inode.c 139.6 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 346
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354 355 356 357 358 359 360 361 362
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

363 364 365
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
366
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
367
			   used + ei->i_allocated_meta_blocks);
368
	ei->i_allocated_meta_blocks = 0;
369

370 371 372 373 374 375
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
376
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
377
				   ei->i_reserved_meta_blocks);
378
		ei->i_reserved_meta_blocks = 0;
379
		ei->i_da_metadata_calc_len = 0;
380
	}
381
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
382

383 384
	/* Update quota subsystem for data blocks */
	if (quota_claim)
385
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
386
	else {
387 388 389
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
390
		 * not re-claim the quota for fallocated blocks.
391
		 */
392
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393
	}
394 395 396 397 398 399

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
400 401
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
402
		ext4_discard_preallocations(inode);
403 404
}

405
static int __check_block_validity(struct inode *inode, const char *func,
406 407
				unsigned int line,
				struct ext4_map_blocks *map)
408
{
409 410
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
411 412 413 414
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
415 416 417 418 419
		return -EIO;
	}
	return 0;
}

420
#define check_block_validity(inode, map)	\
421
	__check_block_validity((inode), __func__, __LINE__, (map))
422

423
/*
424 425
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
459 460 461 462 463 464 465 466 467
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
468 469 470 471 472
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
473 474
			if (num >= max_pages) {
				done = 1;
475
				break;
476
			}
477 478 479 480 481 482
		}
		pagevec_release(&pvec);
	}
	return num;
}

483
/*
484
 * The ext4_map_blocks() function tries to look up the requested blocks,
485
 * and returns if the blocks are already mapped.
486 487 488 489 490
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
491 492
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
493 494 495 496 497 498 499 500
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
501
 * that case, buffer head is unmapped
502 503 504
 *
 * It returns the error in case of allocation failure.
 */
505 506
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
507 508
{
	int retval;
509

510 511 512 513
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
514
	/*
515 516
	 * Try to see if we can get the block without requesting a new
	 * file system block.
517
	 */
518 519
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
520
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
521 522
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
523
	} else {
524 525
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
526
	}
527 528
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
529

530
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
531 532 533 534 535 536 537 538 539 540
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
541 542 543 544
		if (ret != 0)
			return ret;
	}

545
	/* If it is only a block(s) look up */
546
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
547 548 549 550 551 552
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
553
	 * ext4_ext_get_block() returns the create = 0
554 555
	 * with buffer head unmapped.
	 */
556
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
557 558
		return retval;

559 560 561 562 563 564 565 566 567 568
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
569
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
570

571
	/*
572 573 574 575
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
576 577
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
578 579 580 581 582 583 584

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
585
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
586
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
587 588 589 590
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
591
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
593
	} else {
594
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
595

596
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597 598 599 600 601
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
602
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603
		}
604

605 606 607 608 609 610 611
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
612
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 614
			ext4_da_update_reserve_space(inode, retval, 1);
	}
615
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
616
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
617

618 619 620 621 622 623 624 625 626
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
627 628
	}

629
	up_write((&EXT4_I(inode)->i_data_sem));
630
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
631
		int ret = check_block_validity(inode, map);
632 633 634
		if (ret != 0)
			return ret;
	}
635 636 637
	return retval;
}

638 639 640
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

641 642
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
643
{
644
	handle_t *handle = ext4_journal_current_handle();
645
	struct ext4_map_blocks map;
J
Jan Kara 已提交
646
	int ret = 0, started = 0;
647
	int dio_credits;
648

T
Tao Ma 已提交
649 650 651
	if (ext4_has_inline_data(inode))
		return -ERANGE;

652 653 654
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

655
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
656
		/* Direct IO write... */
657 658 659
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
660 661
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
662
		if (IS_ERR(handle)) {
663
			ret = PTR_ERR(handle);
664
			return ret;
665
		}
J
Jan Kara 已提交
666
		started = 1;
667 668
	}

669
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
670
	if (ret > 0) {
671 672 673
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
674
		ret = 0;
675
	}
J
Jan Kara 已提交
676 677
	if (started)
		ext4_journal_stop(handle);
678 679 680
	return ret;
}

681 682 683 684 685 686 687
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

688 689 690
/*
 * `handle' can be NULL if create is zero
 */
691
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
692
				ext4_lblk_t block, int create, int *errp)
693
{
694 695
	struct ext4_map_blocks map;
	struct buffer_head *bh;
696 697 698 699
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

700 701 702 703
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
704

705 706 707
	/* ensure we send some value back into *errp */
	*errp = 0;

708 709 710 711 712 713
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
714
	if (unlikely(!bh)) {
715
		*errp = -ENOMEM;
716
		return NULL;
717
	}
718 719 720
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
721

722 723 724 725 726 727 728 729 730 731 732 733 734
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
735
		}
736 737 738 739 740 741 742
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
743
	}
744 745 746 747 748 749
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
750 751
}

752
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
753
			       ext4_lblk_t block, int create, int *err)
754
{
755
	struct buffer_head *bh;
756

757
	bh = ext4_getblk(handle, inode, block, create, err);
758 759 760 761
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
762
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
763 764 765 766 767 768 769 770
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

771 772 773 774 775 776 777
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
778 779 780 781 782 783 784
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

785 786
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
787
	     block_start = block_end, bh = next) {
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
805
 * close off a transaction and start a new one between the ext4_get_block()
806
 * and the commit_write().  So doing the jbd2_journal_start at the start of
807 808
 * prepare_write() is the right place.
 *
809 810 811 812
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
813
 *
814
 * By accident, ext4 can be reentered when a transaction is open via
815 816 817 818 819 820
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
821
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
822 823 824 825
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
826 827
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
828
{
829 830 831
	int dirty = buffer_dirty(bh);
	int ret;

832 833
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
834
	/*
C
Christoph Hellwig 已提交
835
	 * __block_write_begin() could have dirtied some buffers. Clean
836 837
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
838
	 * by __block_write_begin() isn't a real problem here as we clear
839 840 841 842 843 844 845 846 847
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
848 849
}

850 851
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
852
static int ext4_write_begin(struct file *file, struct address_space *mapping,
853 854
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
855
{
856
	struct inode *inode = mapping->host;
857
	int ret, needed_blocks;
858 859
	handle_t *handle;
	int retries = 0;
860
	struct page *page;
861
	pgoff_t index;
862
	unsigned from, to;
N
Nick Piggin 已提交
863

864
	trace_ext4_write_begin(inode, pos, len, flags);
865 866 867 868 869
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
870
	index = pos >> PAGE_CACHE_SHIFT;
871 872
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
873

874 875 876 877
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
878 879 880
			return ret;
		if (ret == 1)
			return 0;
881 882
	}

