inode.c 166.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "ext4_extents.h"
46

47 48
#include <trace/events/ext4.h>

49 50
#define MPAGE_DA_EXTENT_TAIL 0x01

51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
54 55 56 57
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
58 59
}

60 61
static void ext4_invalidatepage(struct page *page, unsigned long offset);

62 63 64
/*
 * Test whether an inode is a fast symlink.
 */
65
static int ext4_inode_is_fast_symlink(struct inode *inode)
66
{
67
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 69 70 71 72 73 74 75 76 77 78
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
79
	ext4_lblk_t needed;
80 81 82 83 84 85

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
86
	 * like a regular file for ext4 to try to delete it.  Things
87 88 89 90 91 92 93
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
94 95
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
96

97
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

114
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 116 117
	if (!IS_ERR(result))
		return result;

118
	ext4_std_error(inode->i_sb, PTR_ERR(result));
119 120 121 122 123 124 125 126 127 128 129
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
130 131 132
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133
		return 0;
134
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 136 137 138 139 140 141 142 143
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
144
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145
				 int nblocks)
146
{
147 148 149 150 151 152 153 154
	int ret;

	/*
	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
155
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
156
	jbd_debug(2, "restarting handle %p\n", handle);
157 158 159
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
160
	ext4_discard_preallocations(inode);
161 162

	return ret;
163 164 165 166 167
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
168
void ext4_delete_inode(struct inode *inode)
169 170
{
	handle_t *handle;
171
	int err;
172

173 174
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
175 176 177 178 179
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

180
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181
	if (IS_ERR(handle)) {
182
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
183 184 185 186 187
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
188
		ext4_orphan_del(NULL, inode);
189 190 191 192
		goto no_delete;
	}

	if (IS_SYNC(inode))
193
		ext4_handle_sync(handle);
194
	inode->i_size = 0;
195 196 197 198 199 200
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
201
	if (inode->i_blocks)
202
		ext4_truncate(inode);
203 204 205 206 207 208 209

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
210
	if (!ext4_handle_has_enough_credits(handle, 3)) {
211 212 213 214 215 216 217 218 219 220 221 222
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

223
	/*
224
	 * Kill off the orphan record which ext4_truncate created.
225
	 * AKPM: I think this can be inside the above `if'.
226
	 * Note that ext4_orphan_del() has to be able to cope with the
227
	 * deletion of a non-existent orphan - this is because we don't
228
	 * know if ext4_truncate() actually created an orphan record.
229 230
	 * (Well, we could do this if we need to, but heck - it works)
	 */
231 232
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
233 234 235 236 237 238 239 240

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
241
	if (ext4_mark_inode_dirty(handle, inode))
242 243 244
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
245 246
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
265
 *	ext4_block_to_path - parse the block number into array of offsets
266 267 268
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
269 270
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
271
 *
272
 *	To store the locations of file's data ext4 uses a data structure common
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

295
static int ext4_block_to_path(struct inode *inode,
296 297
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
298
{
299 300 301
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
302 303 304 305 306
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

307
	if (i_block < direct_blocks) {
308 309
		offsets[n++] = i_block;
		final = direct_blocks;
310
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
311
		offsets[n++] = EXT4_IND_BLOCK;
312 313 314
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
315
		offsets[n++] = EXT4_DIND_BLOCK;
316 317 318 319
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320
		offsets[n++] = EXT4_TIND_BLOCK;
321 322 323 324 325
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
326
		ext4_warning(inode->i_sb, "ext4_block_to_path",
327 328 329
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
330 331 332 333 334 335
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

336
static int __ext4_check_blockref(const char *function, struct inode *inode,
337 338
				 __le32 *p, unsigned int max)
{
339
	__le32 *bref = p;
340 341
	unsigned int blk;

342
	while (bref < p+max) {
343
		blk = le32_to_cpu(*bref++);
344 345
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346
						    blk, 1))) {
347
			ext4_error(inode->i_sb, function,
348 349
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
350 351 352 353
			return -EIO;
		}
	}
	return 0;
354 355 356 357
}


#define ext4_check_indirect_blockref(inode, bh)                         \
358
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359 360 361
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
362
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363 364
			      EXT4_NDIR_BLOCKS)

365
/**
366
 *	ext4_get_branch - read the chain of indirect blocks leading to data
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
391 392
 *
 *      Need to be called with
393
 *      down_read(&EXT4_I(inode)->i_data_sem)
394
 */
A
Aneesh Kumar K.V 已提交
395 396
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
397 398 399 400 401 402 403 404
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
405
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 407 408
	if (!p->key)
		goto no_block;
	while (--depth) {
409 410
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
411
			goto failure;
412

413 414 415 416 417 418 419 420 421 422 423
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
424

425
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 427 428 429 430 431 432 433 434 435 436 437 438
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
439
 *	ext4_find_near - find a place for allocation with sufficient locality
440 441 442
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
443
 *	This function returns the preferred place for block allocation.
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
458
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459
{
460
	struct ext4_inode_info *ei = EXT4_I(inode);
461
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462
	__le32 *p;
463
	ext4_fsblk_t bg_start;
464
	ext4_fsblk_t last_block;
465
	ext4_grpblk_t colour;
466 467
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
483 484 485 486 487 488 489
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 491
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

492 493 494 495 496 497 498
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

499 500
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
501
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 503
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 505 506 507
	return bg_start + colour;
}

/**
508
 *	ext4_find_goal - find a preferred place for allocation.
509 510 511 512
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
513
 *	Normally this function find the preferred place for block allocation,
514
 *	returns it.
515 516
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
517
 */
A
Aneesh Kumar K.V 已提交
518
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519
				   Indirect *partial)
520
{
521 522
	ext4_fsblk_t goal;

523
	/*
524
	 * XXX need to get goal block from mballoc's data structures
525 526
	 */

527 528 529
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
530 531 532
}

/**
533
 *	ext4_blks_to_allocate: Look up the block map and count the number
534 535 536 537 538 539 540 541 542 543
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
544
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545
				 int blocks_to_boundary)
546
{
547
	unsigned int count = 0;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
571
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 573 574 575 576 577 578 579
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
580
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 582 583
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
584
{
585
	struct ext4_allocation_request ar;
586
	int target, i;
587
	unsigned long count = 0, blk_allocated = 0;
588
	int index = 0;
589
	ext4_fsblk_t current_block = 0;
590 591 592 593 594 595 596 597 598 599
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
600 601 602
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
603 604
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
605 606
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
607 608 609
		if (*err)
			goto failed_out;

610 611
		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);

612 613 614 615 616 617
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
618 619 620 621 622 623 624 625 626
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
627
			break;
628
		}
629 630
	}

631 632 633 634 635
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
636 637 638 639 640 641 642 643 644 645
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
646
	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647

648 649 650 651 652 653 654 655 656
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
657 658 659 660
			/*
			 * save the new block number
			 * for the first direct block
			 */
661 662
			new_blocks[index] = current_block;
		}
663
		blk_allocated += ar.len;
664 665
	}
allocated:
666
	/* total number of blocks allocated for direct blocks */
667
	ret = blk_allocated;
668 669 670
	*err = 0;
	return ret;
failed_out:
671
	for (i = 0; i < index; i++)
672
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 674 675 676
	return ret;
}

/**
677
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
678 679 680 681 682 683 684 685 686 687
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
688
 *	the same format as ext4_get_branch() would do. We are calling it after
689 690
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
691
 *	picture as after the successful ext4_get_block(), except that in one
692 693 694 695 696 697
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
698
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699 700
 *	as described above and return 0.
 */
701
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 703 704
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
705 706 707 708 709 710
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
711 712
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
713

714
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
733
		err = ext4_journal_get_create_access(handle, bh);
734
		if (err) {
735 736
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
737 738 739 740 741 742 743 744
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
745
		if (n == indirect_blks) {
746 747 748 749 750 751
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
752
			for (i = 1; i < num; i++)
753 754 755 756 757 758
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

