inode.c 139.9 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236 237 238 239 240
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
241
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242
	if (IS_ERR(handle)) {
243
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 245 246 247 248
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
249
		ext4_orphan_del(NULL, inode);
250
		sb_end_intwrite(inode->i_sb);
251 252 253 254
		goto no_delete;
	}

	if (IS_SYNC(inode))
255
		ext4_handle_sync(handle);
256
	inode->i_size = 0;
257 258
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
259
		ext4_warning(inode->i_sb,
260 261 262
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
263
	if (inode->i_blocks)
264
		ext4_truncate(inode);
265 266 267 268 269 270 271

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
272
	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 274 275 276
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
277
			ext4_warning(inode->i_sb,
278 279 280
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
281
			ext4_orphan_del(NULL, inode);
282
			sb_end_intwrite(inode->i_sb);
283 284 285 286
			goto no_delete;
		}
	}

287
	/*
288
	 * Kill off the orphan record which ext4_truncate created.
289
	 * AKPM: I think this can be inside the above `if'.
290
	 * Note that ext4_orphan_del() has to be able to cope with the
291
	 * deletion of a non-existent orphan - this is because we don't
292
	 * know if ext4_truncate() actually created an orphan record.
293 294
	 * (Well, we could do this if we need to, but heck - it works)
	 */
295 296
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
297 298 299 300 301 302 303 304

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
305
	if (ext4_mark_inode_dirty(handle, inode))
306
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
307
		ext4_clear_inode(inode);
308
	else
309 310
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
311
	sb_end_intwrite(inode->i_sb);
312 313
	return;
no_delete:
A
Al Viro 已提交
314
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 316
}

317 318
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
319
{
320
	return &EXT4_I(inode)->i_reserved_quota;
321
}
322
#endif
323

324 325
/*
 * Calculate the number of metadata blocks need to reserve
326
 * to allocate a block located at @lblock
327
 */
328
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329
{
330
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331
		return ext4_ext_calc_metadata_amount(inode, lblock);
332

333
	return ext4_ind_calc_metadata_amount(inode, lblock);
334 335
}

336 337 338 339
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
340 341
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
342 343
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 345 346
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
347
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 349
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350
			 "with only %d reserved data blocks",
351 352 353 354 355
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
356

357 358 359 360 361 362 363 364 365
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486
/*
487
 * The ext4_map_blocks() function tries to look up the requested blocks,
488
 * and returns if the blocks are already mapped.
489 490 491 492 493
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
494 495
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
496 497 498 499 500 501 502 503
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
504
 * that case, buffer head is unmapped
505 506 507
 *
 * It returns the error in case of allocation failure.
 */
508 509
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
510 511
{
	int retval;
512

513 514 515 516
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
517
	/*
518 519
	 * Try to see if we can get the block without requesting a new
	 * file system block.
520
	 */
521 522
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
523
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524 525
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
526
	} else {
527 528
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
529
	}
530 531
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
532

533
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
534 535 536 537 538 539 540 541 542 543
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
544 545 546 547
		if (ret != 0)
			return ret;
	}

548
	/* If it is only a block(s) look up */
549
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
550 551 552 553 554 555
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
556
	 * ext4_ext_get_block() returns the create = 0
557 558
	 * with buffer head unmapped.
	 */
559
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
560 561
		return retval;

562 563 564 565 566 567 568 569 570 571
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
572
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
573

574
	/*
575 576 577 578
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
579 580
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
581 582 583 584 585 586 587

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
588
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
589
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
590 591 592 593
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
594
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
595
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
596
	} else {
597
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
598

599
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600 601 602 603 604
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
605
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606
		}
607

608 609 610 611 612 613 614
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
615
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
616 617
			ext4_da_update_reserve_space(inode, retval, 1);
	}
618
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
619
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620

621 622 623 624 625 626 627 628 629
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
630 631
	}

632
	up_write((&EXT4_I(inode)->i_data_sem));
633
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
634
		int ret = check_block_validity(inode, map);
635 636 637
		if (ret != 0)
			return ret;
	}
638 639 640
	return retval;
}

641 642 643
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

644 645
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
646
{
647
	handle_t *handle = ext4_journal_current_handle();
648
	struct ext4_map_blocks map;
J
Jan Kara 已提交
649
	int ret = 0, started = 0;
650
	int dio_credits;
651

T
Tao Ma 已提交
652 653 654
	if (ext4_has_inline_data(inode))
		return -ERANGE;

655 656 657
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

658
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
659
		/* Direct IO write... */
660 661 662
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
663
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
664
		if (IS_ERR(handle)) {
665
			ret = PTR_ERR(handle);
666
			return ret;
667
		}
J
Jan Kara 已提交
668
		started = 1;
669 670
	}

671
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
672
	if (ret > 0) {
673 674 675
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
676
		ret = 0;
677
	}
J
Jan Kara 已提交
678 679
	if (started)
		ext4_journal_stop(handle);
680 681 682
	return ret;
}

683 684 685 686 687 688 689
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

690 691 692
/*
 * `handle' can be NULL if create is zero
 */
693
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
694
				ext4_lblk_t block, int create, int *errp)
695
{
696 697
	struct ext4_map_blocks map;
	struct buffer_head *bh;
698 699 700 701
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

702 703 704 705
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
706

707 708 709
	/* ensure we send some value back into *errp */
	*errp = 0;

710 711 712 713 714 715 716 717 718
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
719
	}
720 721 722
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
723

724 725 726 727 728 729 730 731 732 733 734 735 736
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
737
		}
738 739 740 741 742 743 744
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
745
	}
746 747 748 749 750 751
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
752 753
}

754
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
755
			       ext4_lblk_t block, int create, int *err)
756
{
757
	struct buffer_head *bh;
758

759
	bh = ext4_getblk(handle, inode, block, create, err);
760 761 762 763
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
764
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
765 766 767 768 769 770 771 772
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

773 774 775 776 777 778 779
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
780 781 782 783 784 785 786
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

787 788
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
789
	     block_start = block_end, bh = next) {
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
807
 * close off a transaction and start a new one between the ext4_get_block()
808
 * and the commit_write().  So doing the jbd2_journal_start at the start of
809 810
 * prepare_write() is the right place.
 *
811 812
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
813 814 815 816
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
817
 * By accident, ext4 can be reentered when a transaction is open via
818 819 820 821 822 823
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
824
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
825 826 827 828
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
829 830
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
831
{
832 833 834
	int dirty = buffer_dirty(bh);
	int ret;

835 836
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
837
	/*
C
Christoph Hellwig 已提交
838
	 * __block_write_begin() could have dirtied some buffers. Clean
839 840
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
841
	 * by __block_write_begin() isn't a real problem here as we clear
842 843 844 845 846 847 848 849 850
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
851 852
}

853 854
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
855
static int ext4_write_begin(struct file *file, struct address_space *mapping,
856 857
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
858
{
859
	struct inode *inode = mapping->host;
860
	int ret, needed_blocks;
861 862
	handle_t *handle;
	int retries = 0;
863
	struct page *page;
864
	pgoff_t index;
865
	unsigned from, to;
N
Nick Piggin 已提交
866

