i_mutex */
	ext4_inode_block_unlocked_dio(inode);
	ret = ext4_flush_unwritten_io(inode);
	if (ret)
		goto out_dio;
	inode_dio_wait(inode);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		credits = ext4_writepage_trans_blocks(inode);
	else
		credits = ext4_blocks_for_truncate(inode);
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		ext4_std_error(sb, ret);
		goto out_dio;
	}

	/*
	 * Now we need to zero out the non-page-aligned data in the
	 * pages at the start and tail of the hole, and unmap the
	 * buffer heads for the block aligned regions of the page that
	 * were completely zeroed.
	 */
	if (first_page > last_page) {
		/*
		 * If the file space being truncated is contained
		 * within a page just zero out and unmap the middle of
		 * that page
		 */
		ret = ext4_discard_partial_page_buffers(handle,
			mapping, offset, length, 0);

		if (ret)
			goto out_stop;
	} else {
		/*
		 * zero out and unmap the partial page that contains
		 * the start of the hole
		 */
		page_len = first_page_offset - offset;
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle, mapping,
						offset, page_len, 0);
			if (ret)
				goto out_stop;
		}

		/*
		 * zero out and unmap the partial page that contains
		 * the end of the hole
		 */
		page_len = offset + length - last_page_offset;
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle, mapping,
					last_page_offset, page_len, 0);
			if (ret)
				goto out_stop;
		}
	}

	/*
	 * If i_size is contained in the last page, we need to
	 * unmap and zero the partial page after i_size
	 */
	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
	   inode->i_size % PAGE_CACHE_SIZE != 0) {
		page_len = PAGE_CACHE_SIZE -
			(inode->i_size & (PAGE_CACHE_SIZE - 1));

		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle,
					mapping, inode->i_size, page_len, 0);

			if (ret)
				goto out_stop;
		}
	}

	first_block = (offset + sb->s_blocksize - 1) >>
		EXT4_BLOCK_SIZE_BITS(sb);
	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);

	/* If there are no blocks to remove, return now */
	if (first_block >= stop_block)
		goto out_stop;

	down_write(&EXT4_I(inode)->i_data_sem);
	ext4_discard_preallocations(inode);

	ret = ext4_es_remove_extent(inode, first_block,
				    stop_block - first_block);
	if (ret) {
		up_write(&EXT4_I(inode)->i_data_sem);
		goto out_stop;
	}

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		ret = ext4_ext_remove_space(inode, first_block,
					    stop_block - 1);
	else
		ret = ext4_free_hole_blocks(handle, inode, first_block,
					    stop_block);

	ext4_discard_preallocations(inode);
T
Theodore Ts'o 已提交
3753
	up_write(&EXT4_I(inode)->i_data_sem);
T
Theodore Ts'o 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	if (IS_SYNC(inode))
		ext4_handle_sync(handle);
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
	ext4_mark_inode_dirty(handle, inode);
out_stop:
	ext4_journal_stop(handle);
out_dio:
	ext4_inode_resume_unlocked_dio(inode);
out_mutex:
	mutex_unlock(&inode->i_mutex);
	return ret;
3765 3766
}

3767
/*
3768
 * ext4_truncate()
3769
 *
3770 3771
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3772 3773
 * simultaneously on behalf of the same inode.
 *
3774
 * As we work through the truncate and commit bits of it to the journal there
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3788
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3789
 * that this inode's truncate did not complete and it will again call
3790 3791
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3792
 * that's fine - as long as they are linked from the inode, the post-crash
3793
 * ext4_truncate() run will find them and release them.
3794
 */
3795
void ext4_truncate(struct inode *inode)
3796
{
T
Theodore Ts'o 已提交
3797 3798 3799 3800 3801 3802
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int credits;
	handle_t *handle;
	struct address_space *mapping = inode->i_mapping;
	loff_t page_len;