883 884 885 886 887 888 889 890 891 892 893 894 895 896
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
897
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
898
	if (IS_ERR(handle)) {
899 900
		page_cache_release(page);
		return PTR_ERR(handle);
901
	}
902

903 904 905 906 907
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
908
		ext4_journal_stop(handle);
909
		goto retry_grab;
910
	}
911
	wait_on_page_writeback(page);
912

913
	if (ext4_should_dioread_nolock(inode))
914
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
915
	else
916
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
917 918

	if (!ret && ext4_should_journal_data(inode)) {
919 920 921
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
922
	}
N
Nick Piggin 已提交
923 924

	if (ret) {
925
		unlock_page(page);
926
		/*
927
		 * __block_write_begin may have instantiated a few blocks
928 929
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
930 931 932
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
933
		 */
934
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
935 936 937 938
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
939
			ext4_truncate_failed_write(inode);
940
			/*
941
			 * If truncate failed early the inode might
942 943 944 945 946 947 948
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
949

950 951 952 953 954 955 956
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
957 958 959
	return ret;
}

N
Nick Piggin 已提交
960 961
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
962 963 964 965
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
966
	return ext4_handle_dirty_metadata(handle, NULL, bh);
967 968
}

969
static int ext4_generic_write_end(struct file *file,
970 971 972
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
973 974 975 976 977
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

978 979 980 981 982 983
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1020 1021 1022 1023
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1024
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1025 1026
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1027
static int ext4_ordered_write_end(struct file *file,
1028 1029 1030
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1031
{
1032
	handle_t *handle = ext4_journal_current_handle();
1033
	struct inode *inode = mapping->host;
1034 1035
	int ret = 0, ret2;

1036
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1037
	ret = ext4_jbd2_file_inode(handle, inode);
1038 1039

	if (ret == 0) {
1040
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1041
							page, fsdata);
1042
		copied = ret2;
1043
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1044 1045 1046 1047 1048
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1049 1050
		if (ret2 < 0)
			ret = ret2;
1051 1052 1053
	} else {
		unlock_page(page);
		page_cache_release(page);
1054
	}
1055

1056
	ret2 = ext4_journal_stop(handle);
1057 1058
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1059

1060
	if (pos + len > inode->i_size) {
1061
		ext4_truncate_failed_write(inode);
1062
		/*
1063
		 * If truncate failed early the inode might still be
1064 1065 1066 1067 1068 1069 1070 1071
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1072
	return ret ? ret : copied;
1073 1074
}

N
Nick Piggin 已提交
1075
static int ext4_writeback_write_end(struct file *file,
1076 1077 1078
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1079
{
1080
	handle_t *handle = ext4_journal_current_handle();
1081
	struct inode *inode = mapping->host;
1082 1083
	int ret = 0, ret2;

1084
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1085
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1086
							page, fsdata);
1087
	copied = ret2;
1088
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1089 1090 1091 1092 1093 1094
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1095 1096
	if (ret2 < 0)
		ret = ret2;
1097

1098
	ret2 = ext4_journal_stop(handle);
1099 1100
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1101

1102
	if (pos + len > inode->i_size) {
1103
		ext4_truncate_failed_write(inode);
1104
		/*
1105
		 * If truncate failed early the inode might still be
1106 1107 1108 1109 1110 1111 1112
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1113
	return ret ? ret : copied;
1114 1115
}

N
Nick Piggin 已提交
1116
static int ext4_journalled_write_end(struct file *file,
1117 1118 1119
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1120
{
1121
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1122
	struct inode *inode = mapping->host;
1123 1124
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1125
	unsigned from, to;
1126
	loff_t new_i_size;
1127

1128
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1129 1130 1131
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1132 1133
	BUG_ON(!ext4_handle_valid(handle));

1134 1135 1136 1137 1138 1139 1140 1141 1142
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1143

1144 1145 1146 1147 1148
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1149 1150
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1151
		i_size_write(inode, pos+copied);
1152
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1153
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1154 1155
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1156
		ret2 = ext4_mark_inode_dirty(handle, inode);
1157 1158 1159
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1160

1161
	unlock_page(page);
1162
	page_cache_release(page);
1163
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 1165 1166 1167 1168 1169
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1170
	ret2 = ext4_journal_stop(handle);
1171 1172
	if (!ret)
		ret = ret2;
1173
	if (pos + len > inode->i_size) {
1174
		ext4_truncate_failed_write(inode);
1175
		/*
1176
		 * If truncate failed early the inode might still be
1177 1178 1179 1180 1181 1182
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1183 1184

	return ret ? ret : copied;
1185
}
1186

1187
/*
1188
 * Reserve a single cluster located at lblock
1189
 */
1190
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1191
{
A
Aneesh Kumar K.V 已提交
1192
	int retries = 0;
1193
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1194
	struct ext4_inode_info *ei = EXT4_I(inode);
1195
	unsigned int md_needed;
1196
	int ret;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1208 1209 1210 1211 1212 1213

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1214
repeat:
1215
	spin_lock(&ei->i_block_reservation_lock);
1216 1217 1218 1219 1220 1221
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1222 1223
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1224
	trace_ext4_da_reserve_space(inode, md_needed);
1225

1226 1227 1228 1229
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1230
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1231 1232 1233
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1234 1235 1236 1237
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1238
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1239 1240
		return -ENOSPC;
	}
1241
	ei->i_reserved_data_blocks++;
1242 1243
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1244

1245 1246 1247
	return 0;       /* success */
}

1248
static void ext4_da_release_space(struct inode *inode, int to_free)
1249 1250
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1251
	struct ext4_inode_info *ei = EXT4_I(inode);
1252

1253 1254 1255
	if (!to_free)
		return;		/* Nothing to release, exit */

1256
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1257

L
Li Zefan 已提交
1258
	trace_ext4_da_release_space(inode, to_free);
1259
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1260
		/*
1261 1262 1263 1264
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1265
		 */
1266 1267
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1268
			 "data blocks", inode->i_ino, to_free,
1269 1270 1271
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1272
	}
1273
	ei->i_reserved_data_blocks -= to_free;
1274

1275 1276 1277 1278 1279
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1280 1281
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1282
		 */
1283
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1284
				   ei->i_reserved_meta_blocks);
1285
		ei->i_reserved_meta_blocks = 0;
1286
		ei->i_da_metadata_calc_len = 0;
1287
	}
1288

1289
	/* update fs dirty data blocks counter */
1290
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1291 1292

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1293

1294
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1295 1296 1297
}

static void ext4_da_page_release_reservation(struct page *page,
1298
					     unsigned long offset)
1299 1300 1301 1302
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1303 1304 1305
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1306
	ext4_fsblk_t lblk;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1319

1320 1321 1322 1323 1324
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1325 1326 1327 1328 1329 1330 1331
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1332
		    !ext4_find_delalloc_cluster(inode, lblk))
1333 1334 1335 1336
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1337
}
1338