867
	trace_ext4_write_begin(inode, pos, len, flags);
868 869 870 871 872
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
873
	index = pos >> PAGE_CACHE_SHIFT;
874 875
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
876

877 878 879 880 881 882 883 884 885 886 887
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
			goto out;
		if (ret == 1) {
			ret = 0;
			goto out;
		}
	}

888
retry:
889 890 891 892
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
893
	}
894

895 896 897 898
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

899
	page = grab_cache_page_write_begin(mapping, index, flags);
900 901 902 903 904
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
905

906 907
	*pagep = page;

908
	if (ext4_should_dioread_nolock(inode))
909
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
910
	else
911
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
912 913

	if (!ret && ext4_should_journal_data(inode)) {
914 915 916
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
917
	}
N
Nick Piggin 已提交
918 919

	if (ret) {
920 921
		unlock_page(page);
		page_cache_release(page);
922
		/*
923
		 * __block_write_begin may have instantiated a few blocks
924 925
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
926 927 928
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
929
		 */
930
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
931 932 933 934
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
935
			ext4_truncate_failed_write(inode);
936
			/*
937
			 * If truncate failed early the inode might
938 939 940 941 942 943 944
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
945 946
	}

947
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
948
		goto retry;
949
out:
950 951 952
	return ret;
}

N
Nick Piggin 已提交
953 954
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
955 956 957 958
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
959
	return ext4_handle_dirty_metadata(handle, NULL, bh);
960 961
}

962
static int ext4_generic_write_end(struct file *file,
963 964 965
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
966 967 968 969 970
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

971 972 973 974 975 976
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1013 1014 1015 1016
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1017
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018 1019
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1020
static int ext4_ordered_write_end(struct file *file,
1021 1022 1023
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1024
{
1025
	handle_t *handle = ext4_journal_current_handle();
1026
	struct inode *inode = mapping->host;
1027 1028
	int ret = 0, ret2;

1029
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1030
	ret = ext4_jbd2_file_inode(handle, inode);
1031 1032

	if (ret == 0) {
1033
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1034
							page, fsdata);
1035
		copied = ret2;
1036
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1037 1038 1039 1040 1041
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1042 1043
		if (ret2 < 0)
			ret = ret2;
1044 1045 1046
	} else {
		unlock_page(page);
		page_cache_release(page);
1047
	}
1048

1049
	ret2 = ext4_journal_stop(handle);
1050 1051
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1052

1053
	if (pos + len > inode->i_size) {
1054
		ext4_truncate_failed_write(inode);
1055
		/*
1056
		 * If truncate failed early the inode might still be
1057 1058 1059 1060 1061 1062 1063 1064
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1065
	return ret ? ret : copied;
1066 1067
}

N
Nick Piggin 已提交
1068
static int ext4_writeback_write_end(struct file *file,
1069 1070 1071
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1072
{
1073
	handle_t *handle = ext4_journal_current_handle();
1074
	struct inode *inode = mapping->host;
1075 1076
	int ret = 0, ret2;

1077
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1078
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1079
							page, fsdata);
1080
	copied = ret2;
1081
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1082 1083 1084 1085 1086 1087
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1088 1089
	if (ret2 < 0)
		ret = ret2;
1090

1091
	ret2 = ext4_journal_stop(handle);
1092 1093
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1094

1095
	if (pos + len > inode->i_size) {
1096
		ext4_truncate_failed_write(inode);
1097
		/*
1098
		 * If truncate failed early the inode might still be
1099 1100 1101 1102 1103 1104 1105
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1106
	return ret ? ret : copied;
1107 1108
}

N
Nick Piggin 已提交
1109
static int ext4_journalled_write_end(struct file *file,
1110 1111 1112
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1113
{
1114
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1115
	struct inode *inode = mapping->host;
1116 1117
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1118
	unsigned from, to;
1119
	loff_t new_i_size;
1120

1121
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1122 1123 1124
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1125 1126
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1127 1128 1129 1130 1131
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1132

1133 1134
	ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
				     to, &partial, write_end_fn);
1135 1136
	if (!partial)
		SetPageUptodate(page);
1137 1138
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1139
		i_size_write(inode, pos+copied);
1140
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1141
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1142 1143
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1144
		ret2 = ext4_mark_inode_dirty(handle, inode);
1145 1146 1147
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1148

1149
	unlock_page(page);
1150
	page_cache_release(page);
1151
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1152 1153 1154 1155 1156 1157
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1158
	ret2 = ext4_journal_stop(handle);
1159 1160
	if (!ret)
		ret = ret2;
1161
	if (pos + len > inode->i_size) {
1162
		ext4_truncate_failed_write(inode);
1163
		/*
1164
		 * If truncate failed early the inode might still be
1165 1166 1167 1168 1169 1170
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1171 1172

	return ret ? ret : copied;
1173
}
1174

1175
/*
1176
 * Reserve a single cluster located at lblock
1177
 */
1178
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1179
{
A
Aneesh Kumar K.V 已提交
1180
	int retries = 0;
1181
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1182
	struct ext4_inode_info *ei = EXT4_I(inode);
1183
	unsigned int md_needed;
1184
	int ret;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1196 1197 1198 1199 1200 1201

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1202
repeat:
1203
	spin_lock(&ei->i_block_reservation_lock);
1204 1205 1206 1207 1208 1209
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1210 1211
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1212
	trace_ext4_da_reserve_space(inode, md_needed);
1213

1214 1215 1216 1217
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1218
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1219 1220 1221
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1222 1223 1224 1225
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1226
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1227 1228
		return -ENOSPC;
	}
1229
	ei->i_reserved_data_blocks++;
1230 1231
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1232

1233 1234 1235
	return 0;       /* success */
}

1236
static void ext4_da_release_space(struct inode *inode, int to_free)
1237 1238
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1239
	struct ext4_inode_info *ei = EXT4_I(inode);
1240

1241 1242 1243
	if (!to_free)
		return;		/* Nothing to release, exit */

1244
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1245

L
Li Zefan 已提交
1246
	trace_ext4_da_release_space(inode, to_free);
1247
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1248
		/*
1249 1250 1251 1252
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1253
		 */
1254 1255
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1256
			 "data blocks", inode->i_ino, to_free,
1257 1258 1259
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1260
	}
1261
	ei->i_reserved_data_blocks -= to_free;
1262

1263 1264 1265 1266 1267
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1268 1269
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1270
		 */
1271
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1272
				   ei->i_reserved_meta_blocks);
1273
		ei->i_reserved_meta_blocks = 0;
1274
		ei->i_da_metadata_calc_len = 0;
1275
	}
1276

1277
	/* update fs dirty data blocks counter */
1278
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1279 1280

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1281

1282
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1283 1284 1285
}

static void ext4_da_page_release_reservation(struct page *page,
1286
					     unsigned long offset)
1287 1288 1289 1290
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1291 1292 1293
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1294
	ext4_fsblk_t lblk;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1307