759 760
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
761 762 763 764 765 766 767
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
768
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769
	for (i = 1; i <= n ; i++) {
770
		/* 
771 772 773
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
774
		 */
775 776
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
777
	}
778 779
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780

781
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782 783 784 785 786

	return err;
}

/**
787
 * ext4_splice_branch - splice the allocated branch onto inode.
788 789 790
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
791
 *	ext4_alloc_branch)
792 793 794 795 796 797 798 799
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
800
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 802
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
803 804 805
{
	int i;
	int err = 0;
806
	ext4_fsblk_t current_block;
807 808 809 810 811 812 813 814

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
815
		err = ext4_journal_get_write_access(handle, where->bh);
816 817 818 819 820 821 822 823 824 825 826 827 828 829
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
830
			*(where->p + i) = cpu_to_le32(current_block++);
831 832 833 834 835 836 837 838 839 840 841
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
842
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843 844
		 */
		jbd_debug(5, "splicing indirect only\n");
845 846
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 848 849 850 851 852
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
853
		ext4_mark_inode_dirty(handle, inode);
854 855 856 857 858 859
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
860
		/* 
861 862 863
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
864
		 */
865 866
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
867
	}
868 869
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
870 871 872 873 874

	return err;
}

/*
875 876 877 878
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
895
 *
896 897 898 899 900
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
901
 */
902
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 904 905
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
906 907
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
908
	ext4_lblk_t offsets[4];
909 910
	Indirect chain[4];
	Indirect *partial;
911
	ext4_fsblk_t goal;
912 913 914 915
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
916
	ext4_fsblk_t first_block = 0;
917

A
Alex Tomas 已提交
918
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
920
	depth = ext4_block_to_path(inode, iblock, offsets,
921
				   &blocks_to_boundary);
922 923 924 925

	if (depth == 0)
		goto out;

926
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927 928 929 930 931 932 933 934

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
935
			ext4_fsblk_t blk;
936 937 938 939 940 941 942 943

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
944
		goto got_it;
945 946 947
	}

	/* Next simple case - plain lookup or failed read of indirect block */
948
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 950 951
		goto cleanup;

	/*
952
	 * Okay, we need to do block allocation.
953
	*/
954
	goal = ext4_find_goal(inode, iblock, partial);
955 956 957 958 959 960 961 962

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
963
	count = ext4_blks_to_allocate(partial, indirect_blks,
964 965
					maxblocks, blocks_to_boundary);
	/*
966
	 * Block out ext4_truncate while we alter the tree
967
	 */
968
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 970
				&count, goal,
				offsets + (partial - chain), partial);
971 972

	/*
973
	 * The ext4_splice_branch call will free and forget any buffers
974 975 976 977 978 979
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
980
		err = ext4_splice_branch(handle, inode, iblock,
981
					 partial, indirect_blks, count);
982
	if (err)
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1040 1041 1042
	if (!blocks)
		return 0;

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1063 1064 1065 1066 1067 1068 1069 1070 1071
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1072 1073 1074 1075 1076

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1077 1078 1079 1080 1081 1082

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1083 1084 1085 1086 1087 1088 1089 1090

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1091 1092
}

1093 1094
static int check_block_validity(struct inode *inode, const char *msg,
				sector_t logical, sector_t phys, int len)
1095 1096
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1097
		ext4_error(inode->i_sb, msg,
1098 1099 1100 1101 1102 1103 1104 1105 1106
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		return -EIO;
	}
	return 0;
}

1107
/*
1108 1109
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1143 1144 1145 1146 1147 1148 1149 1150 1151
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1165
/*
1166
 * The ext4_get_blocks() function tries to look up the requested blocks,
1167
 * and returns if the blocks are already mapped.
1168 1169 1170 1171 1172 1173
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1174
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1187 1188
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1189
		    int flags)
1190 1191
{
	int retval;
1192 1193

	clear_buffer_mapped(bh);
1194
	clear_buffer_unwritten(bh);
1195

1196 1197 1198
	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
		  (unsigned long)block);
1199
	/*
1200 1201
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1202 1203 1204 1205
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1206
				bh, 0);
1207
	} else {
1208
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1209
					     bh, 0);
1210
	}
1211
	up_read((&EXT4_I(inode)->i_data_sem));
1212

1213
	if (retval > 0 && buffer_mapped(bh)) {
1214 1215
		int ret = check_block_validity(inode, "file system corruption",
					       block, bh->b_blocknr, retval);
1216 1217 1218 1219
		if (ret != 0)
			return ret;
	}

1220
	/* If it is only a block(s) look up */
1221
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1232 1233
		return retval;

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1246
	/*
1247 1248 1249 1250
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1251 1252
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1253 1254 1255 1256 1257 1258 1259

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1260
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1261
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1262 1263 1264 1265
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1266 1267
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1268
					      bh, flags);
1269
	} else {
1270
		retval = ext4_ind_get_blocks(handle, inode, block,
1271
					     max_blocks, bh, flags);
1272 1273 1274 1275 1276 1277 1278

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1279
			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1280
		}
1281
	}
1282

1283
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1284
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1285 1286 1287 1288 1289 1290 1291

	/*
	 * Update reserved blocks/metadata blocks after successful
	 * block allocation which had been deferred till now.
	 */
	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
		ext4_da_update_reserve_space(inode, retval);
1292

1293
	up_write((&EXT4_I(inode)->i_data_sem));
1294
	if (retval > 0 && buffer_mapped(bh)) {
1295 1296 1297
		int ret = check_block_validity(inode, "file system "
					       "corruption after allocation",
					       block, bh->b_blocknr, retval);
1298 1299 1300
		if (ret != 0)
			return ret;
	}
1301 1302 1303
	return retval;
}

1304 1305 1306
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1307 1308
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1309
{
1310
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1311
	int ret = 0, started = 0;
1312
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1313
	int dio_credits;
1314

J
Jan Kara 已提交
1315 1316 1317 1318
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1319 1320
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1321
		if (IS_ERR(handle)) {
1322
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1323
			goto out;
1324
		}
J
Jan Kara 已提交
1325
		started = 1;
1326 1327
	}

1328
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1329
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1330 1331 1332
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1333
	}
J
Jan Kara 已提交
1334 1335 1336
	if (started)
		ext4_journal_stop(handle);
out:
1337 1338 1339 1340 1341 1342
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1343
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1344
				ext4_lblk_t block, int create, int *errp)
1345 1346 1347
{
	struct buffer_head dummy;
	int fatal = 0, err;
1348
	int flags = 0;
1349 1350 1351 1352 1353 1354

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1355 1356 1357
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1358
	/*
1359 1360
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1377
			J_ASSERT(handle != NULL);
1378 1379 1380 1381 1382

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1383
			 * writes use ext4_get_block instead, so it's not a
1384 1385 1386 1387
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1388
			fatal = ext4_journal_get_create_access(handle, bh);
1389
			if (!fatal && !buffer_uptodate(bh)) {
1390
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1391 1392 1393
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1394 1395
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1412
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1413
			       ext4_lblk_t block, int create, int *err)
1414
{
1415
	struct buffer_head *bh;
1416

1417
	bh = ext4_getblk(handle, inode, block, create, err);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1431 1432 1433 1434 1435 1436 1437
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1438 1439 1440 1441 1442 1443 1444
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1445 1446
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1447
	     block_start = block_end, bh = next) {
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1465
 * close off a transaction and start a new one between the ext4_get_block()
1466
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1467 1468
 * prepare_write() is the right place.
 *
1469 1470
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1471 1472 1473 1474
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1475
 * By accident, ext4 can be reentered when a transaction is open via
1476 1477 1478 1479 1480 1481
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1482
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1483 1484 1485 1486 1487
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1488
				       struct buffer_head *bh)
1489 1490 1491
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1492
	return ext4_journal_get_write_access(handle, bh);
1493 1494
}