1339 1340 1341 1342 1343 1344
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1345
 * them with writepage() call back
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1356 1357
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1358
{
1359 1360 1361 1362 1363
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1364
	loff_t size = i_size_read(inode);
1365 1366
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1367
	sector_t pblock = 0, cur_logical = 0;
1368
	struct ext4_io_submit io_submit;
1369 1370

	BUG_ON(mpd->next_page <= mpd->first_page);
1371
	memset(&io_submit, 0, sizeof(io_submit));
1372 1373 1374
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1375
	 * If we look at mpd->b_blocknr we would only be looking
1376 1377
	 * at the currently mapped buffer_heads.
	 */
1378 1379 1380
	index = mpd->first_page;
	end = mpd->next_page - 1;

1381
	pagevec_init(&pvec, 0);
1382
	while (index <= end) {
1383
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1384 1385 1386
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1387
			int skip_page = 0;
1388 1389
			struct page *page = pvec.pages[i];

1390 1391 1392
			index = page->index;
			if (index > end)
				break;
1393 1394 1395 1396 1397

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1398 1399 1400 1401 1402 1403
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1404 1405 1406 1407 1408
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1409 1410
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1411
			do {
1412 1413 1414
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1415 1416 1417 1418
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1419 1420 1421 1422 1423 1424 1425
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1426

1427 1428 1429 1430 1431
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1432
					skip_page = 1;
1433 1434
				bh = bh->b_this_page;
				block_start += bh->b_size;
1435 1436
				cur_logical++;
				pblock++;
1437 1438
			} while (bh != page_bufs);

1439 1440 1441 1442
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1443

1444
			clear_page_dirty_for_io(page);
1445 1446
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1447
			if (!err)
1448
				mpd->pages_written++;
1449 1450 1451 1452 1453 1454 1455 1456 1457
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1458
	ext4_io_submit(&io_submit);
1459 1460 1461
	return ret;
}

1462
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1463 1464 1465 1466 1467 1468
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1469
	ext4_lblk_t start, last;
1470

1471 1472
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1473 1474 1475 1476 1477

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1478
	pagevec_init(&pvec, 0);
1479 1480 1481 1482 1483 1484
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1485
			if (page->index > end)
1486 1487 1488 1489 1490 1491 1492
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1493 1494
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1495 1496 1497 1498
	}
	return;
}

1499 1500 1501
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502 1503 1504
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1505 1506
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1507 1508
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1509 1510
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1511
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1512 1513
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1514 1515 1516 1517
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1518
	       EXT4_I(inode)->i_reserved_meta_blocks);
1519 1520 1521
	return;
}

1522
/*
1523 1524
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1525
 *
1526
 * @mpd - bh describing space
1527 1528 1529 1530
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1531
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1532
{
1533
	int err, blks, get_blocks_flags;
1534
	struct ext4_map_blocks map, *mapp = NULL;
1535 1536 1537 1538
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1539 1540

	/*
1541 1542
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1543
	 */
1544 1545 1546 1547 1548
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1549 1550 1551 1552

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1553
	/*
1554
	 * Call ext4_map_blocks() to allocate any delayed allocation
1555 1556 1557 1558 1559 1560 1561 1562
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1563
	 * want to change *many* call functions, so ext4_map_blocks()
1564
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1565 1566 1567 1568 1569
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1570
	 */
1571 1572
	map.m_lblk = next;
	map.m_len = max_blocks;
1573
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1574 1575
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1576
	if (mpd->b_state & (1 << BH_Delay))
1577 1578
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1579
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1580
	if (blks < 0) {
1581 1582
		struct super_block *sb = mpd->inode->i_sb;

1583
		err = blks;
1584
		/*
1585
		 * If get block returns EAGAIN or ENOSPC and there
1586 1587
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1588 1589
		 */
		if (err == -EAGAIN)
1590
			goto submit_io;
1591

1592
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1593
			mpd->retval = err;
1594
			goto submit_io;
1595 1596
		}

1597
		/*
1598 1599 1600 1601 1602
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1603
		 */
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1615
		}
1616
		/* invalidate all the pages */
1617
		ext4_da_block_invalidatepages(mpd);
1618 1619 1620

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1621
		return;
1622
	}
1623 1624
	BUG_ON(blks == 0);

1625
	mapp = &map;
1626 1627 1628
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1629

1630 1631
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1632 1633 1634
	}

	/*
1635
	 * Update on-disk size along with block allocation.
1636 1637 1638 1639 1640 1641
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1642 1643 1644 1645 1646
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1647 1648
	}

1649
submit_io:
1650
	mpage_da_submit_io(mpd, mapp);
1651
	mpd->io_done = 1;
1652 1653
}

1654 1655
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1656 1657 1658 1659 1660 1661

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1662
 * @b_state - b_state of the buffer head added
1663 1664 1665
 *
 * the function is used to collect contig. blocks in same state
 */
1666
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1667
				   unsigned long b_state)
1668 1669
{
	sector_t next;
1670 1671
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1672

1673 1674 1675 1676
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1677
	 * ext4_map_blocks() multiple times in a loop
1678
	 */
1679
	if (nrblocks >= (8*1024*1024 >> blkbits))
1680 1681
		goto flush_it;

1682 1683
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1694 1695 1696
	/*
	 * First block in the extent
	 */
1697 1698
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1699
		mpd->b_size = 1 << blkbits;
1700
		mpd->b_state = b_state & BH_FLAGS;
1701 1702 1703
		return;
	}

1704
	next = mpd->b_blocknr + nrblocks;
1705 1706 1707
	/*
	 * Can we merge the block to our big extent?
	 */
1708
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1709
		mpd->b_size += 1 << blkbits;
1710 1711 1712
		return;
	}

1713
flush_it:
1714 1715 1716 1717
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1718
	mpage_da_map_and_submit(mpd);
1719
	return;
1720 1721
}

1722
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1723
{
1724
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1725 1726
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1783 1784 1785 1786
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
		if (retval)
			goto out_unlock;

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1803
/*
1804 1805 1806
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1807 1808 1809 1810 1811 1812 1813
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1814
 */
1815 1816
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
1817
{
1818
	struct ext4_map_blocks map;
1819 1820 1821
	int ret = 0;

	BUG_ON(create == 0);
1822 1823 1824 1825
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1826 1827 1828 1829 1830 1831

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1832 1833
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1834
		return ret;
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1847
		set_buffer_mapped(bh);
1848 1849
	}
	return 0;
1850
}
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
1869
	struct buffer_head *page_bufs = NULL;
1870
	handle_t *handle = NULL;
1871 1872 1873
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
1874

1875
	ClearPageChecked(page);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
1892 1893 1894 1895
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

1896 1897
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
1898 1899 1900 1901 1902
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1903 1904
	BUG_ON(!ext4_handle_valid(handle));