1308 1309 1310 1311 1312
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1313 1314 1315 1316 1317 1318 1319
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1320
		    !ext4_find_delalloc_cluster(inode, lblk))
1321 1322 1323 1324
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1325
}
1326

1327 1328 1329 1330 1331 1332
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1333
 * them with writepage() call back
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1344 1345
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1346
{
1347 1348 1349 1350 1351
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1352
	loff_t size = i_size_read(inode);
1353 1354
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1355
	int journal_data = ext4_should_journal_data(inode);
1356
	sector_t pblock = 0, cur_logical = 0;
1357
	struct ext4_io_submit io_submit;
1358 1359

	BUG_ON(mpd->next_page <= mpd->first_page);
1360
	memset(&io_submit, 0, sizeof(io_submit));
1361 1362 1363
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1364
	 * If we look at mpd->b_blocknr we would only be looking
1365 1366
	 * at the currently mapped buffer_heads.
	 */
1367 1368 1369
	index = mpd->first_page;
	end = mpd->next_page - 1;

1370
	pagevec_init(&pvec, 0);
1371
	while (index <= end) {
1372
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1373 1374 1375
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1376
			int commit_write = 0, skip_page = 0;
1377 1378
			struct page *page = pvec.pages[i];

1379 1380 1381
			index = page->index;
			if (index > end)
				break;
1382 1383 1384 1385 1386

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1387 1388 1389 1390 1391 1392
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1393 1394 1395 1396 1397
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1398
			/*
1399 1400
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1401
			 * __block_write_begin.  If this fails,
1402
			 * skip the page and move on.
1403
			 */
1404
			if (!page_has_buffers(page)) {
1405
				if (__block_write_begin(page, 0, len,
1406
						noalloc_get_block_write)) {
1407
				skip_page:
1408 1409 1410 1411 1412
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1413

1414 1415
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1416
			do {
1417
				if (!bh)
1418
					goto skip_page;
1419 1420 1421
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1422 1423 1424 1425
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1426 1427 1428 1429 1430 1431 1432
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1433

1434 1435 1436 1437 1438
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1439
					skip_page = 1;
1440 1441
				bh = bh->b_this_page;
				block_start += bh->b_size;
1442 1443
				cur_logical++;
				pblock++;
1444 1445
			} while (bh != page_bufs);

1446 1447
			if (skip_page)
				goto skip_page;
1448 1449 1450 1451 1452

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1453
			clear_page_dirty_for_io(page);
1454 1455 1456 1457 1458 1459
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1460
				err = __ext4_journalled_writepage(page, len);
1461
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1462 1463
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1464 1465 1466 1467 1468 1469
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1470 1471
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1472 1473

			if (!err)
1474
				mpd->pages_written++;
1475 1476 1477 1478 1479 1480 1481 1482 1483
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1484
	ext4_io_submit(&io_submit);
1485 1486 1487
	return ret;
}

1488
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1489 1490 1491 1492 1493 1494
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1495
	ext4_lblk_t start, last;
1496

1497 1498
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1499 1500 1501 1502 1503

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1504
	pagevec_init(&pvec, 0);
1505 1506 1507 1508 1509 1510
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1511
			if (page->index > end)
1512 1513 1514 1515 1516 1517 1518
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1519 1520
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1521 1522 1523 1524
	}
	return;
}

1525 1526 1527
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1528 1529 1530
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1531 1532
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1533 1534
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1535 1536
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1537
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1538 1539
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1540 1541 1542 1543
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1544
	       EXT4_I(inode)->i_reserved_meta_blocks);
1545 1546 1547
	return;
}

1548
/*
1549 1550
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1551
 *
1552
 * @mpd - bh describing space
1553 1554 1555 1556
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1557
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1558
{
1559
	int err, blks, get_blocks_flags;
1560
	struct ext4_map_blocks map, *mapp = NULL;
1561 1562 1563 1564
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1565 1566

	/*
1567 1568
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1569
	 */
1570 1571 1572 1573 1574
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1575 1576 1577 1578

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1579
	/*
1580
	 * Call ext4_map_blocks() to allocate any delayed allocation
1581 1582 1583 1584 1585 1586 1587 1588
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1589
	 * want to change *many* call functions, so ext4_map_blocks()
1590
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1591 1592 1593 1594 1595
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1596
	 */
1597 1598
	map.m_lblk = next;
	map.m_len = max_blocks;
1599
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1600 1601
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1602
	if (mpd->b_state & (1 << BH_Delay))
1603 1604
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1605
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1606
	if (blks < 0) {
1607 1608
		struct super_block *sb = mpd->inode->i_sb;

1609
		err = blks;
1610
		/*
1611
		 * If get block returns EAGAIN or ENOSPC and there
1612 1613
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1614 1615
		 */
		if (err == -EAGAIN)
1616
			goto submit_io;
1617

1618
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1619
			mpd->retval = err;
1620
			goto submit_io;
1621 1622
		}

1623
		/*
1624 1625 1626 1627 1628
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1629
		 */
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1641
		}
1642
		/* invalidate all the pages */
1643
		ext4_da_block_invalidatepages(mpd);
1644 1645 1646

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1647
		return;
1648
	}
1649 1650
	BUG_ON(blks == 0);

1651
	mapp = &map;
1652 1653 1654
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1655

1656 1657
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1658 1659 1660
	}

	/*
1661
	 * Update on-disk size along with block allocation.
1662 1663 1664 1665 1666 1667
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1668 1669 1670 1671 1672
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1673 1674
	}

1675
submit_io:
1676
	mpage_da_submit_io(mpd, mapp);
1677
	mpd->io_done = 1;
1678 1679
}

1680 1681
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1693 1694
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1695 1696
{
	sector_t next;
1697
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1698

1699 1700 1701 1702
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1703
	 * ext4_map_blocks() multiple times in a loop
1704 1705 1706 1707
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1708
	/* check if thereserved journal credits might overflow */
1709
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1730 1731 1732
	/*
	 * First block in the extent
	 */
1733 1734 1735 1736
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1737 1738 1739
		return;
	}

1740
	next = mpd->b_blocknr + nrblocks;
1741 1742 1743
	/*
	 * Can we merge the block to our big extent?
	 */
1744 1745
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1746 1747 1748
		return;
	}

1749
flush_it:
1750 1751 1752 1753
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1754
	mpage_da_map_and_submit(mpd);
1755
	return;
1756 1757
}

1758
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1759
{
1760
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1761 1762
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1807 1808 1809 1810
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
		if (retval)
			goto out_unlock;

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1827
/*
1828 1829 1830
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1831 1832 1833 1834 1835 1836 1837
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1838 1839
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1840
				  struct buffer_head *bh, int create)
1841
{
1842
	struct ext4_map_blocks map;
1843 1844 1845
	int ret = 0;

	BUG_ON(create == 0);
1846 1847 1848 1849
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1850 1851 1852 1853 1854 1855

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1856 1857
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1858
		return ret;
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1871
		set_buffer_mapped(bh);
1872 1873
	}
	return 0;
1874
}
1875