3803 3804 3805 3806 3807 3808 3809
	/*
	 * There is a possibility that we're either freeing the inode
	 * or it completely new indode. In those cases we might not
	 * have i_mutex locked because it's not necessary.
	 */
	if (!(inode->i_state & (I_NEW|I_FREEING)))
		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3810 3811
	trace_ext4_truncate_enter(inode);

3812
	if (!ext4_can_truncate(inode))
3813 3814
		return;

3815
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3816

3817
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3818
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3819

3820 3821 3822 3823 3824 3825 3826 3827
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

T
Theodore Ts'o 已提交
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	/*
	 * finish any pending end_io work so we won't run the risk of
	 * converting any truncated blocks to initialized later
	 */
	ext4_flush_unwritten_io(inode);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		credits = ext4_writepage_trans_blocks(inode);
	else
		credits = ext4_blocks_for_truncate(inode);

	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
	if (IS_ERR(handle)) {
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
		return;
	}

	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
		page_len = PAGE_CACHE_SIZE -
			(inode->i_size & (PAGE_CACHE_SIZE - 1));

		if (ext4_discard_partial_page_buffers(handle,
				mapping, inode->i_size, page_len, 0))
			goto out_stop;
	}

	/*
	 * We add the inode to the orphan list, so that if this
	 * truncate spans multiple transactions, and we crash, we will
	 * resume the truncate when the filesystem recovers.  It also
	 * marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
	if (ext4_orphan_add(handle, inode))
		goto out_stop;

	down_write(&EXT4_I(inode)->i_data_sem);

	ext4_discard_preallocations(inode);

3870
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
T
Theodore Ts'o 已提交
3871
		ext4_ext_truncate(handle, inode);
3872
	else
T
Theodore Ts'o 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
		ext4_ind_truncate(handle, inode);

	up_write(&ei->i_data_sem);

	if (IS_SYNC(inode))
		ext4_handle_sync(handle);

out_stop:
	/*
	 * If this was a simple ftruncate() and the file will remain alive,
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
	 * ext4_delete_inode(), and we allow that function to clean up the
	 * orphan info for us.
	 */
	if (inode->i_nlink)
		ext4_orphan_del(handle, inode);

	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
	ext4_mark_inode_dirty(handle, inode);
	ext4_journal_stop(handle);
3894

3895
	trace_ext4_truncate_exit(inode);
3896 3897 3898
}

/*
3899
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3900 3901 3902 3903
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3904 3905
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3906
{
3907 3908 3909 3910 3911 3912
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3913
	iloc->bh = NULL;
3914 3915
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3916

3917 3918 3919
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3920 3921
		return -EIO;

3922 3923 3924
	/*
	 * Figure out the offset within the block group inode table
	 */
3925
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3926 3927 3928 3929 3930 3931
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3932
	if (unlikely(!bh))
3933
		return -ENOMEM;
3934 3935
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3959
			int i, start;
3960

3961
			start = inode_offset & ~(inodes_per_block - 1);
3962

3963 3964
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3965
			if (unlikely(!bitmap_bh))
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3977
			for (i = start; i < start + inodes_per_block; i++) {
3978 3979
				if (i == inode_offset)
					continue;
3980
				if (ext4_test_bit(i, bitmap_bh->b_data))
3981 3982 3983
					break;
			}
			brelse(bitmap_bh);
3984
			if (i == start + inodes_per_block) {
3985 3986 3987 3988 3989 3990 3991 3992 3993
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3994 3995 3996 3997 3998 3999 4000 4001 4002
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4003
			/* s_inode_readahead_blks is always a power of 2 */
4004 4005 4006 4007 4008
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
4009
			if (ext4_has_group_desc_csum(sb))
4010
				num -= ext4_itable_unused_count(sb, gdp);
4011 4012 4013 4014 4015 4016 4017
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4018 4019 4020 4021 4022
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
4023
		trace_ext4_load_inode(inode);
4024 4025
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
4026
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4027 4028
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4029 4030
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4031 4032 4033 4034 4035 4036 4037 4038 4039
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4040
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4041 4042
{
	/* We have all inode data except xattrs in memory here. */
4043
	return __ext4_get_inode_loc(inode, iloc,
4044
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4045 4046
}