1905 1906
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
1917 1918
	if (ret == 0)
		ret = err;
1919
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1920 1921 1922 1923
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

1924 1925 1926
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
1927
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1928
out:
1929
	brelse(inode_bh);
1930 1931 1932
	return ret;
}

1933
/*
1934 1935 1936 1937
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1938
 * we are writing back data modified via mmap(), no one guarantees in which
1939 1940 1941 1942
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1943 1944 1945
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1946
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1947
 *   - grab_page_cache when doing write_begin (have journal handle)
1948 1949 1950 1951 1952 1953 1954 1955 1956
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1957
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1973
 */
1974
static int ext4_writepage(struct page *page,
1975
			  struct writeback_control *wbc)
1976
{
1977
	int ret = 0;
1978
	loff_t size;
1979
	unsigned int len;
1980
	struct buffer_head *page_bufs = NULL;
1981
	struct inode *inode = page->mapping->host;
1982
	struct ext4_io_submit io_submit;
1983

L
Lukas Czerner 已提交
1984
	trace_ext4_writepage(page);
1985 1986 1987 1988 1989
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1990

T
Theodore Ts'o 已提交
1991
	page_bufs = page_buffers(page);
1992 1993 1994 1995 1996 1997 1998
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
1999 2000
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2001
		redirty_page_for_writepage(wbc, page);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2013
	}
2014

2015
	if (PageChecked(page) && ext4_should_journal_data(inode))
2016 2017 2018 2019
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2020
		return __ext4_journalled_writepage(page, len);
2021

2022 2023 2024
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2025 2026 2027
	return ret;
}

2028
/*
2029
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2030
 * calculate the total number of credits to reserve to fit
2031 2032 2033
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2034
 */
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2046
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2047 2048 2049 2050 2051
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2052

2053 2054
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2055
 * address space and accumulate pages that need writing, and call
2056 2057
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2058
 */
2059 2060
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2061
				struct writeback_control *wbc,
2062 2063
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2064
{
2065
	struct buffer_head	*bh, *head;
2066
	struct inode		*inode = mapping->host;
2067 2068 2069 2070 2071 2072
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2073

2074 2075 2076
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2077 2078 2079 2080
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2081
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2082 2083 2084 2085
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2086
	*done_index = index;
2087
	while (index <= end) {
2088
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2089 2090
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2091
			return 0;
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2103 2104
			if (page->index > end)
				goto out;
2105

2106 2107
			*done_index = page->index + 1;

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2118 2119 2120
			lock_page(page);

			/*
2121 2122 2123 2124 2125 2126
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2127
			 */
2128 2129 2130 2131
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2132 2133 2134 2135
				unlock_page(page);
				continue;
			}

2136
			wait_on_page_writeback(page);
2137 2138
			BUG_ON(PageWriteback(page));

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2150
			if (mpd->next_page != page->index)
2151 2152 2153 2154 2155
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2156 2157 2158 2159 2160
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2161
				/*
2162 2163 2164
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2165
				 */
2166 2167 2168 2169 2170 2171 2172
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2173
					/*
2174 2175 2176 2177 2178 2179 2180
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2181
					 */
2182 2183 2184 2185 2186 2187
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2188 2189 2190 2191

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2192
				    wbc->sync_mode == WB_SYNC_NONE)
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2203
					goto out;
2204 2205 2206 2207 2208
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2209 2210 2211
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2212 2213 2214
out:
	pagevec_release(&pvec);
	cond_resched();
2215 2216 2217 2218
	return ret;
}


2219
static int ext4_da_writepages(struct address_space *mapping,
2220
			      struct writeback_control *wbc)
2221
{
2222 2223
	pgoff_t	index;
	int range_whole = 0;
2224
	handle_t *handle = NULL;
2225
	struct mpage_da_data mpd;
2226
	struct inode *inode = mapping->host;
2227
	int pages_written = 0;
2228
	unsigned int max_pages;
2229
	int range_cyclic, cycled = 1, io_done = 0;
2230 2231
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2232
	loff_t range_start = wbc->range_start;
2233
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2234
	pgoff_t done_index = 0;
2235
	pgoff_t end;
S
Shaohua Li 已提交
2236
	struct blk_plug plug;
2237

2238
	trace_ext4_da_writepages(inode, wbc);
2239

2240 2241 2242 2243 2244
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2245
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2246
		return 0;
2247 2248 2249 2250 2251

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2252
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2253 2254 2255 2256 2257
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2258
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2259 2260
		return -EROFS;

2261 2262
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2263

2264 2265
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2266
		index = mapping->writeback_index;
2267 2268 2269 2270 2271
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2272 2273
		end = -1;
	} else {
2274
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2275 2276
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2295 2296 2297 2298 2299 2300
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2311
retry:
2312
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2313 2314
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2315
	blk_start_plug(&plug);
2316
	while (!ret && wbc->nr_to_write > 0) {
2317 2318 2319 2320 2321 2322 2323 2324

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2325
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2326

2327
		/* start a new transaction*/
2328 2329
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2330 2331
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2332
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2333
			       "%ld pages, ino %lu; err %d", __func__,
2334
				wbc->nr_to_write, inode->i_ino, ret);
2335
			blk_finish_plug(&plug);
2336 2337
			goto out_writepages;
		}
2338 2339

		/*
2340
		 * Now call write_cache_pages_da() to find the next
2341
		 * contiguous region of logical blocks that need
2342
		 * blocks to be allocated by ext4 and submit them.
2343
		 */
2344 2345
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2346
		/*
2347
		 * If we have a contiguous extent of pages and we
2348 2349 2350 2351
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2352
			mpage_da_map_and_submit(&mpd);
2353 2354
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2355
		trace_ext4_da_write_pages(inode, &mpd);
2356
		wbc->nr_to_write -= mpd.pages_written;
2357

2358
		ext4_journal_stop(handle);
2359

2360
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2361 2362 2363 2364
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2365
			jbd2_journal_force_commit_nested(sbi->s_journal);
2366 2367
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2368
			/*
2369 2370 2371
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2372
			 */
2373
			pages_written += mpd.pages_written;
2374
			ret = mpd.retval;
2375
			io_done = 1;
2376
		} else if (wbc->nr_to_write)
2377 2378 2379 2380 2381 2382
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2383
	}
S
Shaohua Li 已提交
2384
	blk_finish_plug(&plug);
2385 2386 2387 2388 2389 2390 2391
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2392 2393

	/* Update index */
2394
	wbc->range_cyclic = range_cyclic;
2395 2396 2397 2398 2399
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2400
		mapping->writeback_index = done_index;
2401

2402
out_writepages:
2403
	wbc->nr_to_write -= nr_to_writebump;
2404
	wbc->range_start = range_start;
2405
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2406
	return ret;
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2417
	 * counters can get slightly wrong with percpu_counter_batch getting
2418 2419 2420 2421
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2422 2423 2424
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2435
	if (2 * free_blocks < 3 * dirty_blocks ||
2436
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2437
		/*
2438 2439
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2440 2441 2442 2443 2444 2445
		 */
		return 1;
	}
	return 0;
}