N
Nick Piggin 已提交
1495
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1496 1497
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1498
{
1499
	struct inode *inode = mapping->host;
1500
	int ret, needed_blocks;
1501 1502
	handle_t *handle;
	int retries = 0;
1503
	struct page *page;
1504
	pgoff_t index;
1505
	unsigned from, to;
N
Nick Piggin 已提交
1506

1507
	trace_ext4_write_begin(inode, pos, len, flags);
1508 1509 1510 1511 1512
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1513
	index = pos >> PAGE_CACHE_SHIFT;
1514 1515
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1516 1517

retry:
1518 1519 1520 1521
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1522
	}
1523

1524 1525 1526 1527
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1528
	page = grab_cache_page_write_begin(mapping, index, flags);
1529 1530 1531 1532 1533 1534 1535
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1536
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1537
				ext4_get_block);
N
Nick Piggin 已提交
1538 1539

	if (!ret && ext4_should_journal_data(inode)) {
1540 1541 1542
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1543 1544

	if (ret) {
1545 1546
		unlock_page(page);
		page_cache_release(page);
1547 1548 1549 1550
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1551 1552 1553
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1554
		 */
1555
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1556 1557 1558 1559
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1560
			ext4_truncate(inode);
1561
			/*
1562
			 * If truncate failed early the inode might
1563 1564 1565 1566 1567 1568 1569
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1570 1571
	}

1572
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1573
		goto retry;
1574
out:
1575 1576 1577
	return ret;
}

N
Nick Piggin 已提交
1578 1579
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1580 1581 1582 1583
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1584
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1585 1586
}

1587
static int ext4_generic_write_end(struct file *file,
1588 1589 1590
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1633 1634 1635 1636
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1637
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1638 1639
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1640
static int ext4_ordered_write_end(struct file *file,
1641 1642 1643
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1644
{
1645
	handle_t *handle = ext4_journal_current_handle();
1646
	struct inode *inode = mapping->host;
1647 1648
	int ret = 0, ret2;

1649
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1650
	ret = ext4_jbd2_file_inode(handle, inode);
1651 1652

	if (ret == 0) {
1653
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1654
							page, fsdata);
1655
		copied = ret2;
1656
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1657 1658 1659 1660 1661
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1662 1663
		if (ret2 < 0)
			ret = ret2;
1664
	}
1665
	ret2 = ext4_journal_stop(handle);
1666 1667
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1668

1669
	if (pos + len > inode->i_size) {
1670
		ext4_truncate(inode);
1671
		/*
1672
		 * If truncate failed early the inode might still be
1673 1674 1675 1676 1677 1678 1679 1680
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1681
	return ret ? ret : copied;
1682 1683
}

N
Nick Piggin 已提交
1684
static int ext4_writeback_write_end(struct file *file,
1685 1686 1687
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1688
{
1689
	handle_t *handle = ext4_journal_current_handle();
1690
	struct inode *inode = mapping->host;
1691 1692
	int ret = 0, ret2;

1693
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1694
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1695
							page, fsdata);
1696
	copied = ret2;
1697
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1698 1699 1700 1701 1702 1703
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1704 1705
	if (ret2 < 0)
		ret = ret2;
1706

1707
	ret2 = ext4_journal_stop(handle);
1708 1709
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1710

1711
	if (pos + len > inode->i_size) {
1712
		ext4_truncate(inode);
1713
		/*
1714
		 * If truncate failed early the inode might still be
1715 1716 1717 1718 1719 1720 1721
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1722
	return ret ? ret : copied;
1723 1724
}

N
Nick Piggin 已提交
1725
static int ext4_journalled_write_end(struct file *file,
1726 1727 1728
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1729
{
1730
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1731
	struct inode *inode = mapping->host;
1732 1733
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1734
	unsigned from, to;
1735
	loff_t new_i_size;
1736

1737
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1738 1739 1740 1741 1742 1743 1744 1745
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1746 1747

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1748
				to, &partial, write_end_fn);
1749 1750
	if (!partial)
		SetPageUptodate(page);
1751 1752
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1753
		i_size_write(inode, pos+copied);
1754
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1755 1756
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1757
		ret2 = ext4_mark_inode_dirty(handle, inode);
1758 1759 1760
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1761

1762
	unlock_page(page);
1763
	page_cache_release(page);
1764
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 1766 1767 1768 1769 1770
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1771
	ret2 = ext4_journal_stop(handle);
1772 1773
	if (!ret)
		ret = ret2;
1774
	if (pos + len > inode->i_size) {
1775
		ext4_truncate(inode);
1776
		/*
1777
		 * If truncate failed early the inode might still be
1778 1779 1780 1781 1782 1783
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1784 1785

	return ret ? ret : copied;
1786
}
1787 1788 1789

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1790
	int retries = 0;
1791 1792
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1793 1794 1795 1796 1797 1798

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1799
repeat:
1800 1801 1802 1803 1804 1805 1806 1807
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1818
	if (ext4_claim_free_blocks(sbi, total)) {
1819
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1820
		vfs_dq_release_reservation_block(inode, total);
A
Aneesh Kumar K.V 已提交
1821 1822 1823 1824
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1825 1826 1827 1828 1829 1830 1831 1832 1833
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1834
static void ext4_da_release_space(struct inode *inode, int to_free)
1835 1836 1837 1838
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1839 1840 1841
	if (!to_free)
		return;		/* Nothing to release, exit */

1842
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1858
	/* recalculate the number of metablocks still need to be reserved */
1859
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1860 1861 1862 1863 1864 1865 1866 1867
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1868 1869
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1870 1871

	/* update per-inode reservations */
1872 1873
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1874 1875 1876 1877

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1878 1879

	vfs_dq_release_reservation_block(inode, release);
1880 1881 1882
}

static void ext4_da_page_release_reservation(struct page *page,
1883
					     unsigned long offset)
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1900
	ext4_da_release_space(page->mapping->host, to_release);
1901
}
1902

1903 1904 1905 1906 1907 1908
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1909
 * them with writepage() call back
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1922
	long pages_skipped;
1923 1924 1925 1926 1927
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1928 1929

	BUG_ON(mpd->next_page <= mpd->first_page);
1930 1931 1932
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1933
	 * If we look at mpd->b_blocknr we would only be looking
1934 1935
	 * at the currently mapped buffer_heads.
	 */
1936 1937 1938
	index = mpd->first_page;
	end = mpd->next_page - 1;

1939
	pagevec_init(&pvec, 0);
1940
	while (index <= end) {
1941
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1942 1943 1944 1945 1946
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1947 1948 1949 1950 1951 1952 1953 1954
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1955
			pages_skipped = mpd->wbc->pages_skipped;
1956
			err = mapping->a_ops->writepage(page, mpd->wbc);
1957 1958 1959 1960 1961
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1962
				mpd->pages_written++;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
1985
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1986 1987 1988 1989 1990 1991 1992 1993 1994
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1995
	pgoff_t index, end;
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2053
				} else if (buffer_mapped(bh))
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2113 2114 2115
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2128 2129 2130
	return;
}

2131 2132 2133
/*
 * mpage_da_map_blocks - go through given space
 *
2134
 * @mpd - bh describing space
2135 2136 2137 2138
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2139
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2140
{
2141
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2142
	struct buffer_head new;
2143 2144 2145 2146
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2147 2148 2149 2150

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2151
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2152 2153
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2154
		return 0;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2165
	/*
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2182
	 */
2183 2184 2185 2186 2187
	new.b_state = 0;
	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
	if (mpd->b_state & (1 << BH_Delay))
		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2188
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2189
			       &new, get_blocks_flags);
2190 2191
	if (blks < 0) {
		err = blks;
2192 2193 2194 2195
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2196 2197 2198
		 */
		if (err == -EAGAIN)
			return 0;
2199 2200

		if (err == -ENOSPC &&
2201
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2202 2203 2204 2205
			mpd->retval = err;
			return 0;
		}