1876 1877 1878
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1879
 * callback function for block_write_begin() and block_write_full_page().
1880
 * These functions should only try to map a single block at a time.
1881 1882 1883 1884 1885
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1886 1887 1888
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1889 1890
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1891 1892
				   struct buffer_head *bh_result, int create)
{
1893
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1894
	return _ext4_get_block(inode, iblock, bh_result, 0);
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1919
	ClearPageChecked(page);
1920 1921
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
1922
	ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1933 1934
	BUG_ON(!ext4_handle_valid(handle));

1935 1936
	ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
				     do_journal_get_write_access);
1937

1938 1939
	err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
				     write_end_fn);
1940 1941
	if (ret == 0)
		ret = err;
1942
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1943 1944 1945 1946
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

1947
	ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1948
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1949 1950 1951 1952
out:
	return ret;
}

1953
/*
1954 1955 1956 1957
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1958
 * we are writing back data modified via mmap(), no one guarantees in which
1959 1960 1961 1962
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1963 1964 1965
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1966
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1967
 *   - grab_page_cache when doing write_begin (have journal handle)
1968 1969 1970 1971 1972 1973 1974 1975 1976
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1977
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1993
 */
1994
static int ext4_writepage(struct page *page,
1995
			  struct writeback_control *wbc)
1996
{
T
Theodore Ts'o 已提交
1997
	int ret = 0, commit_write = 0;
1998
	loff_t size;
1999
	unsigned int len;
2000
	struct buffer_head *page_bufs = NULL;
2001 2002
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
2003
	trace_ext4_writepage(page);
2004 2005 2006 2007 2008
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2009

T
Theodore Ts'o 已提交
2010 2011
	/*
	 * If the page does not have buffers (for whatever reason),
2012
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2013 2014
	 * fails, redirty the page and move on.
	 */
2015
	if (!page_has_buffers(page)) {
2016
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2017 2018
					noalloc_get_block_write)) {
		redirty_page:
2019 2020 2021 2022
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2023 2024 2025
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
2026 2027
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2028
		/*
2029 2030 2031
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2032 2033 2034
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2035
		 */
2036 2037
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2038 2039 2040
		goto redirty_page;
	}
	if (commit_write)
2041
		/* now mark the buffer_heads as dirty and uptodate */
2042
		block_commit_write(page, 0, len);
2043

2044
	if (PageChecked(page) && ext4_should_journal_data(inode))
2045 2046 2047 2048
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2049
		return __ext4_journalled_writepage(page, len);
2050

T
Theodore Ts'o 已提交
2051
	if (buffer_uninit(page_bufs)) {
2052 2053 2054 2055
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2056 2057
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2058 2059 2060 2061

	return ret;
}

2062
/*
2063
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2064
 * calculate the total number of credits to reserve to fit
2065 2066 2067
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2068
 */
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2080
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2081 2082 2083 2084 2085
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2086

2087 2088
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2089
 * address space and accumulate pages that need writing, and call
2090 2091
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2092 2093 2094
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2095 2096
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2097
{
2098
	struct buffer_head	*bh, *head;
2099
	struct inode		*inode = mapping->host;
2100 2101 2102 2103 2104 2105
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2106

2107 2108 2109
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2110 2111 2112 2113
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2114
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2115 2116 2117 2118
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2119
	*done_index = index;
2120
	while (index <= end) {
2121
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2122 2123
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2124
			return 0;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2136 2137
			if (page->index > end)
				goto out;
2138

2139 2140
			*done_index = page->index + 1;

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2151 2152 2153
			lock_page(page);

			/*
2154 2155 2156 2157 2158 2159
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2160
			 */
2161 2162 2163 2164
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2165 2166 2167 2168
				unlock_page(page);
				continue;
			}

2169
			wait_on_page_writeback(page);
2170 2171
			BUG_ON(PageWriteback(page));

2172
			if (mpd->next_page != page->index)
2173 2174 2175 2176 2177 2178
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2179 2180
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2181
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2182 2183
				if (mpd->io_done)
					goto ret_extent_tail;
2184 2185
			} else {
				/*
2186 2187
				 * Page with regular buffer heads,
				 * just add all dirty ones
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2203 2204
						if (mpd->io_done)
							goto ret_extent_tail;
2205 2206
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2207 2208 2209 2210 2211 2212 2213 2214 2215
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2216 2217 2218 2219 2220 2221
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2222 2223 2224 2225 2226
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2227
				    wbc->sync_mode == WB_SYNC_NONE)
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2238
					goto out;
2239 2240 2241 2242 2243
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2244 2245 2246
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2247 2248 2249
out:
	pagevec_release(&pvec);
	cond_resched();
2250 2251 2252 2253
	return ret;
}


2254
static int ext4_da_writepages(struct address_space *mapping,
2255
			      struct writeback_control *wbc)
2256
{
2257 2258
	pgoff_t	index;
	int range_whole = 0;
2259
	handle_t *handle = NULL;
2260
	struct mpage_da_data mpd;
2261
	struct inode *inode = mapping->host;
2262
	int pages_written = 0;
2263
	unsigned int max_pages;
2264
	int range_cyclic, cycled = 1, io_done = 0;
2265 2266
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2267
	loff_t range_start = wbc->range_start;
2268
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2269
	pgoff_t done_index = 0;
2270
	pgoff_t end;
S
Shaohua Li 已提交
2271
	struct blk_plug plug;
2272

2273
	trace_ext4_da_writepages(inode, wbc);
2274

2275 2276 2277 2278 2279
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2280
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2281
		return 0;
2282 2283 2284 2285 2286

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2287
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2288 2289 2290 2291 2292
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2293
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2294 2295
		return -EROFS;

2296 2297
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2298

2299 2300
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2301
		index = mapping->writeback_index;
2302 2303 2304 2305 2306
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2307 2308
		end = -1;
	} else {
2309
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2310 2311
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2330 2331 2332 2333 2334 2335
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2346
retry:
2347
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2348 2349
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2350
	blk_start_plug(&plug);
2351
	while (!ret && wbc->nr_to_write > 0) {
2352 2353 2354 2355 2356 2357 2358 2359

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2360
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2361

2362 2363 2364 2365
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2366
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2367
			       "%ld pages, ino %lu; err %d", __func__,
2368
				wbc->nr_to_write, inode->i_ino, ret);
2369
			blk_finish_plug(&plug);
2370 2371
			goto out_writepages;
		}
2372 2373

		/*
2374
		 * Now call write_cache_pages_da() to find the next
2375
		 * contiguous region of logical blocks that need
2376
		 * blocks to be allocated by ext4 and submit them.
2377
		 */
2378
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2379
		/*
2380
		 * If we have a contiguous extent of pages and we
2381 2382 2383 2384
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2385
			mpage_da_map_and_submit(&mpd);
2386 2387
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2388
		trace_ext4_da_write_pages(inode, &mpd);
2389
		wbc->nr_to_write -= mpd.pages_written;
2390