2446
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2447 2448
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2449
{
2450
	int ret, retries = 0;
2451 2452 2453 2454 2455 2456
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2457 2458 2459 2460 2461 2462 2463

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2464
	trace_ext4_da_write_begin(inode, pos, len, flags);
2465 2466 2467 2468 2469 2470

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2471 2472 2473
			return ret;
		if (ret == 1)
			return 0;
2474 2475
	}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2489 2490 2491 2492 2493 2494
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2495
retry_journal:
2496
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2497
	if (IS_ERR(handle)) {
2498 2499
		page_cache_release(page);
		return PTR_ERR(handle);
2500 2501
	}

2502 2503 2504 2505 2506
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2507
		ext4_journal_stop(handle);
2508
		goto retry_grab;
2509
	}
2510 2511
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2512

2513
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2514 2515 2516
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2517 2518 2519 2520 2521 2522
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2523
			ext4_truncate_failed_write(inode);
2524 2525 2526 2527 2528 2529 2530

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2531 2532
	}

2533
	*pagep = page;
2534 2535 2536
	return ret;
}

2537 2538 2539 2540 2541
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2542
					    unsigned long offset)
2543 2544 2545 2546 2547 2548 2549 2550 2551
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2552
	for (i = 0; i < idx; i++)
2553 2554
		bh = bh->b_this_page;

2555
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2556 2557 2558 2559
		return 0;
	return 1;
}

2560
static int ext4_da_write_end(struct file *file,
2561 2562 2563
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2564 2565 2566 2567 2568
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2569
	unsigned long start, end;
2570 2571 2572
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2573 2574
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2575 2576
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2577
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2578 2579
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2580
		default:
2581 2582 2583
			BUG();
		}
	}
2584

2585
	trace_ext4_da_write_end(inode, pos, len, copied);
2586
	start = pos & (PAGE_CACHE_SIZE - 1);
2587
	end = start + copied - 1;
2588 2589 2590 2591 2592 2593 2594

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2595
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2596 2597
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2598
			down_write(&EXT4_I(inode)->i_data_sem);
2599
			if (new_i_size > EXT4_I(inode)->i_disksize)
2600 2601
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2602 2603 2604 2605 2606
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2607
		}
2608
	}
2609 2610 2611 2612 2613 2614 2615 2616

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2617
							page, fsdata);
2618

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2638
	ext4_da_page_release_reservation(page, offset);
2639 2640 2641 2642 2643 2644 2645

out:
	ext4_invalidatepage(page, offset);

	return;
}

2646 2647 2648 2649 2650
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2651 2652
	trace_ext4_alloc_da_blocks(inode);

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2663
	 *
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2676
	 * the pages by calling redirty_page_for_writepage() but that
2677 2678
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2679
	 * simplifying them because we wouldn't actually intend to
2680 2681 2682
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2683
	 *
2684 2685 2686 2687 2688 2689
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2690

2691 2692 2693 2694 2695
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2696
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2697 2698 2699 2700 2701 2702 2703 2704
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2705
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2706 2707 2708 2709 2710
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2711 2712 2713 2714 2715 2716
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2727 2728
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2740
		 * NB. EXT4_STATE_JDATA is not set on files other than
2741 2742 2743 2744 2745 2746
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2747
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2748
		journal = EXT4_JOURNAL(inode);
2749 2750 2751
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2752 2753 2754 2755 2756

		if (err)
			return 0;
	}

2757
	return generic_block_bmap(mapping, block, ext4_get_block);
2758 2759
}

2760
static int ext4_readpage(struct file *file, struct page *page)
2761
{
T
Tao Ma 已提交
2762 2763 2764
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2765
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2766 2767 2768 2769 2770 2771 2772 2773

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2774 2775 2776
}

static int
2777
ext4_readpages(struct file *file, struct address_space *mapping,
2778 2779
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2780 2781 2782 2783 2784 2785
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2786
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2787 2788
}

2789
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2790
{
2791 2792
	trace_ext4_invalidatepage(page, offset);

2793 2794 2795 2796 2797 2798
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2799 2800
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2801 2802 2803 2804 2805
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2806 2807 2808 2809 2810 2811
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2812 2813 2814 2815 2816 2817 2818 2819
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2820 2821
}

2822
static int ext4_releasepage(struct page *page, gfp_t wait)
2823
{
2824
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2825

2826 2827
	trace_ext4_releasepage(page);

2828 2829 2830
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2831 2832 2833 2834
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2835 2836
}

2837 2838 2839 2840 2841
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2842
int ext4_get_block_write(struct inode *inode, sector_t iblock,
2843 2844
		   struct buffer_head *bh_result, int create)
{
2845
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2846
		   inode->i_ino, create);
2847 2848
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2849 2850
}

2851
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2852
		   struct buffer_head *bh_result, int create)
2853
{
2854 2855 2856 2857
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2858 2859
}

2860
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2861 2862
			    ssize_t size, void *private, int ret,
			    bool is_async)
2863
{
2864
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2865 2866
        ext4_io_end_t *io_end = iocb->private;

2867 2868
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2869
		goto out;
2870

2871
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2872
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2873 2874 2875
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2876 2877
	iocb->private = NULL;

2878
	/* if not aio dio with unwritten extents, just free io and return */
2879
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2880
		ext4_free_io_end(io_end);
2881
out:
2882
		inode_dio_done(inode);
2883 2884 2885
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
2886 2887
	}

2888 2889
	io_end->offset = offset;
	io_end->size = size;
2890 2891 2892 2893
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2894

2895
	ext4_add_complete_io(io_end);
2896
}
2897

2898 2899 2900 2901 2902
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2903
 * For holes, we fallocate those blocks, mark them as uninitialized
2904
 * If those blocks were preallocated, we mark sure they are split, but
2905
 * still keep the range to write as uninitialized.
2906
 *
2907
 * The unwritten extents will be converted to written when DIO is completed.
2908
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2909
 * set up an end_io call back function, which will do the conversion
2910
 * when async direct IO completed.
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2925 2926 2927
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2928
	loff_t final_size = offset + count;
2929

2930 2931 2932
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2933

2934
	BUG_ON(iocb->private == NULL);
2935

2936 2937
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2938

2939 2940 2941 2942 2943
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2944

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
2971
		}
2972 2973
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
2974
		/*
2975 2976 2977 2978
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
2979
		 */
2980 2981
		ext4_inode_aio_set(inode, io_end);
	}
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3029

3030 3031 3032 3033 3034 3035
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3036
	}
3037

3038
	return ret;
3039 3040 3041 3042 3043 3044 3045 3046
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3047
	ssize_t ret;
3048