2206
		/*
2207 2208 2209 2210 2211
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2212
		 */
2213 2214 2215 2216 2217 2218 2219 2220
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
			 "error %d\n", mpd->inode->i_ino,
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2221
		if (err == -ENOSPC) {
2222
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2223
		}
2224
		/* invalidate all the pages */
2225
		ext4_da_block_invalidatepages(mpd, next,
2226
				mpd->b_size >> mpd->inode->i_blkbits);
2227 2228
		return err;
	}
2229 2230 2231
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2232

2233 2234
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2235

2236 2237 2238 2239
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2240 2241
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2242
		mpage_put_bnr_to_bhs(mpd, next, &new);
2243

2244 2245 2246 2247 2248 2249 2250
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2251
	 * Update on-disk size along with block allocation.
2252 2253 2254 2255 2256 2257 2258 2259 2260
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2261
	return 0;
2262 2263
}

2264 2265
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2277 2278
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2279 2280
{
	sector_t next;
2281
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2282

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2305 2306 2307
	/*
	 * First block in the extent
	 */
2308 2309 2310 2311
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2312 2313 2314
		return;
	}

2315
	next = mpd->b_blocknr + nrblocks;
2316 2317 2318
	/*
	 * Can we merge the block to our big extent?
	 */
2319 2320
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2321 2322 2323
		return;
	}

2324
flush_it:
2325 2326 2327 2328
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2329 2330
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2331 2332
	mpd->io_done = 1;
	return;
2333 2334
}

2335
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2336
{
2337
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2338 2339
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2354
	struct buffer_head *bh, *head;
2355 2356
	sector_t logical;

2357 2358 2359 2360
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
2361
		 * try to write them again after
2362 2363 2364 2365 2366 2367
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2368 2369 2370 2371 2372 2373
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2374
		 * and start IO on them using writepage()
2375 2376
		 */
		if (mpd->next_page != mpd->first_page) {
2377 2378
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2379 2380 2381 2382 2383 2384 2385
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2396 2397 2398
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2399 2400 2401 2402 2403 2404 2405
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2406 2407
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2408 2409
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2410 2411 2412 2413 2414 2415 2416 2417
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2418 2419 2420 2421
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2422
			 * with the page in ext4_writepage
2423
			 */
2424
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2425 2426 2427
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2428 2429
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2430 2431 2432 2433 2434 2435 2436 2437 2438
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2439 2440
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2441
			}
2442 2443 2444 2445 2446 2447 2448 2449
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2450 2451 2452
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2453 2454 2455 2456 2457 2458 2459
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2460 2461 2462 2463 2464
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2465 2466 2467 2468
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2469 2470 2471 2472 2473 2474 2475 2476 2477

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2478
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2479 2480
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2481 2482 2483 2484
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2485 2486 2487 2488 2489
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2490
		map_bh(bh_result, inode->i_sb, invalid_block);
2491 2492 2493 2494
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2495 2496 2497 2498 2499 2500 2501 2502
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2503
			set_buffer_new(bh_result);
2504 2505
			set_buffer_mapped(bh_result);
		}
2506 2507 2508 2509 2510
		ret = 0;
	}

	return ret;
}
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2529 2530 2531 2532 2533
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2534 2535
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2536 2537 2538 2539
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2540
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2541 2542 2543 2544 2545
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2546 2547
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
out:
	return ret;
}

2600
/*
2601 2602 2603 2604 2605 2606 2607 2608 2609
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2610 2611 2612 2613 2614
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2640
 */
2641
static int ext4_writepage(struct page *page,
2642
			  struct writeback_control *wbc)
2643 2644
{
	int ret = 0;
2645
	loff_t size;
2646
	unsigned int len;
2647 2648 2649
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2650
	trace_ext4_writepage(inode, page);
2651 2652 2653 2654 2655
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2656

2657
	if (page_has_buffers(page)) {
2658
		page_bufs = page_buffers(page);
2659
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2660
					ext4_bh_delay_or_unwritten)) {
2661
			/*
2662 2663
			 * We don't want to do  block allocation
			 * So redirty the page and return
2664 2665 2666
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2687
		ret = block_prepare_write(page, 0, len,
2688
					  noalloc_get_block_write);
2689 2690 2691 2692
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2693
						ext4_bh_delay_or_unwritten)) {
2694 2695 2696 2697 2698 2699 2700 2701 2702
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2703 2704 2705 2706 2707
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2708
		/* now mark the buffer_heads as dirty and uptodate */
2709
		block_commit_write(page, 0, len);
2710 2711
	}

2712 2713 2714 2715 2716 2717
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2718
		return __ext4_journalled_writepage(page, len);
2719 2720
	}

2721
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2722
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2723
	else
2724 2725
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2726 2727 2728 2729

	return ret;
}

2730
/*
2731 2732 2733 2734 2735
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2736
 */
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2748
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2749 2750 2751 2752 2753
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2754

2755
static int ext4_da_writepages(struct address_space *mapping,
2756
			      struct writeback_control *wbc)
2757
{
2758 2759
	pgoff_t	index;
	int range_whole = 0;
2760
	handle_t *handle = NULL;
2761
	struct mpage_da_data mpd;
2762
	struct inode *inode = mapping->host;
2763
	int no_nrwrite_index_update;
2764 2765
	int pages_written = 0;
	long pages_skipped;
2766
	unsigned int max_pages;
2767
	int range_cyclic, cycled = 1, io_done = 0;
2768 2769
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2770
	loff_t range_start = wbc->range_start;
2771
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2772

2773
	trace_ext4_da_writepages(inode, wbc);
2774

2775 2776 2777 2778 2779
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2780
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2781
		return 0;
2782 2783 2784 2785 2786

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2787
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2788 2789 2790 2791 2792
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2793
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2794 2795
		return -EROFS;

2796 2797
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2798

2799 2800
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2801
		index = mapping->writeback_index;
2802 2803 2804 2805 2806 2807
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2808
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2809

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2840 2841 2842
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2843 2844 2845 2846 2847 2848 2849 2850
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2851
retry:
2852
	while (!ret && wbc->nr_to_write > 0) {
2853 2854 2855 2856 2857 2858 2859 2860

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2861
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2862

2863 2864 2865 2866
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2867
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2868 2869
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
2870 2871
			goto out_writepages;
		}
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2903
		trace_ext4_da_write_pages(inode, &mpd);
2904
		wbc->nr_to_write -= mpd.pages_written;
2905

2906
		ext4_journal_stop(handle);
2907

2908
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2909 2910 2911 2912
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2913
			jbd2_journal_force_commit_nested(sbi->s_journal);
2914 2915 2916
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2917 2918 2919 2920
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2921 2922
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2923
			ret = 0;
2924
			io_done = 1;
2925
		} else if (wbc->nr_to_write)
2926 2927 2928 2929 2930 2931
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2932
	}
2933 2934 2935 2936 2937 2938 2939
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2940
	if (pages_skipped != wbc->pages_skipped)
2941 2942 2943 2944
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
			 "with nr_to_write = %ld ret = %d\n",
			 __func__, wbc->nr_to_write, ret);
2945 2946 2947

	/* Update index */
	index += pages_written;
2948
	wbc->range_cyclic = range_cyclic;
2949 2950 2951 2952 2953 2954
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2955

2956
out_writepages:
2957 2958
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
2959 2960
	if (wbc->nr_to_write > nr_to_writebump)
		wbc->nr_to_write -= nr_to_writebump;
2961
	wbc->range_start = range_start;
2962
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2963
	return ret;
2964 2965
}

2966 2967 2968 2969 2970 2971 2972 2973 2974
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2975
	 * counters can get slightly wrong with percpu_counter_batch getting
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2993
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2994 2995
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2996
{
2997
	int ret, retries = 0;
2998 2999 3000 3001 3002 3003 3004 3005 3006
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
3007 3008 3009 3010 3011 3012 3013