2391
		ext4_journal_stop(handle);
2392

2393
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2394 2395 2396 2397
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2398
			jbd2_journal_force_commit_nested(sbi->s_journal);
2399 2400
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2401
			/*
2402 2403 2404
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2405
			 */
2406
			pages_written += mpd.pages_written;
2407
			ret = mpd.retval;
2408
			io_done = 1;
2409
		} else if (wbc->nr_to_write)
2410 2411 2412 2413 2414 2415
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2416
	}
S
Shaohua Li 已提交
2417
	blk_finish_plug(&plug);
2418 2419 2420 2421 2422 2423 2424
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2425 2426

	/* Update index */
2427
	wbc->range_cyclic = range_cyclic;
2428 2429 2430 2431 2432
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2433
		mapping->writeback_index = done_index;
2434

2435
out_writepages:
2436
	wbc->nr_to_write -= nr_to_writebump;
2437
	wbc->range_start = range_start;
2438
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2439
	return ret;
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2451
	 * counters can get slightly wrong with percpu_counter_batch getting
2452 2453 2454 2455
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2456 2457 2458
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2469
	if (2 * free_blocks < 3 * dirty_blocks ||
2470
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2471
		/*
2472 2473
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2474 2475 2476 2477 2478 2479
		 */
		return 1;
	}
	return 0;
}

2480
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2481 2482
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2483
{
2484
	int ret, retries = 0;
2485 2486 2487 2488 2489 2490
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2491 2492 2493 2494 2495 2496 2497

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2498
	trace_ext4_da_write_begin(inode, pos, len, flags);
2499
retry:
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2511 2512 2513
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2514

2515
	page = grab_cache_page_write_begin(mapping, index, flags);
2516 2517 2518 2519 2520
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2521 2522
	*pagep = page;

2523
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2524 2525 2526 2527
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2528 2529 2530 2531 2532 2533
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2534
			ext4_truncate_failed_write(inode);
2535 2536
	}

2537 2538
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2539 2540 2541 2542
out:
	return ret;
}

2543 2544 2545 2546 2547
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2548
					    unsigned long offset)
2549 2550 2551 2552 2553 2554 2555 2556 2557
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2558
	for (i = 0; i < idx; i++)
2559 2560
		bh = bh->b_this_page;

2561
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2562 2563 2564 2565
		return 0;
	return 1;
}

2566
static int ext4_da_write_end(struct file *file,
2567 2568 2569
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2570 2571 2572 2573 2574
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2575
	unsigned long start, end;
2576 2577 2578
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2579 2580
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2581 2582
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2583
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2584 2585
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2586
		default:
2587 2588 2589
			BUG();
		}
	}
2590

2591
	trace_ext4_da_write_end(inode, pos, len, copied);
2592
	start = pos & (PAGE_CACHE_SIZE - 1);
2593
	end = start + copied - 1;
2594 2595 2596 2597 2598 2599 2600 2601

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2602
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2603 2604
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
2605
			if (new_i_size > EXT4_I(inode)->i_disksize)
2606 2607
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2608 2609 2610 2611 2612
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2613
		}
2614
	}
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2636
	ext4_da_page_release_reservation(page, offset);
2637 2638 2639 2640 2641 2642 2643

out:
	ext4_invalidatepage(page, offset);

	return;
}

2644 2645 2646 2647 2648
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2649 2650
	trace_ext4_alloc_da_blocks(inode);

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2661
	 *
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2674
	 * the pages by calling redirty_page_for_writepage() but that
2675 2676
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2677
	 * simplifying them because we wouldn't actually intend to
2678 2679 2680
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2681
	 *
2682 2683 2684 2685 2686 2687
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2688

2689 2690 2691 2692 2693
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2694
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2695 2696 2697 2698 2699 2700 2701 2702
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2703
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2704 2705 2706 2707 2708
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2709 2710 2711 2712 2713 2714
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2725 2726
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2738
		 * NB. EXT4_STATE_JDATA is not set on files other than
2739 2740 2741 2742 2743 2744
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2745
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2746
		journal = EXT4_JOURNAL(inode);
2747 2748 2749
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2750 2751 2752 2753 2754

		if (err)
			return 0;
	}

2755
	return generic_block_bmap(mapping, block, ext4_get_block);
2756 2757
}

2758
static int ext4_readpage(struct file *file, struct page *page)
2759
{
T
Tao Ma 已提交
2760 2761 2762
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2763
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2764 2765 2766 2767 2768 2769 2770 2771

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2772 2773 2774
}

static int
2775
ext4_readpages(struct file *file, struct address_space *mapping,
2776 2777
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2778 2779 2780 2781 2782 2783
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2784
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2785 2786
}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2807
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2808
{
2809
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2810

2811 2812
	trace_ext4_invalidatepage(page, offset);

2813 2814 2815 2816 2817
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2818 2819 2820 2821 2822 2823
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2824 2825 2826 2827
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2828 2829
}

2830
static int ext4_releasepage(struct page *page, gfp_t wait)
2831
{
2832
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2833

2834 2835
	trace_ext4_releasepage(page);

2836 2837 2838
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2839 2840 2841 2842
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2843 2844
}

2845 2846 2847 2848 2849
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2850
int ext4_get_block_write(struct inode *inode, sector_t iblock,
2851 2852
		   struct buffer_head *bh_result, int create)
{
2853
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2854
		   inode->i_ino, create);
2855 2856
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2857 2858
}

2859
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2860
		   struct buffer_head *bh_result, int create)
2861
{
2862 2863 2864 2865
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2866 2867
}

2868
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2869 2870
			    ssize_t size, void *private, int ret,
			    bool is_async)
2871
{
2872
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2873 2874
        ext4_io_end_t *io_end = iocb->private;

2875 2876
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2877
		goto out;
2878

2879
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2880
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2881 2882 2883
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2884 2885
	iocb->private = NULL;

2886
	/* if not aio dio with unwritten extents, just free io and return */
2887
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2888
		ext4_free_io_end(io_end);
2889 2890 2891
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2892
		inode_dio_done(inode);
2893
		return;
2894 2895
	}

2896 2897
	io_end->offset = offset;
	io_end->size = size;
2898 2899 2900 2901
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2902

2903
	ext4_add_complete_io(io_end);
2904
}
2905

2906 2907 2908 2909 2910 2911 2912 2913 2914
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct inode *inode;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2915 2916 2917
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2918 2919 2920 2921
		ext4_free_io_end(io_end);
		goto out;
	}

2922 2923 2924 2925
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2926
	inode = io_end->inode;
2927
	ext4_set_io_unwritten_flag(inode, io_end);
2928
	ext4_add_complete_io(io_end);
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2946
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2965 2966 2967 2968 2969
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2970
 * For holes, we fallocate those blocks, mark them as uninitialized
2971
 * If those blocks were preallocated, we mark sure they are split, but
2972
 * still keep the range to write as uninitialized.
2973
 *
2974
 * The unwritten extents will be converted to written when DIO is completed.
2975
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2976
 * set up an end_io call back function, which will do the conversion
2977
 * when async direct IO completed.
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2992 2993 2994
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2995
	loff_t final_size = offset + count;
2996