3049 3050 3051 3052 3053 3054
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3055 3056 3057 3058
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3059
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3060
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3061 3062 3063 3064 3065 3066
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3067 3068
}

3069
/*
3070
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3082
static int ext4_journalled_set_page_dirty(struct page *page)
3083 3084 3085 3086 3087
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3088
static const struct address_space_operations ext4_ordered_aops = {
3089 3090
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3091
	.writepage		= ext4_writepage,
3092 3093 3094 3095 3096 3097 3098 3099
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3100
	.error_remove_page	= generic_error_remove_page,
3101 3102
};

3103
static const struct address_space_operations ext4_writeback_aops = {
3104 3105
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3106
	.writepage		= ext4_writepage,
3107 3108 3109 3110 3111 3112 3113 3114
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3115
	.error_remove_page	= generic_error_remove_page,
3116 3117
};

3118
static const struct address_space_operations ext4_journalled_aops = {
3119 3120
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3121
	.writepage		= ext4_writepage,
3122 3123 3124 3125
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3126
	.invalidatepage		= ext4_journalled_invalidatepage,
3127
	.releasepage		= ext4_releasepage,
3128
	.direct_IO		= ext4_direct_IO,
3129
	.is_partially_uptodate  = block_is_partially_uptodate,
3130
	.error_remove_page	= generic_error_remove_page,
3131 3132
};

3133
static const struct address_space_operations ext4_da_aops = {
3134 3135
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3136
	.writepage		= ext4_writepage,
3137 3138 3139 3140 3141 3142 3143 3144 3145
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3146
	.error_remove_page	= generic_error_remove_page,
3147 3148
};

3149
void ext4_set_aops(struct inode *inode)
3150
{
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3165
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3166 3167 3168 3169
		break;
	default:
		BUG();
	}
3170 3171
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3192
		return -ENOMEM;
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3221
 * from:   The starting byte offset (from the beginning of the file)
3222 3223 3224 3225 3226 3227 3228
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3229
 *         for updating the contents of a page whose blocks may
3230 3231 3232
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3233
 * Returns zero on success or negative on failure.
3234
 */
E
Eric Sandeen 已提交
3235
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3261 3262
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3275 3276
		unsigned int end_of_block, range_to_discard;

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3362
		} else
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3386 3387 3388 3389 3390 3391 3392 3393
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3394
 * Returns: 0 on success or negative on failure
3395 3396 3397 3398 3399 3400
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3401
		return -EOPNOTSUPP;
3402

3403 3404
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3405

3406 3407
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3408
		return -EOPNOTSUPP;
3409 3410
	}

3411 3412
	trace_ext4_punch_hole(inode, offset, length);

3413 3414 3415
	return ext4_ext_punch_hole(file, offset, length);
}

3416
/*
3417
 * ext4_truncate()
3418
 *
3419 3420
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3421 3422
 * simultaneously on behalf of the same inode.
 *
3423
 * As we work through the truncate and commit bits of it to the journal there
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3437
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3438
 * that this inode's truncate did not complete and it will again call
3439 3440
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3441
 * that's fine - as long as they are linked from the inode, the post-crash
3442
 * ext4_truncate() run will find them and release them.
3443
 */
3444
void ext4_truncate(struct inode *inode)
3445
{
3446 3447
	trace_ext4_truncate_enter(inode);

3448
	if (!ext4_can_truncate(inode))
3449 3450
		return;

3451
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3452

3453
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3454
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3455

3456 3457 3458 3459 3460 3461 3462 3463
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3464
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3465
		ext4_ext_truncate(inode);
3466 3467
	else
		ext4_ind_truncate(inode);
3468

3469
	trace_ext4_truncate_exit(inode);
3470 3471 3472
}

/*
3473
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3474 3475 3476 3477
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3478 3479
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3480
{
3481 3482 3483 3484 3485 3486
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3487
	iloc->bh = NULL;
3488 3489
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3490

3491 3492 3493
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3494 3495
		return -EIO;

3496 3497 3498
	/*
	 * Figure out the offset within the block group inode table
	 */
3499
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3500 3501 3502 3503 3504 3505
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3506
	if (unlikely(!bh))
3507
		return -ENOMEM;
3508 3509
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3533
			int i, start;
3534

3535
			start = inode_offset & ~(inodes_per_block - 1);
3536

3537 3538
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3539
			if (unlikely(!bitmap_bh))
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3551
			for (i = start; i < start + inodes_per_block; i++) {
3552 3553
				if (i == inode_offset)
					continue;
3554
				if (ext4_test_bit(i, bitmap_bh->b_data))
3555 3556 3557
					break;
			}
			brelse(bitmap_bh);
3558
			if (i == start + inodes_per_block) {
3559 3560 3561 3562 3563 3564 3565 3566 3567
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3568 3569 3570 3571 3572 3573 3574 3575 3576
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3577
			/* s_inode_readahead_blks is always a power of 2 */
3578 3579 3580 3581 3582
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3583
			if (ext4_has_group_desc_csum(sb))
3584
				num -= ext4_itable_unused_count(sb, gdp);
3585 3586 3587 3588 3589 3590 3591
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3592 3593 3594 3595 3596
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3597
		trace_ext4_load_inode(inode);
3598 3599
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3600
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3601 3602
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3603 3604
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3605 3606 3607 3608 3609 3610 3611 3612 3613
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3614
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3615 3616
{
	/* We have all inode data except xattrs in memory here. */
3617
	return __ext4_get_inode_loc(inode, iloc,
3618
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3619 3620
}

3621
void ext4_set_inode_flags(struct inode *inode)
3622
{
3623
	unsigned int flags = EXT4_I(inode)->i_flags;
3624 3625

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3626
	if (flags & EXT4_SYNC_FL)
3627
		inode->i_flags |= S_SYNC;
3628
	if (flags & EXT4_APPEND_FL)
3629
		inode->i_flags |= S_APPEND;
3630
	if (flags & EXT4_IMMUTABLE_FL)
3631
		inode->i_flags |= S_IMMUTABLE;
3632
	if (flags & EXT4_NOATIME_FL)
3633
		inode->i_flags |= S_NOATIME;
3634
	if (flags & EXT4_DIRSYNC_FL)
3635 3636 3637
		inode->i_flags |= S_DIRSYNC;
}

3638 3639 3640
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3661
}
3662

3663
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3664
				  struct ext4_inode_info *ei)
3665 3666
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3667 3668
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3669 3670 3671 3672 3673 3674

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3675
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3676 3677 3678 3679 3680
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3681 3682 3683 3684
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3685

3686 3687 3688 3689 3690 3691
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3692
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3693
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3694
		ext4_find_inline_data_nolock(inode);
3695 3696
	} else
		EXT4_I(inode)->i_inline_off = 0;
3697 3698
}