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3014
	trace_ext4_da_write_begin(inode, pos, len, flags);
3015
retry:
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3027 3028 3029
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3030

3031
	page = grab_cache_page_write_begin(mapping, index, flags);
3032 3033 3034 3035 3036
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3037 3038 3039
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3040
				ext4_da_get_block_prep);
3041 3042 3043 3044
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3045 3046 3047 3048 3049 3050
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3051
			ext4_truncate(inode);
3052 3053
	}

3054 3055
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3056 3057 3058 3059
out:
	return ret;
}

3060 3061 3062 3063 3064
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3065
					    unsigned long offset)
3066 3067 3068 3069 3070 3071 3072 3073 3074
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3075
	for (i = 0; i < idx; i++)
3076 3077
		bh = bh->b_this_page;

3078
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3079 3080 3081 3082
		return 0;
	return 1;
}

3083
static int ext4_da_write_end(struct file *file,
3084 3085 3086
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3087 3088 3089 3090 3091
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3092
	unsigned long start, end;
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3106

3107
	trace_ext4_da_write_end(inode, pos, len, copied);
3108
	start = pos & (PAGE_CACHE_SIZE - 1);
3109
	end = start + copied - 1;
3110 3111 3112 3113 3114 3115 3116 3117

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3129

3130 3131 3132
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3133 3134 3135 3136 3137
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3138
		}
3139
	}
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3161
	ext4_da_page_release_reservation(page, offset);
3162 3163 3164 3165 3166 3167 3168

out:
	ext4_invalidatepage(page, offset);

	return;
}

3169 3170 3171 3172 3173
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3174 3175
	trace_ext4_alloc_da_blocks(inode);

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3186
	 *
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3206
	 *
3207 3208 3209 3210 3211 3212
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3213

3214 3215 3216 3217 3218
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3219
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3220 3221 3222 3223 3224 3225 3226 3227
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3228
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3229 3230 3231 3232 3233
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3244
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3256
		 * NB. EXT4_STATE_JDATA is not set on files other than
3257 3258 3259 3260 3261 3262
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3263 3264
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3265 3266 3267
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3268 3269 3270 3271 3272

		if (err)
			return 0;
	}

3273
	return generic_block_bmap(mapping, block, ext4_get_block);
3274 3275
}

3276
static int ext4_readpage(struct file *file, struct page *page)
3277
{
3278
	return mpage_readpage(page, ext4_get_block);
3279 3280 3281
}

static int
3282
ext4_readpages(struct file *file, struct address_space *mapping,
3283 3284
		struct list_head *pages, unsigned nr_pages)
{
3285
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3286 3287
}

3288
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3289
{
3290
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3291 3292 3293 3294 3295 3296 3297

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3298 3299 3300 3301
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3302 3303
}

3304
static int ext4_releasepage(struct page *page, gfp_t wait)
3305
{
3306
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3307 3308 3309 3310

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3311 3312 3313 3314
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3315 3316 3317
}

/*
3318 3319
 * O_DIRECT for ext3 (or indirect map) based files
 *
3320 3321 3322 3323 3324
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3325 3326
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3327
 */
3328
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3329 3330
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3331 3332 3333
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3334
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3335
	handle_t *handle;
3336 3337 3338
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3339
	int retries = 0;
3340 3341 3342 3343 3344

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3345 3346 3347 3348 3349 3350
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3351
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3352 3353 3354 3355
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3356 3357
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3358
			ext4_journal_stop(handle);
3359 3360 3361
		}
	}

3362
retry:
3363 3364
	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3365
				 ext4_get_block, NULL);
3366 3367
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3368

J
Jan Kara 已提交
3369
	if (orphan) {
3370 3371
		int err;

J
Jan Kara 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3382
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3383
		if (ret > 0) {
3384 3385 3386 3387 3388 3389 3390 3391
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3392
				 * ext4_mark_inode_dirty() to userspace.  So
3393 3394
				 * ignore it.
				 */
3395
				ext4_mark_inode_dirty(handle, inode);
3396 3397
			}
		}
3398
		err = ext4_journal_stop(handle);
3399 3400 3401 3402 3403 3404 3405
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3406 3407 3408 3409 3410 3411 3412 3413
static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
{
	handle_t *handle = NULL;
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	int dio_credits;

3414 3415
	ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
		   inode->i_ino, create);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	/*
	 * DIO VFS code passes create = 0 flag for write to
	 * the middle of file. It does this to avoid block
	 * allocation for holes, to prevent expose stale data
	 * out when there is parallel buffered read (which does
	 * not hold the i_mutex lock) while direct IO write has
	 * not completed. DIO request on holes finally falls back
	 * to buffered IO for this reason.
	 *
	 * For ext4 extent based file, since we support fallocate,
	 * new allocated extent as uninitialized, for holes, we
	 * could fallocate blocks for holes, thus parallel
	 * buffered IO read will zero out the page when read on
	 * a hole while parallel DIO write to the hole has not completed.
	 *
	 * when we come here, we know it's a direct IO write to
	 * to the middle of file (<i_size)
	 * so it's safe to override the create flag from VFS.
	 */
	create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;

	if (max_blocks > DIO_MAX_BLOCKS)
		max_blocks = DIO_MAX_BLOCKS;
	dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
	handle = ext4_journal_start(inode, dio_credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
			      create);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	ext4_journal_stop(handle);
out:
	return ret;
}

static void ext4_free_io_end(ext4_io_end_t *io)
{
3458 3459
	BUG_ON(!io);
	iput(io->inode);
3460 3461
	kfree(io);
}
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
static void dump_aio_dio_list(struct inode * inode)
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;

	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
		ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
		return;
	}

	ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
	list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
#endif
}
3486 3487 3488 3489

/*
 * check a range of space and convert unwritten extents to written.
 */
3490
static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3491 3492 3493 3494 3495 3496
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
	size_t size = io->size;
	int ret = 0;

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

	if (io->flag != DIO_AIO_UNWRITTEN)
		return ret;

3507 3508 3509
	if (offset + size <= i_size_read(inode))
		ret = ext4_convert_unwritten_extents(inode, offset, size);

3510
	if (ret < 0) {
3511
		printk(KERN_EMERG "%s: failed to convert unwritten"
3512 3513 3514 3515 3516
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3517

3518 3519 3520
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3521
}
3522 3523 3524 3525 3526 3527 3528 3529
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
static void ext4_end_aio_dio_work(struct work_struct *work)
{
	ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
	struct inode *inode = io->inode;
	int ret = 0;
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	mutex_lock(&inode->i_mutex);
	ret = ext4_end_aio_dio_nolock(io);
	if (ret >= 0) {
		if (!list_empty(&io->list))
			list_del_init(&io->list);
		ext4_free_io_end(io);
	}
	mutex_unlock(&inode->i_mutex);
}
/*
 * This function is called from ext4_sync_file().
 *
 * When AIO DIO IO is completed, the work to convert unwritten
 * extents to written is queued on workqueue but may not get immediately
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
 * The inode keeps track of a list of completed AIO from DIO path
 * that might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents to written.
 */
int flush_aio_dio_completed_IO(struct inode *inode)
{
	ext4_io_end_t *io;
	int ret = 0;
	int ret2 = 0;

	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
		return ret;

	dump_aio_dio_list(inode);
	while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
		io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
				ext4_io_end_t, list);
		/*
		 * Calling ext4_end_aio_dio_nolock() to convert completed
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
		ret = ext4_end_aio_dio_nolock(io);
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
	return (ret2 < 0) ? ret2 : 0;
}

static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3588 3589 3590 3591 3592 3593
{
	ext4_io_end_t *io = NULL;

	io = kmalloc(sizeof(*io), GFP_NOFS);

	if (io) {
3594
		igrab(inode);
3595
		io->inode = inode;
3596
		io->flag = 0;
3597 3598 3599
		io->offset = 0;
		io->size = 0;
		io->error = 0;
3600 3601
		INIT_WORK(&io->work, ext4_end_aio_dio_work);
		INIT_LIST_HEAD(&io->list);
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
			    ssize_t size, void *private)
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;