2997 2998 2999
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3000

3001
	BUG_ON(iocb->private == NULL);
3002

3003 3004
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3005

3006 3007 3008 3009 3010
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3038
		}
3039 3040
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3041
		/*
3042 3043 3044 3045
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3046
		 */
3047 3048
		ext4_inode_aio_set(inode, io_end);
	}
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3096

3097 3098 3099 3100 3101 3102
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3103
	}
3104

3105
	return ret;
3106 3107 3108 3109 3110 3111 3112 3113
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3114
	ssize_t ret;
3115

3116 3117 3118 3119 3120 3121
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3122 3123 3124 3125
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3126
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3127
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3128 3129 3130 3131 3132 3133
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3134 3135
}

3136
/*
3137
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3149
static int ext4_journalled_set_page_dirty(struct page *page)
3150 3151 3152 3153 3154
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3155
static const struct address_space_operations ext4_ordered_aops = {
3156 3157
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3158
	.writepage		= ext4_writepage,
3159 3160 3161 3162 3163 3164 3165 3166
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3167
	.error_remove_page	= generic_error_remove_page,
3168 3169
};

3170
static const struct address_space_operations ext4_writeback_aops = {
3171 3172
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3173
	.writepage		= ext4_writepage,
3174 3175 3176 3177 3178 3179 3180 3181
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3182
	.error_remove_page	= generic_error_remove_page,
3183 3184
};

3185
static const struct address_space_operations ext4_journalled_aops = {
3186 3187
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3188
	.writepage		= ext4_writepage,
3189 3190 3191 3192 3193 3194
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3195
	.direct_IO		= ext4_direct_IO,
3196
	.is_partially_uptodate  = block_is_partially_uptodate,
3197
	.error_remove_page	= generic_error_remove_page,
3198 3199
};

3200
static const struct address_space_operations ext4_da_aops = {
3201 3202
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3203
	.writepage		= ext4_writepage,
3204 3205 3206 3207 3208 3209 3210 3211 3212
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3213
	.error_remove_page	= generic_error_remove_page,
3214 3215
};

3216
void ext4_set_aops(struct inode *inode)
3217
{
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3232
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3233 3234 3235 3236
		break;
	default:
		BUG();
	}
3237 3238
}

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3259
		return -ENOMEM;
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3288
 * from:   The starting byte offset (from the beginning of the file)
3289 3290 3291 3292 3293 3294 3295
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3296
 *         for updating the contents of a page whose blocks may
3297 3298 3299
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3300
 * Returns zero on success or negative on failure.
3301
 */
E
Eric Sandeen 已提交
3302
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3328 3329
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3342 3343
		unsigned int end_of_block, range_to_discard;

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3429
		} else
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3453 3454 3455 3456 3457 3458 3459 3460
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3461
 * Returns: 0 on success or negative on failure
3462 3463 3464 3465 3466 3467
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3468
		return -EOPNOTSUPP;
3469 3470 3471

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3472
		return -EOPNOTSUPP;
3473 3474
	}

3475 3476
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3477
		return -EOPNOTSUPP;
3478 3479
	}

3480 3481 3482
	return ext4_ext_punch_hole(file, offset, length);
}

3483
/*
3484
 * ext4_truncate()
3485
 *
3486 3487
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3488 3489
 * simultaneously on behalf of the same inode.
 *
3490
 * As we work through the truncate and commit bits of it to the journal there
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3504
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3505
 * that this inode's truncate did not complete and it will again call
3506 3507
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3508
 * that's fine - as long as they are linked from the inode, the post-crash
3509
 * ext4_truncate() run will find them and release them.
3510
 */
3511
void ext4_truncate(struct inode *inode)
3512
{
3513 3514
	trace_ext4_truncate_enter(inode);

3515
	if (!ext4_can_truncate(inode))
3516 3517
		return;

3518
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3519

3520
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3521
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3522

3523
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3524
		ext4_ext_truncate(inode);
3525 3526
	else
		ext4_ind_truncate(inode);
3527

3528
	trace_ext4_truncate_exit(inode);
3529 3530 3531
}

/*
3532
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3533 3534 3535 3536
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3537 3538
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3539
{
3540 3541 3542 3543 3544 3545
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3546
	iloc->bh = NULL;
3547 3548
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3549

3550 3551 3552
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3553 3554
		return -EIO;

3555 3556 3557
	/*
	 * Figure out the offset within the block group inode table
	 */
3558
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3559 3560 3561 3562 3563 3564
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3565
	if (!bh) {
3566 3567
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3568 3569 3570 3571
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3595
			int i, start;
3596

3597
			start = inode_offset & ~(inodes_per_block - 1);
3598

3599 3600
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3613
			for (i = start; i < start + inodes_per_block; i++) {
3614 3615
				if (i == inode_offset)
					continue;
3616
				if (ext4_test_bit(i, bitmap_bh->b_data))
3617 3618 3619
					break;
			}
			brelse(bitmap_bh);
3620
			if (i == start + inodes_per_block) {
3621 3622 3623 3624 3625 3626 3627 3628 3629
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3630 3631 3632 3633 3634 3635 3636 3637 3638
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3639
			/* s_inode_readahead_blks is always a power of 2 */
3640 3641 3642 3643 3644
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3645
			if (ext4_has_group_desc_csum(sb))
3646
				num -= ext4_itable_unused_count(sb, gdp);
3647 3648 3649 3650 3651 3652 3653
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3654 3655 3656 3657 3658
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3659
		trace_ext4_load_inode(inode);
3660 3661
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3662
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3663 3664
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3665 3666
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3667 3668 3669 3670 3671 3672 3673 3674 3675
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3676
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3677 3678
{
	/* We have all inode data except xattrs in memory here. */
3679
	return __ext4_get_inode_loc(inode, iloc,
3680
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3681 3682
}

3683
void ext4_set_inode_flags(struct inode *inode)
3684
{
3685
	unsigned int flags = EXT4_I(inode)->i_flags;
3686 3687

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3688
	if (flags & EXT4_SYNC_FL)
3689
		inode->i_flags |= S_SYNC;
3690
	if (flags & EXT4_APPEND_FL)
3691
		inode->i_flags |= S_APPEND;
3692
	if (flags & EXT4_IMMUTABLE_FL)
3693
		inode->i_flags |= S_IMMUTABLE;
3694
	if (flags & EXT4_NOATIME_FL)
3695
		inode->i_flags |= S_NOATIME;
3696
	if (flags & EXT4_DIRSYNC_FL)
3697 3698 3699
		inode->i_flags |= S_DIRSYNC;
}

3700 3701 3702
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3723
}
3724

3725
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3726
				  struct ext4_inode_info *ei)
3727 3728
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3729 3730
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3731 3732 3733 3734 3735 3736

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3737
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3738 3739 3740 3741 3742
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3743 3744 3745 3746
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3747