3699
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3700
{
3701 3702
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3703 3704
	struct ext4_inode_info *ei;
	struct inode *inode;
3705
	journal_t *journal = EXT4_SB(sb)->s_journal;
3706
	long ret;
3707
	int block;
3708 3709
	uid_t i_uid;
	gid_t i_gid;
3710

3711 3712 3713 3714 3715 3716 3717
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3718
	iloc.bh = NULL;
3719

3720 3721
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3722
		goto bad_inode;
3723
	raw_inode = ext4_raw_inode(&iloc);
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3757
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3758 3759
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3760
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3761 3762
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3763
	}
3764 3765
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3766
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3767

3768
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3769
	ei->i_inline_off = 0;
3770 3771 3772 3773 3774 3775 3776 3777 3778
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3779
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3780
			/* this inode is deleted */
3781
			ret = -ESTALE;
3782 3783 3784 3785 3786 3787 3788 3789
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3790
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3791
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3792
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3793 3794
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3795
	inode->i_size = ext4_isize(raw_inode);
3796
	ei->i_disksize = inode->i_size;
3797 3798 3799
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3800 3801
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3802
	ei->i_last_alloc_group = ~0;
3803 3804 3805 3806
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3807
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3808 3809 3810
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3822
		read_lock(&journal->j_state_lock);
3823 3824 3825 3826 3827 3828 3829 3830
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3831
		read_unlock(&journal->j_state_lock);
3832 3833 3834 3835
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3836
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3837 3838
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3839 3840
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3841
		} else {
3842
			ext4_iget_extra_inode(inode, raw_inode, ei);
3843
		}
3844
	}
3845

K
Kalpak Shah 已提交
3846 3847 3848 3849 3850
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3851 3852 3853 3854 3855 3856 3857
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3858
	ret = 0;
3859
	if (ei->i_file_acl &&
3860
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3861 3862
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3863 3864
		ret = -EIO;
		goto bad_inode;
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
3878
	}
3879
	if (ret)
3880
		goto bad_inode;
3881

3882
	if (S_ISREG(inode->i_mode)) {
3883 3884 3885
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3886
	} else if (S_ISDIR(inode->i_mode)) {
3887 3888
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3889
	} else if (S_ISLNK(inode->i_mode)) {
3890
		if (ext4_inode_is_fast_symlink(inode)) {
3891
			inode->i_op = &ext4_fast_symlink_inode_operations;
3892 3893 3894
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3895 3896
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3897
		}
3898 3899
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3900
		inode->i_op = &ext4_special_inode_operations;
3901 3902 3903 3904 3905 3906
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3907 3908
	} else {
		ret = -EIO;
3909
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3910
		goto bad_inode;
3911
	}
3912
	brelse(iloc.bh);
3913
	ext4_set_inode_flags(inode);
3914 3915
	unlock_new_inode(inode);
	return inode;
3916 3917

bad_inode:
3918
	brelse(iloc.bh);
3919 3920
	iget_failed(inode);
	return ERR_PTR(ret);
3921 3922
}

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3933
		 * i_blocks can be represented in a 32 bit variable
3934 3935
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3936
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3937
		raw_inode->i_blocks_high = 0;
3938
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3939 3940 3941 3942 3943 3944
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3945 3946 3947 3948
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3949
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3950
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3951
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3952
	} else {
3953
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3954 3955 3956 3957
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3958
	}
3959
	return 0;
3960 3961
}

3962 3963 3964 3965 3966 3967 3968
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3969
static int ext4_do_update_inode(handle_t *handle,
3970
				struct inode *inode,
3971
				struct ext4_iloc *iloc)
3972
{
3973 3974
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3975 3976
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
3977
	int need_datasync = 0;
3978 3979
	uid_t i_uid;
	gid_t i_gid;
3980 3981 3982

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3983
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3984
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3985

3986
	ext4_get_inode_flags(ei);
3987
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3988 3989
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
3990
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3991 3992
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3993 3994 3995 3996
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3997
		if (!ei->i_dtime) {
3998
			raw_inode->i_uid_high =
3999
				cpu_to_le16(high_16_bits(i_uid));
4000
			raw_inode->i_gid_high =
4001
				cpu_to_le16(high_16_bits(i_gid));
4002 4003 4004 4005 4006
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4007 4008
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4009 4010 4011 4012
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4013 4014 4015 4016 4017 4018

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4019 4020
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4021
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4022
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4023 4024
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4025 4026
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4027
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4028 4029 4030 4031
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4047
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4048
			ext4_handle_sync(handle);
4049
			err = ext4_handle_dirty_super(handle, sb);
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4064
	} else if (!ext4_has_inline_data(inode)) {
4065 4066
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4067
	}
4068

4069 4070 4071 4072 4073
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4074
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4075 4076
	}

4077 4078
	ext4_inode_csum_set(inode, raw_inode, ei);

4079
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4080
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4081 4082
	if (!err)
		err = rc;
4083
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4084

4085
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4086
out_brelse:
4087
	brelse(bh);
4088
	ext4_std_error(inode->i_sb, err);
4089 4090 4091 4092
	return err;
}

/*
4093
 * ext4_write_inode()
4094 4095 4096 4097 4098
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4099
 *   transaction to commit.
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4110
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4127
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4128
{
4129 4130
	int err;

4131 4132 4133
	if (current->flags & PF_MEMALLOC)
		return 0;

4134 4135 4136 4137 4138 4139
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4140

4141
		if (wbc->sync_mode != WB_SYNC_ALL)
4142 4143 4144 4145 4146
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4147

4148
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4149 4150
		if (err)
			return err;
4151
		if (wbc->sync_mode == WB_SYNC_ALL)
4152 4153
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4154 4155
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4156 4157
			err = -EIO;
		}
4158
		brelse(iloc.bh);
4159 4160
	}
	return err;
4161 4162
}

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4204
/*
4205
 * ext4_setattr()
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4219 4220 4221 4222 4223 4224 4225 4226
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4227
 */
4228
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4229 4230 4231
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4232
	int orphan = 0;
4233 4234 4235 4236 4237 4238
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4239
	if (is_quota_modification(inode, attr))
4240
		dquot_initialize(inode);
4241 4242
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4243 4244 4245 4246
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4247 4248 4249
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4250 4251 4252 4253
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4254
		error = dquot_transfer(inode, attr);
4255
		if (error) {
4256
			ext4_journal_stop(handle);
4257 4258 4259 4260 4261 4262 4263 4264
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4265 4266
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4267 4268
	}

4269
	if (attr->ia_valid & ATTR_SIZE) {
4270

4271
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4272 4273
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4274 4275
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4276 4277 4278
		}
	}

4279
	if (S_ISREG(inode->i_mode) &&
4280
	    attr->ia_valid & ATTR_SIZE &&
4281
	    (attr->ia_size < inode->i_size)) {
4282 4283
		handle_t *handle;