3613 3614 3615 3616
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
		return;

3617 3618 3619 3620 3621 3622 3623 3624 3625
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
	if (io_end->flag != DIO_AIO_UNWRITTEN){
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3626
		return;
3627 3628
	}

3629 3630 3631 3632
	io_end->offset = offset;
	io_end->size = size;
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3633
	/* queue the work to convert unwritten extents to written */
3634 3635
	queue_work(wq, &io_end->work);

3636 3637 3638
	/* Add the io_end to per-inode completed aio dio list*/
	list_add_tail(&io_end->list,
		 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
	iocb->private = NULL;
}
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3650 3651 3652 3653
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3672 3673 3674
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3675 3676
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3677 3678
		 *
 		 * As to previously fallocated extents, ext4 get_block
3679 3680 3681
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3682 3683 3684 3685 3686 3687 3688 3689
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3690
 		 */
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
			iocb->private = ext4_init_io_end(inode);
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
			 * direct IO, so that later ext4_get_blocks()
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3707 3708 3709 3710 3711
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
					 ext4_get_block_dio_write,
					 ext4_end_io_dio);
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3731 3732
		} else if (ret > 0 && (EXT4_I(inode)->i_state &
				       EXT4_STATE_DIO_UNWRITTEN)) {
3733
			int err;
3734 3735 3736 3737
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3738 3739 3740 3741
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3742
			EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3743
		}
3744 3745
		return ret;
	}
3746 3747

	/* for write the the end of file case, we fall back to old way */
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3764
/*
3765
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3777
static int ext4_journalled_set_page_dirty(struct page *page)
3778 3779 3780 3781 3782
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3783
static const struct address_space_operations ext4_ordered_aops = {
3784 3785
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3786
	.writepage		= ext4_writepage,
3787 3788 3789 3790 3791 3792 3793 3794 3795
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3796
	.error_remove_page	= generic_error_remove_page,
3797 3798
};

3799
static const struct address_space_operations ext4_writeback_aops = {
3800 3801
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3802
	.writepage		= ext4_writepage,
3803 3804 3805 3806 3807 3808 3809 3810 3811
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3812
	.error_remove_page	= generic_error_remove_page,
3813 3814
};

3815
static const struct address_space_operations ext4_journalled_aops = {
3816 3817
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3818
	.writepage		= ext4_writepage,
3819 3820 3821 3822 3823 3824 3825 3826
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3827
	.error_remove_page	= generic_error_remove_page,
3828 3829
};

3830
static const struct address_space_operations ext4_da_aops = {
3831 3832
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3833
	.writepage		= ext4_writepage,
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3844
	.error_remove_page	= generic_error_remove_page,
3845 3846
};

3847
void ext4_set_aops(struct inode *inode)
3848
{
3849 3850 3851 3852
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3853
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3854 3855 3856
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3857 3858
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3859
	else
3860
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3861 3862 3863
}

/*
3864
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3865 3866 3867 3868
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3869
int ext4_block_truncate_page(handle_t *handle,
3870 3871
		struct address_space *mapping, loff_t from)
{
3872
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3873
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3874 3875
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3876 3877
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3878
	struct page *page;
3879 3880
	int err = 0;

3881 3882
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3883 3884 3885
	if (!page)
		return -EINVAL;

3886 3887 3888 3889 3890 3891 3892 3893 3894
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3895
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3896
		zero_user(page, offset, length);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3921
		ext4_get_block(inode, iblock, bh, 0);
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3942
	if (ext4_should_journal_data(inode)) {
3943
		BUFFER_TRACE(bh, "get write access");
3944
		err = ext4_journal_get_write_access(handle, bh);
3945 3946 3947 3948
		if (err)
			goto unlock;
	}

3949
	zero_user(page, offset, length);
3950 3951 3952 3953

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3954
	if (ext4_should_journal_data(inode)) {
3955
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3956
	} else {
3957
		if (ext4_should_order_data(inode))
3958
			err = ext4_jbd2_file_inode(handle, inode);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3982
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3983 3984
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3985
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3986 3987 3988
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3989
 *	This is a helper function used by ext4_truncate().
3990 3991 3992 3993 3994 3995 3996
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3997
 *	past the truncation point is possible until ext4_truncate()
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4016
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4017 4018
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4019 4020 4021 4022 4023 4024 4025 4026
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4027
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4038
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4050
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4051 4052 4053 4054 4055 4056
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4057
	while (partial > p) {
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4073
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4074 4075 4076 4077
			      struct buffer_head *bh,
			      ext4_fsblk_t block_to_free,
			      unsigned long count, __le32 *first,
			      __le32 *last)
4078 4079
{
	__le32 *p;
4080 4081 4082 4083
	int	flags = EXT4_FREE_BLOCKS_FORGET;

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4084

4085 4086
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4087 4088
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4089
		}
4090
		ext4_mark_inode_dirty(handle, inode);
4091 4092
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4093 4094
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4095
			ext4_journal_get_write_access(handle, bh);
4096 4097 4098
		}
	}

4099 4100
	for (p = first; p < last; p++)
		*p = 0;
4101

4102
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4103 4104 4105
}

/**
4106
 * ext4_free_data - free a list of data blocks
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4124
static void ext4_free_data(handle_t *handle, struct inode *inode,
4125 4126 4127
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4128
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4129 4130 4131 4132
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4133
	ext4_fsblk_t nr;		    /* Current block # */
4134 4135 4136 4137 4138 4139
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4140
		err = ext4_journal_get_write_access(handle, this_bh);
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4158
				ext4_clear_blocks(handle, inode, this_bh,
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4169
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4170 4171 4172
				  count, block_to_free_p, p);

	if (this_bh) {
4173
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4174 4175 4176 4177 4178 4179 4180

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4181
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4182
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4183 4184 4185 4186 4187 4188
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
4189 4190 4191 4192
	}
}

/**
4193
 *	ext4_free_branches - free an array of branches
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4205
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4206 4207 4208
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4209
	ext4_fsblk_t nr;
4210 4211
	__le32 *p;

4212
	if (ext4_handle_is_aborted(handle))
4213 4214 4215 4216
		return;

	if (depth--) {
		struct buffer_head *bh;
4217
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4232
				ext4_error(inode->i_sb, "ext4_free_branches",
4233
					   "Read failure, inode=%lu, block=%llu",
4234 4235 4236 4237 4238 4239
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4240
			ext4_free_branches(handle, inode, bh,
4241 4242 4243
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4244 4245 4246 4247 4248

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4249
			 * jbd2_journal_revoke().
4250 4251 4252
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4253
			 * transaction then jbd2_journal_forget() will simply
4254
			 * brelse() it.  That means that if the underlying
4255
			 * block is reallocated in ext4_get_block(),
4256 4257 4258 4259 4260 4261 4262 4263
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4264
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4282
			if (ext4_handle_is_aborted(handle))
4283 4284
				return;
			if (try_to_extend_transaction(handle, inode)) {
4285
				ext4_mark_inode_dirty(handle, inode);
4286 4287
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4288 4289
			}

4290 4291
			ext4_free_blocks(handle, inode, 0, nr, 1,
					 EXT4_FREE_BLOCKS_METADATA);
4292 4293 4294 4295 4296 4297 4298

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4299
				if (!ext4_journal_get_write_access(handle,
4300 4301 4302
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4303 4304 4305 4306
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4307 4308 4309 4310 4311 4312
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4313
		ext4_free_data(handle, inode, parent_bh, first, last);
4314 4315 4316
	}
}