3748 3749 3750 3751 3752 3753
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3754
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3755
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3756
		ext4_find_inline_data_nolock(inode);
3757 3758
	} else
		EXT4_I(inode)->i_inline_off = 0;
3759 3760
}

3761
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3762
{
3763 3764
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3765 3766
	struct ext4_inode_info *ei;
	struct inode *inode;
3767
	journal_t *journal = EXT4_SB(sb)->s_journal;
3768
	long ret;
3769
	int block;
3770 3771
	uid_t i_uid;
	gid_t i_gid;
3772

3773 3774 3775 3776 3777 3778 3779
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3780
	iloc.bh = NULL;
3781

3782 3783
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3784
		goto bad_inode;
3785
	raw_inode = ext4_raw_inode(&iloc);
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3819
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3820 3821
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3822
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3823 3824
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3825
	}
3826 3827
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3828
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3829

3830
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3831
	ei->i_inline_off = 0;
3832 3833 3834 3835 3836 3837 3838 3839 3840
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3841
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3842
			/* this inode is deleted */
3843
			ret = -ESTALE;
3844 3845 3846 3847 3848 3849 3850 3851
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3852
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3853
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3854
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3855 3856
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3857
	inode->i_size = ext4_isize(raw_inode);
3858
	ei->i_disksize = inode->i_size;
3859 3860 3861
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3862 3863
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3864
	ei->i_last_alloc_group = ~0;
3865 3866 3867 3868
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3869
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3870 3871 3872
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3884
		read_lock(&journal->j_state_lock);
3885 3886 3887 3888 3889 3890 3891 3892
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3893
		read_unlock(&journal->j_state_lock);
3894 3895 3896 3897
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3898
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3899 3900
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3901 3902
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3903
		} else {
3904
			ext4_iget_extra_inode(inode, raw_inode, ei);
3905
		}
3906
	}
3907

K
Kalpak Shah 已提交
3908 3909 3910 3911 3912
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3913 3914 3915 3916 3917 3918 3919
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3920
	ret = 0;
3921
	if (ei->i_file_acl &&
3922
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3923 3924
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3925 3926
		ret = -EIO;
		goto bad_inode;
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
3940
	}
3941
	if (ret)
3942
		goto bad_inode;
3943

3944
	if (S_ISREG(inode->i_mode)) {
3945 3946 3947
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3948
	} else if (S_ISDIR(inode->i_mode)) {
3949 3950
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3951
	} else if (S_ISLNK(inode->i_mode)) {
3952
		if (ext4_inode_is_fast_symlink(inode)) {
3953
			inode->i_op = &ext4_fast_symlink_inode_operations;
3954 3955 3956
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3957 3958
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3959
		}
3960 3961
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3962
		inode->i_op = &ext4_special_inode_operations;
3963 3964 3965 3966 3967 3968
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3969 3970
	} else {
		ret = -EIO;
3971
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3972
		goto bad_inode;
3973
	}
3974
	brelse(iloc.bh);
3975
	ext4_set_inode_flags(inode);
3976 3977
	unlock_new_inode(inode);
	return inode;
3978 3979

bad_inode:
3980
	brelse(iloc.bh);
3981 3982
	iget_failed(inode);
	return ERR_PTR(ret);
3983 3984
}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3995
		 * i_blocks can be represented in a 32 bit variable
3996 3997
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3998
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3999
		raw_inode->i_blocks_high = 0;
4000
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4001 4002 4003 4004 4005 4006
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4007 4008 4009 4010
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4011
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4012
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4013
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4014
	} else {
4015
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4016 4017 4018 4019
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4020
	}
4021
	return 0;
4022 4023
}

4024 4025 4026 4027 4028 4029 4030
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4031
static int ext4_do_update_inode(handle_t *handle,
4032
				struct inode *inode,
4033
				struct ext4_iloc *iloc)
4034
{
4035 4036
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4037 4038
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4039
	int need_datasync = 0;
4040 4041
	uid_t i_uid;
	gid_t i_gid;
4042 4043 4044

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4045
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4046
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4047

4048
	ext4_get_inode_flags(ei);
4049
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4050 4051
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4052
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4053 4054
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4055 4056 4057 4058
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4059
		if (!ei->i_dtime) {
4060
			raw_inode->i_uid_high =
4061
				cpu_to_le16(high_16_bits(i_uid));
4062
			raw_inode->i_gid_high =
4063
				cpu_to_le16(high_16_bits(i_gid));
4064 4065 4066 4067 4068
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4069 4070
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4071 4072 4073 4074
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4075 4076 4077 4078 4079 4080

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4081 4082
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4083
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4084
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4085 4086
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4087 4088
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4089
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4090 4091 4092 4093
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4109
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4110
			ext4_handle_sync(handle);
4111
			err = ext4_handle_dirty_super(handle, sb);
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4126
	} else if (!ext4_has_inline_data(inode)) {
4127 4128
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4129
	}
4130

4131 4132 4133 4134 4135
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4136
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4137 4138
	}

4139 4140
	ext4_inode_csum_set(inode, raw_inode, ei);

4141
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4142
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4143 4144
	if (!err)
		err = rc;
4145
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4146

4147
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4148
out_brelse:
4149
	brelse(bh);
4150
	ext4_std_error(inode->i_sb, err);
4151 4152 4153 4154
	return err;
}

/*
4155
 * ext4_write_inode()
4156 4157 4158 4159 4160
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4161
 *   transaction to commit.
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4172
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4189
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4190
{
4191 4192
	int err;

4193 4194 4195
	if (current->flags & PF_MEMALLOC)
		return 0;

4196 4197 4198 4199 4200 4201
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4202

4203
		if (wbc->sync_mode != WB_SYNC_ALL)
4204 4205 4206 4207 4208
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4209

4210
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4211 4212
		if (err)
			return err;
4213
		if (wbc->sync_mode == WB_SYNC_ALL)
4214 4215
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4216 4217
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4218 4219
			err = -EIO;
		}
4220
		brelse(iloc.bh);
4221 4222
	}
	return err;
4223 4224 4225
}

/*
4226
 * ext4_setattr()
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4240 4241 4242 4243 4244 4245 4246 4247
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4248
 */
4249
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4250 4251 4252
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4253
	int orphan = 0;
4254 4255 4256 4257 4258 4259
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4260
	if (is_quota_modification(inode, attr))
4261
		dquot_initialize(inode);
4262 4263
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4264 4265 4266 4267
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4268
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4269
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4270 4271 4272 4273
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4274
		error = dquot_transfer(inode, attr);
4275
		if (error) {
4276
			ext4_journal_stop(handle);
4277 4278 4279 4280 4281 4282 4283 4284
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4285 4286
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4287 4288
	}

4289
	if (attr->ia_valid & ATTR_SIZE) {
4290

4291
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4292 4293
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4294 4295
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4296 4297 4298
		}
	}

4299
	if (S_ISREG(inode->i_mode) &&
4300
	    attr->ia_valid & ATTR_SIZE &&
4301
	    (attr->ia_size < inode->i_size)) {
4302 4303
		handle_t *handle;