4047
void ext4_set_inode_flags(struct inode *inode)
4048
{
4049
	unsigned int flags = EXT4_I(inode)->i_flags;
4050 4051

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4052
	if (flags & EXT4_SYNC_FL)
4053
		inode->i_flags |= S_SYNC;
4054
	if (flags & EXT4_APPEND_FL)
4055
		inode->i_flags |= S_APPEND;
4056
	if (flags & EXT4_IMMUTABLE_FL)
4057
		inode->i_flags |= S_IMMUTABLE;
4058
	if (flags & EXT4_NOATIME_FL)
4059
		inode->i_flags |= S_NOATIME;
4060
	if (flags & EXT4_DIRSYNC_FL)
4061 4062 4063
		inode->i_flags |= S_DIRSYNC;
}

4064 4065 4066
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4087
}
4088

4089
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4090
				  struct ext4_inode_info *ei)
4091 4092
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4093 4094
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4095 4096 4097 4098 4099 4100

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4101
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4102 4103 4104 4105 4106
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4107 4108 4109 4110
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4111

4112 4113 4114 4115 4116 4117
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4118
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4119
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4120
		ext4_find_inline_data_nolock(inode);
4121 4122
	} else
		EXT4_I(inode)->i_inline_off = 0;
4123 4124
}

4125
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4126
{
4127 4128
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4129 4130
	struct ext4_inode_info *ei;
	struct inode *inode;
4131
	journal_t *journal = EXT4_SB(sb)->s_journal;
4132
	long ret;
4133
	int block;
4134 4135
	uid_t i_uid;
	gid_t i_gid;
4136

4137 4138 4139 4140 4141 4142 4143
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4144
	iloc.bh = NULL;
4145

4146 4147
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4148
		goto bad_inode;
4149
	raw_inode = ext4_raw_inode(&iloc);
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

4183
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4184 4185
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4186
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4187 4188
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4189
	}
4190 4191
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
4192
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4193

4194
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4195
	ei->i_inline_off = 0;
4196 4197 4198 4199 4200 4201 4202 4203
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
4204 4205 4206
		if ((inode->i_mode == 0 ||
		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
		    ino != EXT4_BOOT_LOADER_INO) {
4207
			/* this inode is deleted */
4208
			ret = -ESTALE;
4209 4210 4211 4212 4213
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
4214 4215 4216
		 * the process of deleting those.
		 * OR it is the EXT4_BOOT_LOADER_INO which is
		 * not initialized on a new filesystem. */
4217 4218
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4219
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4220
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4221
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4222 4223
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4224
	inode->i_size = ext4_isize(raw_inode);
4225
	ei->i_disksize = inode->i_size;
4226 4227 4228
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4229 4230
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4231
	ei->i_last_alloc_group = ~0;
4232 4233 4234 4235
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4236
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4237 4238 4239
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4251
		read_lock(&journal->j_state_lock);
4252 4253 4254 4255 4256 4257 4258 4259
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4260
		read_unlock(&journal->j_state_lock);
4261 4262 4263 4264
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4265
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4266 4267
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4268 4269
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4270
		} else {
4271
			ext4_iget_extra_inode(inode, raw_inode, ei);
4272
		}
4273
	}
4274

K
Kalpak Shah 已提交
4275 4276 4277 4278 4279
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4280 4281 4282 4283 4284 4285 4286
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4287
	ret = 0;
4288
	if (ei->i_file_acl &&
4289
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4290 4291
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4292 4293
		ret = -EIO;
		goto bad_inode;
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
4307
	}
4308
	if (ret)
4309
		goto bad_inode;
4310