4284
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4285 4286 4287 4288
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4289 4290 4291 4292
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4293 4294
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4295 4296
		if (!error)
			error = rc;
4297
		ext4_journal_stop(handle);
4298 4299 4300 4301 4302 4303

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4304 4305
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4306 4307 4308 4309 4310
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4311
				orphan = 0;
4312 4313 4314 4315
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4316 4317
	}

4318
	if (attr->ia_valid & ATTR_SIZE) {
4319 4320 4321 4322 4323 4324 4325 4326 4327
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4328
			if (orphan) {
4329 4330 4331 4332 4333 4334
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4335
			}
4336 4337 4338 4339 4340
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4341
		}
4342
		ext4_truncate(inode);
4343
	}
4344

C
Christoph Hellwig 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4354
	if (orphan && inode->i_nlink)
4355
		ext4_orphan_del(NULL, inode);
4356 4357

	if (!rc && (ia_valid & ATTR_MODE))
4358
		rc = ext4_acl_chmod(inode);
4359 4360

err_out:
4361
	ext4_std_error(inode->i_sb, error);
4362 4363 4364 4365 4366
	if (!error)
		error = rc;
	return error;
}

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4386 4387
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4388 4389 4390 4391

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4392

4393 4394
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4395
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4396
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4397
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4398
}
4399

4400
/*
4401 4402 4403
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4404
 *
4405
 * If datablocks are discontiguous, they are possible to spread over
4406
 * different block groups too. If they are contiguous, with flexbg,
4407
 * they could still across block group boundary.
4408
 *
4409 4410
 * Also account for superblock, inode, quota and xattr blocks
 */
4411
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4412
{
4413 4414
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4441 4442
	if (groups > ngroups)
		groups = ngroups;
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4456
 * Calculate the total number of credits to reserve to fit
4457 4458
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4459
 *
4460
 * This could be called via ext4_write_begin()
4461
 *
4462
 * We need to consider the worse case, when
4463
 * one new block per extent.
4464
 */
A
Alex Tomas 已提交
4465
int ext4_writepage_trans_blocks(struct inode *inode)
4466
{
4467
	int bpp = ext4_journal_blocks_per_page(inode);
4468 4469
	int ret;

4470
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4471

4472
	/* Account for data blocks for journalled mode */
4473
	if (ext4_should_journal_data(inode))
4474
		ret += bpp;
4475 4476
	return ret;
}
4477 4478 4479 4480 4481

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4482
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4483 4484 4485 4486 4487 4488 4489 4490 4491
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4492
/*
4493
 * The caller must have previously called ext4_reserve_inode_write().
4494 4495
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4496
int ext4_mark_iloc_dirty(handle_t *handle,
4497
			 struct inode *inode, struct ext4_iloc *iloc)
4498 4499 4500
{
	int err = 0;

4501
	if (IS_I_VERSION(inode))
4502 4503
		inode_inc_iversion(inode);

4504 4505 4506
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4507
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4508
	err = ext4_do_update_inode(handle, inode, iloc);
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4519 4520
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4521
{
4522 4523 4524 4525 4526 4527 4528 4529 4530
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4531 4532
		}
	}
4533
	ext4_std_error(inode->i_sb, err);
4534 4535 4536
	return err;
}

4537 4538 4539 4540
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4541 4542 4543 4544
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4557 4558
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4583
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4584
{
4585
	struct ext4_iloc iloc;
4586 4587 4588
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4589 4590

	might_sleep();
4591
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4592
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4593 4594
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4595
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4609 4610
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4611 4612
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4613
					ext4_warning(inode->i_sb,
4614 4615 4616
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4617 4618
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4619 4620 4621 4622
				}
			}
		}
	}
4623
	if (!err)
4624
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4625 4626 4627 4628
	return err;
}

/*
4629
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4630 4631 4632 4633 4634
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4635
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4636 4637 4638 4639 4640 4641
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4642
void ext4_dirty_inode(struct inode *inode, int flags)
4643 4644 4645
{
	handle_t *handle;

4646
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4647 4648
	if (IS_ERR(handle))
		goto out;
4649 4650 4651

	ext4_mark_inode_dirty(handle, inode);

4652
	ext4_journal_stop(handle);
4653 4654 4655 4656 4657 4658 4659 4660
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4661
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4662 4663 4664
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4665
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4666
{
4667
	struct ext4_iloc iloc;
4668 4669 4670

	int err = 0;
	if (handle) {
4671
		err = ext4_get_inode_loc(inode, &iloc);
4672 4673
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4674
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4675
			if (!err)
4676
				err = ext4_handle_dirty_metadata(handle,
4677
								 NULL,
4678
								 iloc.bh);
4679 4680 4681
			brelse(iloc.bh);
		}
	}
4682
	ext4_std_error(inode->i_sb, err);
4683 4684 4685 4686
	return err;
}
#endif

4687
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4703
	journal = EXT4_JOURNAL(inode);
4704 4705
	if (!journal)
		return 0;
4706
	if (is_journal_aborted(journal))
4707
		return -EROFS;
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4719

4720 4721 4722 4723
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4724
	jbd2_journal_lock_updates(journal);
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4735
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4736 4737
	else {
		jbd2_journal_flush(journal);
4738
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4739
	}
4740
	ext4_set_aops(inode);
4741

4742
	jbd2_journal_unlock_updates(journal);
4743
	ext4_inode_resume_unlocked_dio(inode);
4744 4745 4746

	/* Finally we can mark the inode as dirty. */

4747
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4748 4749 4750
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4751
	err = ext4_mark_inode_dirty(handle, inode);
4752
	ext4_handle_sync(handle);
4753 4754
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4755 4756 4757

	return err;
}
4758 4759 4760 4761 4762 4763

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4764
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4765
{
4766
	struct page *page = vmf->page;
4767 4768
	loff_t size;
	unsigned long len;
4769
	int ret;
4770 4771 4772
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4773 4774 4775
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4776

4777
	sb_start_pagefault(inode->i_sb);
4778
	file_update_time(vma->vm_file);
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4789
	}
4790 4791

	lock_page(page);
4792 4793 4794 4795 4796 4797
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4798
	}
4799 4800 4801 4802 4803

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4804
	/*
4805 4806
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4807
	 */
4808
	if (page_has_buffers(page)) {
4809 4810 4811
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4812 4813 4814 4815
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4816
		}
4817
	}
4818
	unlock_page(page);
4819 4820 4821 4822 4823 4824
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
4825 4826
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
4827
	if (IS_ERR(handle)) {
4828
		ret = VM_FAULT_SIGBUS;
4829 4830 4831 4832
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
4833
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4834 4835 4836
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4837
			ext4_journal_stop(handle);
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4848
	sb_end_pagefault(inode->i_sb);
4849 4850
	return ret;
}