4304
		handle = ext4_journal_start(inode, 3);
4305 4306 4307 4308
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4309 4310 4311 4312
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4313 4314
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4315 4316
		if (!error)
			error = rc;
4317
		ext4_journal_stop(handle);
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4330
				orphan = 0;
4331 4332 4333 4334
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4335 4336
	}

4337
	if (attr->ia_valid & ATTR_SIZE) {
4338
		if (attr->ia_size != i_size_read(inode)) {
4339
			truncate_setsize(inode, attr->ia_size);
4340 4341 4342 4343 4344
			/* Inode size will be reduced, wait for dio in flight.
			 * Temporarily disable dioread_nolock to prevent
			 * livelock. */
			if (orphan) {
				ext4_inode_block_unlocked_dio(inode);
4345
				inode_dio_wait(inode);
4346 4347
				ext4_inode_resume_unlocked_dio(inode);
			}
4348
		}
4349
		ext4_truncate(inode);
4350
	}
4351

C
Christoph Hellwig 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4361
	if (orphan && inode->i_nlink)
4362
		ext4_orphan_del(NULL, inode);
4363 4364

	if (!rc && (ia_valid & ATTR_MODE))
4365
		rc = ext4_acl_chmod(inode);
4366 4367

err_out:
4368
	ext4_std_error(inode->i_sb, error);
4369 4370 4371 4372 4373
	if (!error)
		error = rc;
	return error;
}

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4393 4394
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4395 4396 4397 4398

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4399

4400 4401
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4402
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4403
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4404
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4405
}
4406

4407
/*
4408 4409 4410
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4411
 *
4412
 * If datablocks are discontiguous, they are possible to spread over
4413
 * different block groups too. If they are contiguous, with flexbg,
4414
 * they could still across block group boundary.
4415
 *
4416 4417
 * Also account for superblock, inode, quota and xattr blocks
 */
4418
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4419
{
4420 4421
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4448 4449
	if (groups > ngroups)
		groups = ngroups;
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4463
 * Calculate the total number of credits to reserve to fit
4464 4465
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4466
 *
4467
 * This could be called via ext4_write_begin()
4468
 *
4469
 * We need to consider the worse case, when
4470
 * one new block per extent.
4471
 */
A
Alex Tomas 已提交
4472
int ext4_writepage_trans_blocks(struct inode *inode)
4473
{
4474
	int bpp = ext4_journal_blocks_per_page(inode);
4475 4476
	int ret;

4477
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4478

4479
	/* Account for data blocks for journalled mode */
4480
	if (ext4_should_journal_data(inode))
4481
		ret += bpp;
4482 4483
	return ret;
}
4484 4485 4486 4487 4488

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4489
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4490 4491 4492 4493 4494 4495 4496 4497 4498
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4499
/*
4500
 * The caller must have previously called ext4_reserve_inode_write().
4501 4502
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4503
int ext4_mark_iloc_dirty(handle_t *handle,
4504
			 struct inode *inode, struct ext4_iloc *iloc)
4505 4506 4507
{
	int err = 0;

4508
	if (IS_I_VERSION(inode))
4509 4510
		inode_inc_iversion(inode);

4511 4512 4513
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4514
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4515
	err = ext4_do_update_inode(handle, inode, iloc);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4526 4527
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4528
{
4529 4530 4531 4532 4533 4534 4535 4536 4537
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4538 4539
		}
	}
4540
	ext4_std_error(inode->i_sb, err);
4541 4542 4543
	return err;
}

4544 4545 4546 4547
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4548 4549 4550 4551
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4564 4565
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4590
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4591
{
4592
	struct ext4_iloc iloc;
4593 4594 4595
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4596 4597

	might_sleep();
4598
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4599
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4600 4601
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4602
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4616 4617
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4618 4619
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4620
					ext4_warning(inode->i_sb,
4621 4622 4623
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4624 4625
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4626 4627 4628 4629
				}
			}
		}
	}
4630
	if (!err)
4631
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4632 4633 4634 4635
	return err;
}

/*
4636
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4637 4638 4639 4640 4641
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4642
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4643 4644 4645 4646 4647 4648
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4649
void ext4_dirty_inode(struct inode *inode, int flags)
4650 4651 4652
{
	handle_t *handle;

4653
	handle = ext4_journal_start(inode, 2);
4654 4655
	if (IS_ERR(handle))
		goto out;
4656 4657 4658

	ext4_mark_inode_dirty(handle, inode);

4659
	ext4_journal_stop(handle);
4660 4661 4662 4663 4664 4665 4666 4667
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4668
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4669 4670 4671
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4672
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4673
{
4674
	struct ext4_iloc iloc;
4675 4676 4677

	int err = 0;
	if (handle) {
4678
		err = ext4_get_inode_loc(inode, &iloc);
4679 4680
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4681
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4682
			if (!err)
4683
				err = ext4_handle_dirty_metadata(handle,
4684
								 NULL,
4685
								 iloc.bh);
4686 4687 4688
			brelse(iloc.bh);
		}
	}
4689
	ext4_std_error(inode->i_sb, err);
4690 4691 4692 4693
	return err;
}
#endif

4694
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4710
	journal = EXT4_JOURNAL(inode);
4711 4712
	if (!journal)
		return 0;
4713
	if (is_journal_aborted(journal))
4714
		return -EROFS;
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4726

4727 4728 4729 4730
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4731
	jbd2_journal_lock_updates(journal);
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4742
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4743 4744
	else {
		jbd2_journal_flush(journal);
4745
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4746
	}
4747
	ext4_set_aops(inode);
4748

4749
	jbd2_journal_unlock_updates(journal);
4750
	ext4_inode_resume_unlocked_dio(inode);
4751 4752 4753

	/* Finally we can mark the inode as dirty. */

4754
	handle = ext4_journal_start(inode, 1);
4755 4756 4757
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4758
	err = ext4_mark_inode_dirty(handle, inode);
4759
	ext4_handle_sync(handle);
4760 4761
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4762 4763 4764

	return err;
}
4765 4766 4767 4768 4769 4770

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4771
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4772
{
4773
	struct page *page = vmf->page;
4774 4775
	loff_t size;
	unsigned long len;
4776
	int ret;
4777 4778 4779
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4780 4781 4782
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4783

4784
	sb_start_pagefault(inode->i_sb);
4785
	file_update_time(vma->vm_file);
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4796
	}
4797 4798

	lock_page(page);
4799 4800 4801 4802 4803 4804
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4805
	}
4806 4807 4808 4809 4810

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4811
	/*
4812 4813
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4814
	 */
4815
	if (page_has_buffers(page)) {
4816 4817 4818
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4819 4820 4821 4822
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4823
		}
4824
	}
4825
	unlock_page(page);
4826 4827 4828 4829 4830 4831 4832 4833
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4834
		ret = VM_FAULT_SIGBUS;
4835 4836 4837 4838
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
4839
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4840 4841 4842
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4843
			ext4_journal_stop(handle);
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4854
	sb_end_pagefault(inode->i_sb);
4855 4856
	return ret;
}