4311
	if (S_ISREG(inode->i_mode)) {
4312 4313 4314
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4315
	} else if (S_ISDIR(inode->i_mode)) {
4316 4317
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4318
	} else if (S_ISLNK(inode->i_mode)) {
4319
		if (ext4_inode_is_fast_symlink(inode)) {
4320
			inode->i_op = &ext4_fast_symlink_inode_operations;
4321 4322 4323
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4324 4325
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4326
		}
4327 4328
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4329
		inode->i_op = &ext4_special_inode_operations;
4330 4331 4332 4333 4334 4335
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4336 4337
	} else if (ino == EXT4_BOOT_LOADER_INO) {
		make_bad_inode(inode);
4338 4339
	} else {
		ret = -EIO;
4340
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4341
		goto bad_inode;
4342
	}
4343
	brelse(iloc.bh);
4344
	ext4_set_inode_flags(inode);
4345 4346
	unlock_new_inode(inode);
	return inode;
4347 4348

bad_inode:
4349
	brelse(iloc.bh);
4350 4351
	iget_failed(inode);
	return ERR_PTR(ret);
4352 4353
}

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4364
		 * i_blocks can be represented in a 32 bit variable
4365 4366
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4367
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4368
		raw_inode->i_blocks_high = 0;
4369
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4370 4371 4372 4373 4374 4375
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4376 4377 4378 4379
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4380
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4381
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4382
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4383
	} else {
4384
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4385 4386 4387 4388
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4389
	}
4390
	return 0;
4391 4392
}

4393 4394 4395 4396 4397 4398 4399
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4400
static int ext4_do_update_inode(handle_t *handle,
4401
				struct inode *inode,
4402
				struct ext4_iloc *iloc)
4403
{
4404 4405
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4406 4407
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4408
	int need_datasync = 0;
4409 4410
	uid_t i_uid;
	gid_t i_gid;
4411 4412 4413

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4414
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4415
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4416

4417
	ext4_get_inode_flags(ei);
4418
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4419 4420
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4421
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4422 4423
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4424 4425 4426 4427
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4428
		if (!ei->i_dtime) {
4429
			raw_inode->i_uid_high =
4430
				cpu_to_le16(high_16_bits(i_uid));
4431
			raw_inode->i_gid_high =
4432
				cpu_to_le16(high_16_bits(i_gid));
4433 4434 4435 4436 4437
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4438 4439
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4440 4441 4442 4443
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4444 4445 4446 4447 4448 4449

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4450 4451
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4452
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4453
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4454 4455
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4456 4457
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4458
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4459 4460 4461 4462
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4478
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4479
			ext4_handle_sync(handle);
4480
			err = ext4_handle_dirty_super(handle, sb);
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4495
	} else if (!ext4_has_inline_data(inode)) {
4496 4497
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4498
	}
4499

4500 4501 4502 4503 4504
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4505
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4506 4507
	}

4508 4509
	ext4_inode_csum_set(inode, raw_inode, ei);

4510
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4511
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4512 4513
	if (!err)
		err = rc;
4514
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4515

4516
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4517
out_brelse:
4518
	brelse(bh);
4519
	ext4_std_error(inode->i_sb, err);
4520 4521 4522 4523
	return err;
}

/*
4524
 * ext4_write_inode()
4525 4526 4527 4528 4529
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4530
 *   transaction to commit.
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4541
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4558
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4559
{
4560 4561
	int err;

4562 4563 4564
	if (current->flags & PF_MEMALLOC)
		return 0;

4565 4566 4567 4568 4569 4570
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4571

4572
		if (wbc->sync_mode != WB_SYNC_ALL)
4573 4574 4575 4576 4577
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4578

4579
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4580 4581
		if (err)
			return err;
4582
		if (wbc->sync_mode == WB_SYNC_ALL)
4583 4584
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4585 4586
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4587 4588
			err = -EIO;
		}
4589
		brelse(iloc.bh);
4590 4591
	}
	return err;
4592 4593
}