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4330
/*
4331
 * ext4_truncate()
4332
 *
4333 4334
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4351
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4352
 * that this inode's truncate did not complete and it will again call
4353 4354
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4355
 * that's fine - as long as they are linked from the inode, the post-crash
4356
 * ext4_truncate() run will find them and release them.
4357
 */
4358
void ext4_truncate(struct inode *inode)
4359 4360
{
	handle_t *handle;
4361
	struct ext4_inode_info *ei = EXT4_I(inode);
4362
	__le32 *i_data = ei->i_data;
4363
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4364
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4365
	ext4_lblk_t offsets[4];
4366 4367 4368 4369
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4370
	ext4_lblk_t last_block;
4371 4372
	unsigned blocksize = inode->i_sb->s_blocksize;

4373
	if (!ext4_can_truncate(inode))
4374 4375
		return;

4376
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4377 4378
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
4379
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4380
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4381 4382
		return;
	}
A
Alex Tomas 已提交
4383

4384
	handle = start_transaction(inode);
4385
	if (IS_ERR(handle))
4386 4387 4388
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4389
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4390

4391 4392 4393
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4394

4395
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4408
	if (ext4_orphan_add(handle, inode))
4409 4410
		goto out_stop;

4411 4412 4413 4414 4415
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4416

4417
	ext4_discard_preallocations(inode);
4418

4419 4420 4421 4422 4423
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4424
	 * ext4 *really* writes onto the disk inode.
4425 4426 4427 4428
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4429 4430
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4431 4432 4433
		goto do_indirects;
	}

4434
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4435 4436 4437 4438
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4439
			ext4_free_branches(handle, inode, NULL,
4440 4441 4442 4443 4444 4445 4446 4447 4448
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4449
			ext4_free_branches(handle, inode, partial->bh,
4450 4451 4452 4453 4454 4455
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4456
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4457 4458 4459
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4460
		brelse(partial->bh);
4461 4462 4463 4464 4465 4466
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4467
		nr = i_data[EXT4_IND_BLOCK];
4468
		if (nr) {
4469 4470
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4471
		}
4472 4473
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4474
		if (nr) {
4475 4476
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4477
		}
4478 4479
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4480
		if (nr) {
4481 4482
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4483
		}
4484
	case EXT4_TIND_BLOCK:
4485 4486 4487
		;
	}

4488
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4489
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4490
	ext4_mark_inode_dirty(handle, inode);
4491 4492 4493 4494 4495 4496

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4497
		ext4_handle_sync(handle);
4498 4499 4500 4501 4502
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4503
	 * ext4_delete_inode(), and we allow that function to clean up the
4504 4505 4506
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4507
		ext4_orphan_del(handle, inode);
4508

4509
	ext4_journal_stop(handle);
4510 4511 4512
}

/*
4513
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4514 4515 4516 4517
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4518 4519
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4520
{
4521 4522 4523 4524 4525 4526
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4527
	iloc->bh = NULL;
4528 4529
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4530

4531 4532 4533
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4534 4535
		return -EIO;

4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4546
	if (!bh) {
4547 4548 4549
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4550 4551 4552 4553
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4577
			int i, start;
4578

4579
			start = inode_offset & ~(inodes_per_block - 1);
4580

4581 4582
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4595
			for (i = start; i < start + inodes_per_block; i++) {
4596 4597
				if (i == inode_offset)
					continue;
4598
				if (ext4_test_bit(i, bitmap_bh->b_data))
4599 4600 4601
					break;
			}
			brelse(bitmap_bh);
4602
			if (i == start + inodes_per_block) {
4603 4604 4605 4606 4607 4608 4609 4610 4611
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4612 4613 4614 4615 4616 4617 4618 4619 4620
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4621
			/* s_inode_readahead_blks is always a power of 2 */
4622 4623 4624 4625 4626 4627 4628
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4629
				num -= ext4_itable_unused_count(sb, gdp);
4630 4631 4632 4633 4634 4635 4636
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4647 4648 4649
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4650 4651 4652 4653 4654 4655 4656 4657 4658
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4659
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4660 4661
{
	/* We have all inode data except xattrs in memory here. */
4662 4663
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4664 4665
}

4666
void ext4_set_inode_flags(struct inode *inode)
4667
{
4668
	unsigned int flags = EXT4_I(inode)->i_flags;
4669 4670

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4671
	if (flags & EXT4_SYNC_FL)
4672
		inode->i_flags |= S_SYNC;
4673
	if (flags & EXT4_APPEND_FL)
4674
		inode->i_flags |= S_APPEND;
4675
	if (flags & EXT4_IMMUTABLE_FL)
4676
		inode->i_flags |= S_IMMUTABLE;
4677
	if (flags & EXT4_NOATIME_FL)
4678
		inode->i_flags |= S_NOATIME;
4679
	if (flags & EXT4_DIRSYNC_FL)
4680 4681 4682
		inode->i_flags |= S_DIRSYNC;
}

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4701

4702
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4703
				  struct ext4_inode_info *ei)
4704 4705
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4706 4707
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4708 4709 4710 4711 4712 4713

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4714 4715 4716 4717 4718 4719
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4720 4721 4722 4723
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4724

4725
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4726
{
4727 4728
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4729 4730 4731
	struct ext4_inode_info *ei;
	struct inode *inode;
	long ret;
4732 4733
	int block;

4734 4735 4736 4737 4738 4739 4740
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4741
	iloc.bh = 0;
4742

4743 4744
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4745
		goto bad_inode;
4746
	raw_inode = ext4_raw_inode(&iloc);
4747 4748 4749
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4750
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4766
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4767
			/* this inode is deleted */
4768
			ret = -ESTALE;
4769 4770 4771 4772 4773 4774 4775 4776
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4777
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4778
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4779
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4780 4781
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4782
	inode->i_size = ext4_isize(raw_inode);
4783 4784 4785
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4786
	ei->i_last_alloc_group = ~0;
4787 4788 4789 4790
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4791
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4792 4793 4794
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4795
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4796
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4797
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4798
		    EXT4_INODE_SIZE(inode->i_sb)) {
4799
			ret = -EIO;
4800
			goto bad_inode;
4801
		}
4802 4803
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4804 4805
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4806 4807
		} else {
			__le32 *magic = (void *)raw_inode +
4808
					EXT4_GOOD_OLD_INODE_SIZE +
4809
					ei->i_extra_isize;
4810
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4811
				ei->i_state |= EXT4_STATE_XATTR;
4812 4813 4814 4815
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4816 4817 4818 4819 4820
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4821 4822 4823 4824 4825 4826 4827
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4828
	ret = 0;
4829
	if (ei->i_file_acl &&
4830
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4831 4832 4833 4834 4835 4836
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4837 4838 4839 4840 4841
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4842
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4843 4844
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4845
		/* Validate block references which are part of inode */
4846 4847
		ret = ext4_check_inode_blockref(inode);
	}
4848
	if (ret)
4849
		goto bad_inode;
4850

4851
	if (S_ISREG(inode->i_mode)) {
4852 4853 4854
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4855
	} else if (S_ISDIR(inode->i_mode)) {
4856 4857
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4858
	} else if (S_ISLNK(inode->i_mode)) {
4859
		if (ext4_inode_is_fast_symlink(inode)) {
4860
			inode->i_op = &ext4_fast_symlink_inode_operations;
4861 4862 4863
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4864 4865
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4866
		}
4867 4868
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4869
		inode->i_op = &ext4_special_inode_operations;
4870 4871 4872 4873 4874 4875
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4876 4877
	} else {
		ret = -EIO;
4878
		ext4_error(inode->i_sb, __func__,
4879 4880 4881
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4882
	}
4883
	brelse(iloc.bh);
4884
	ext4_set_inode_flags(inode);
4885 4886
	unlock_new_inode(inode);
	return inode;
4887 4888

bad_inode:
4889
	brelse(iloc.bh);
4890 4891
	iget_failed(inode);
	return ERR_PTR(ret);
4892 4893
}