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4635
/*
4636
 * ext4_setattr()
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4650 4651 4652 4653 4654 4655 4656 4657
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4658
 */
4659
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4660 4661 4662
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4663
	int orphan = 0;
4664 4665 4666 4667 4668 4669
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4670
	if (is_quota_modification(inode, attr))
4671
		dquot_initialize(inode);
4672 4673
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4674 4675 4676 4677
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4678 4679 4680
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4681 4682 4683 4684
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4685
		error = dquot_transfer(inode, attr);
4686
		if (error) {
4687
			ext4_journal_stop(handle);
4688 4689 4690 4691 4692 4693 4694 4695
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4696 4697
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4698 4699
	}

4700
	if (attr->ia_valid & ATTR_SIZE) {
4701

4702
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4703 4704
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4705 4706
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4707 4708 4709
		}
	}

4710
	if (S_ISREG(inode->i_mode) &&
4711
	    attr->ia_valid & ATTR_SIZE &&
4712
	    (attr->ia_size < inode->i_size)) {
4713 4714
		handle_t *handle;

4715
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4716 4717 4718 4719
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4720 4721 4722 4723
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4724 4725
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4726 4727
		if (!error)
			error = rc;
4728
		ext4_journal_stop(handle);
4729 4730 4731 4732 4733 4734

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4735 4736
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4737 4738 4739 4740 4741
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4742
				orphan = 0;
4743 4744 4745 4746
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4747 4748
	}

4749
	if (attr->ia_valid & ATTR_SIZE) {
4750 4751 4752 4753 4754 4755 4756 4757 4758
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4759
			if (orphan) {
4760 4761 4762 4763 4764 4765
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4766
			}
4767 4768 4769 4770 4771
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4772
		}
4773
		ext4_truncate(inode);
4774
	}
4775

C
Christoph Hellwig 已提交
4776 4777 4778 4779 4780 4781 4782 4783 4784
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4785
	if (orphan && inode->i_nlink)
4786
		ext4_orphan_del(NULL, inode);
4787 4788

	if (!rc && (ia_valid & ATTR_MODE))
4789
		rc = ext4_acl_chmod(inode);
4790 4791

err_out:
4792
	ext4_std_error(inode->i_sb, error);
4793 4794 4795 4796 4797
	if (!error)
		error = rc;
	return error;
}

4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4817 4818
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4819 4820 4821 4822

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4823

4824 4825
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4826
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4827
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4828
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4829
}
4830

4831
/*
4832 4833 4834
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4835
 *
4836
 * If datablocks are discontiguous, they are possible to spread over
4837
 * different block groups too. If they are contiguous, with flexbg,
4838
 * they could still across block group boundary.
4839
 *
4840 4841
 * Also account for superblock, inode, quota and xattr blocks
 */
4842
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4843
{
4844 4845
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4872 4873
	if (groups > ngroups)
		groups = ngroups;
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4887
 * Calculate the total number of credits to reserve to fit
4888 4889
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4890
 *
4891
 * This could be called via ext4_write_begin()
4892
 *
4893
 * We need to consider the worse case, when
4894
 * one new block per extent.
4895
 */
A
Alex Tomas 已提交
4896
int ext4_writepage_trans_blocks(struct inode *inode)
4897
{
4898
	int bpp = ext4_journal_blocks_per_page(inode);
4899 4900
	int ret;

4901
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4902

4903
	/* Account for data blocks for journalled mode */
4904
	if (ext4_should_journal_data(inode))
4905
		ret += bpp;
4906 4907
	return ret;
}
4908 4909 4910 4911 4912

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4913
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4914 4915 4916 4917 4918 4919 4920 4921 4922
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4923
/*
4924
 * The caller must have previously called ext4_reserve_inode_write().
4925 4926
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4927
int ext4_mark_iloc_dirty(handle_t *handle,
4928
			 struct inode *inode, struct ext4_iloc *iloc)
4929 4930 4931
{
	int err = 0;

4932
	if (IS_I_VERSION(inode))
4933 4934
		inode_inc_iversion(inode);

4935 4936 4937
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4938
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4939
	err = ext4_do_update_inode(handle, inode, iloc);
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4950 4951
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4952
{
4953 4954 4955 4956 4957 4958 4959 4960 4961
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4962 4963
		}
	}
4964
	ext4_std_error(inode->i_sb, err);
4965 4966 4967
	return err;
}

4968 4969 4970 4971
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4972 4973 4974 4975
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4988 4989
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
5014
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5015
{
5016
	struct ext4_iloc iloc;
5017 5018 5019
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5020 5021

	might_sleep();
5022
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5023
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5024 5025
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5026
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5040 5041
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5042 5043
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5044
					ext4_warning(inode->i_sb,
5045 5046 5047
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5048 5049
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5050 5051 5052 5053
				}
			}
		}
	}
5054
	if (!err)
5055
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5056 5057 5058 5059
	return err;
}

/*
5060
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5061 5062 5063 5064 5065
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5066
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5067 5068 5069 5070 5071 5072
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5073
void ext4_dirty_inode(struct inode *inode, int flags)
5074 5075 5076
{
	handle_t *handle;

5077
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5078 5079
	if (IS_ERR(handle))
		goto out;
5080 5081 5082

	ext4_mark_inode_dirty(handle, inode);

5083
	ext4_journal_stop(handle);
5084 5085 5086 5087 5088 5089 5090 5091
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5092
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5093 5094 5095
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5096
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5097
{
5098
	struct ext4_iloc iloc;
5099 5100 5101

	int err = 0;
	if (handle) {
5102
		err = ext4_get_inode_loc(inode, &iloc);
5103 5104
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5105
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5106
			if (!err)
5107
				err = ext4_handle_dirty_metadata(handle,
5108
								 NULL,
5109
								 iloc.bh);
5110 5111 5112
			brelse(iloc.bh);
		}
	}
5113
	ext4_std_error(inode->i_sb, err);
5114 5115 5116 5117
	return err;
}
#endif

5118
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5134
	journal = EXT4_JOURNAL(inode);
5135 5136
	if (!journal)
		return 0;
5137
	if (is_journal_aborted(journal))
5138
		return -EROFS;
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
5150

5151 5152 5153 5154
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

5155
	jbd2_journal_lock_updates(journal);
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5166
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5167 5168
	else {
		jbd2_journal_flush(journal);
5169
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5170
	}
5171
	ext4_set_aops(inode);
5172

5173
	jbd2_journal_unlock_updates(journal);
5174
	ext4_inode_resume_unlocked_dio(inode);
5175 5176 5177

	/* Finally we can mark the inode as dirty. */

5178
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5179 5180 5181
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5182
	err = ext4_mark_inode_dirty(handle, inode);
5183
	ext4_handle_sync(handle);
5184 5185
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5186 5187 5188

	return err;
}
5189 5190 5191 5192 5193 5194

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5195
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5196
{
5197
	struct page *page = vmf->page;
5198 5199
	loff_t size;
	unsigned long len;
5200
	int ret;
5201
	struct file *file = vma->vm_file;
A
Al Viro 已提交
5202
	struct inode *inode = file_inode(file);
5203
	struct address_space *mapping = inode->i_mapping;
5204 5205 5206
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
5207

5208
	sb_start_pagefault(inode->i_sb);
5209
	file_update_time(vma->vm_file);
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
5220
	}
5221 5222

	lock_page(page);
5223 5224 5225 5226 5227 5228
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
5229
	}
5230 5231 5232 5233 5234

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
5235
	/*
5236 5237
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
5238
	 */
5239
	if (page_has_buffers(page)) {
5240 5241 5242
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
5243
			/* Wait so that we don't change page under IO */
5244
			wait_for_stable_page(page);
5245 5246
			ret = VM_FAULT_LOCKED;
			goto out;
5247
		}
5248
	}
5249
	unlock_page(page);
5250 5251 5252 5253 5254 5255
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
5256 5257
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
5258
	if (IS_ERR(handle)) {
5259
		ret = VM_FAULT_SIGBUS;
5260 5261 5262 5263
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
5264
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5265 5266 5267
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
5268
			ext4_journal_stop(handle);
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
5279
	sb_end_pagefault(inode->i_sb);
5280 5281
	return ret;
}