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4907
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4908
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4909
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4910 4911 4912 4913 4914 4915
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4916 4917 4918 4919
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4920
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4921
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4922
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4923
	} else {
A
Aneesh Kumar K.V 已提交
4924 4925 4926 4927 4928
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4929
	}
4930
	return 0;
4931 4932
}

4933 4934 4935 4936 4937 4938 4939
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4940
static int ext4_do_update_inode(handle_t *handle,
4941
				struct inode *inode,
4942
				struct ext4_iloc *iloc)
4943
{
4944 4945
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4946 4947 4948 4949 4950
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4951 4952
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4953

4954
	ext4_get_inode_flags(ei);
4955
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4956
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4957 4958 4959 4960 4961 4962
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4963
		if (!ei->i_dtime) {
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4981 4982 4983 4984 4985 4986

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4987 4988
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4989
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4990
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
4991 4992
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4993 4994
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4995
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5012
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5013
			sb->s_dirt = 1;
5014 5015
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
5016
					EXT4_SB(sb)->s_sbh);
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5031 5032 5033
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5034

5035 5036 5037 5038 5039
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5040
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5041 5042
	}

5043 5044 5045 5046
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
	if (!err)
		err = rc;
5047
	ei->i_state &= ~EXT4_STATE_NEW;
5048 5049

out_brelse:
5050
	brelse(bh);
5051
	ext4_std_error(inode->i_sb, err);
5052 5053 5054 5055
	return err;
}

/*
5056
 * ext4_write_inode()
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5073
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5090
int ext4_write_inode(struct inode *inode, int wait)
5091
{
5092 5093
	int err;

5094 5095 5096
	if (current->flags & PF_MEMALLOC)
		return 0;

5097 5098 5099 5100 5101 5102
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5103

5104 5105 5106 5107 5108 5109
		if (!wait)
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5110

5111 5112 5113
		err = ext4_get_inode_loc(inode, &iloc);
		if (err)
			return err;
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
		if (wait)
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)iloc.bh->b_blocknr);
			err = -EIO;
		}
5124 5125
	}
	return err;
5126 5127 5128
}

/*
5129
 * ext4_setattr()
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5143 5144 5145 5146 5147 5148 5149 5150
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5151
 */
5152
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
5168 5169
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5170 5171 5172 5173
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5174
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5175
		if (error) {
5176
			ext4_journal_stop(handle);
5177 5178 5179 5180 5181 5182 5183 5184
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5185 5186
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5187 5188
	}

5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

5200 5201 5202 5203
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

5204
		handle = ext4_journal_start(inode, 3);
5205 5206 5207 5208 5209
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5210 5211 5212
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5213 5214
		if (!error)
			error = rc;
5215
		ext4_journal_stop(handle);
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5232 5233 5234 5235
	}

	rc = inode_setattr(inode, attr);

5236
	/* If inode_setattr's call to ext4_truncate failed to get a
5237 5238 5239
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5240
		ext4_orphan_del(NULL, inode);
5241 5242

	if (!rc && (ia_valid & ATTR_MODE))
5243
		rc = ext4_acl_chmod(inode);
5244 5245

err_out:
5246
	ext4_std_error(inode->i_sb, error);
5247 5248 5249 5250 5251
	if (!error)
		error = rc;
	return error;
}

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5278

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5307 5308
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5309
}
5310

5311
/*
5312 5313 5314
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5315
 *
5316 5317 5318
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
5319
 *
5320 5321 5322 5323
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5324 5325
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5352 5353
	if (groups > ngroups)
		groups = ngroups;
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5368 5369
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5370
 *
5371
 * This could be called via ext4_write_begin()
5372
 *
5373
 * We need to consider the worse case, when
5374
 * one new block per extent.
5375
 */
A
Alex Tomas 已提交
5376
int ext4_writepage_trans_blocks(struct inode *inode)
5377
{
5378
	int bpp = ext4_journal_blocks_per_page(inode);
5379 5380
	int ret;

5381
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5382

5383
	/* Account for data blocks for journalled mode */
5384
	if (ext4_should_journal_data(inode))
5385
		ret += bpp;
5386 5387
	return ret;
}
5388 5389 5390 5391 5392

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5393
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5394 5395 5396 5397 5398 5399 5400 5401 5402
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5403
/*
5404
 * The caller must have previously called ext4_reserve_inode_write().
5405 5406
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5407
int ext4_mark_iloc_dirty(handle_t *handle,
5408
			 struct inode *inode, struct ext4_iloc *iloc)
5409 5410 5411
{
	int err = 0;

5412 5413 5414
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5415 5416 5417
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5418
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5419
	err = ext4_do_update_inode(handle, inode, iloc);
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5430 5431
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5432
{
5433 5434 5435 5436 5437 5438 5439 5440 5441
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5442 5443
		}
	}
5444
	ext4_std_error(inode->i_sb, err);
5445 5446 5447
	return err;
}

5448 5449 5450 5451
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5452 5453 5454 5455
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5504
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5505
{
5506
	struct ext4_iloc iloc;
5507 5508 5509
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5510 5511

	might_sleep();
5512
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5513 5514
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5530 5531
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5532
					ext4_warning(inode->i_sb, __func__,
5533 5534 5535
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5536 5537
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5538 5539 5540 5541
				}
			}
		}
	}
5542
	if (!err)
5543
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5544 5545 5546 5547
	return err;
}

/*
5548
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5549 5550 5551 5552 5553
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5554
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5555 5556 5557 5558 5559 5560
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5561
void ext4_dirty_inode(struct inode *inode)
5562 5563 5564
{
	handle_t *handle;

5565
	handle = ext4_journal_start(inode, 2);
5566 5567
	if (IS_ERR(handle))
		goto out;
5568 5569 5570

	ext4_mark_inode_dirty(handle, inode);

5571
	ext4_journal_stop(handle);
5572 5573 5574 5575 5576 5577 5578 5579
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5580
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5581 5582 5583
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5584
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5585
{
5586
	struct ext4_iloc iloc;
5587 5588 5589

	int err = 0;
	if (handle) {
5590
		err = ext4_get_inode_loc(inode, &iloc);
5591 5592
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5593
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5594
			if (!err)
5595 5596 5597
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5598 5599 5600
			brelse(iloc.bh);
		}
	}
5601
	ext4_std_error(inode->i_sb, err);
5602 5603 5604 5605
	return err;
}
#endif

5606
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5622
	journal = EXT4_JOURNAL(inode);
5623 5624
	if (!journal)
		return 0;
5625
	if (is_journal_aborted(journal))
5626 5627
		return -EROFS;

5628 5629
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5640
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5641
	else
5642 5643
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5644

5645
	jbd2_journal_unlock_updates(journal);
5646 5647 5648

	/* Finally we can mark the inode as dirty. */

5649
	handle = ext4_journal_start(inode, 1);
5650 5651 5652
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5653
	err = ext4_mark_inode_dirty(handle, inode);
5654
	ext4_handle_sync(handle);
5655 5656
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5657 5658 5659

	return err;
}
5660 5661 5662 5663 5664 5665

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5666
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5667
{
5668
	struct page *page = vmf->page;
5669 5670 5671
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5672
	void *fsdata;
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5697 5698 5699 5700 5701 5702 5703
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5704 5705
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5706 5707
					ext4_bh_unmapped)) {
			unlock_page(page);
5708
			goto out_unlock;
5709
		}
5710
	}
5711
	unlock_page(page);
5712 5713 5714 5715 5716 5717 5718 5719
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5720
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5721 5722 5723
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5724
			len, len, page, fsdata);
5725 5726 5727 5728
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5729 5730
	if (ret)
		ret = VM_FAULT_SIGBUS;
5731 5732 5733
	up_read(&inode->i_alloc_sem);
	return ret;
}