inode.c 139.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485
/*
486
 * The ext4_map_blocks() function tries to look up the requested blocks,
487
 * and returns if the blocks are already mapped.
488 489 490 491 492
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
493 494
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495 496 497 498 499 500 501 502
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
503
 * that case, buffer head is unmapped
504 505 506
 *
 * It returns the error in case of allocation failure.
 */
507 508
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
509 510
{
	int retval;
511

512 513 514 515
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
516
	/*
517 518
	 * Try to see if we can get the block without requesting a new
	 * file system block.
519
	 */
520 521
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
522
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523 524
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
525
	} else {
526 527
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
528
	}
529 530
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
531

532
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
533 534 535 536 537 538 539 540 541 542
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
543 544 545 546
		if (ret != 0)
			return ret;
	}

547
	/* If it is only a block(s) look up */
548
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
549 550 551 552 553 554
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
555
	 * ext4_ext_get_block() returns the create = 0
556 557
	 * with buffer head unmapped.
	 */
558
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
559 560
		return retval;

561 562 563 564 565 566 567 568 569 570
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
571
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
572

573
	/*
574 575 576 577
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
578 579
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
580 581 582 583 584 585 586

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
587
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
588
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
589 590 591 592
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
593
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
595
	} else {
596
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
597

598
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 600 601 602 603
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
604
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605
		}
606

607 608 609 610 611 612 613
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
614
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615 616
			ext4_da_update_reserve_space(inode, retval, 1);
	}
617
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
618
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
619

620 621 622 623 624 625 626 627 628
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
629 630
	}

631
	up_write((&EXT4_I(inode)->i_data_sem));
632
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
633
		int ret = check_block_validity(inode, map);
634 635 636
		if (ret != 0)
			return ret;
	}
637 638 639
	return retval;
}

640 641 642
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

643 644
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
645
{
646
	handle_t *handle = ext4_journal_current_handle();
647
	struct ext4_map_blocks map;
J
Jan Kara 已提交
648
	int ret = 0, started = 0;
649
	int dio_credits;
650

T
Tao Ma 已提交
651 652 653
	if (ext4_has_inline_data(inode))
		return -ERANGE;

654 655 656
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

657
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
658
		/* Direct IO write... */
659 660 661
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
662 663
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
664
		if (IS_ERR(handle)) {
665
			ret = PTR_ERR(handle);
666
			return ret;
667
		}
J
Jan Kara 已提交
668
		started = 1;
669 670
	}

671
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
672
	if (ret > 0) {
673 674 675
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
676
		ret = 0;
677
	}
J
Jan Kara 已提交
678 679
	if (started)
		ext4_journal_stop(handle);
680 681 682
	return ret;
}

683 684 685 686 687 688 689
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

690 691 692
/*
 * `handle' can be NULL if create is zero
 */
693
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
694
				ext4_lblk_t block, int create, int *errp)
695
{
696 697
	struct ext4_map_blocks map;
	struct buffer_head *bh;
698 699 700 701
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

702 703 704 705
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
706

707 708 709
	/* ensure we send some value back into *errp */
	*errp = 0;

710 711 712 713 714 715
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
716
	if (unlikely(!bh)) {
717
		*errp = -ENOMEM;
718
		return NULL;
719
	}
720 721 722
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
723

724 725 726 727 728 729 730 731 732 733 734 735 736
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
737
		}
738 739 740 741 742 743 744
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
745
	}
746 747 748 749 750 751
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
752 753
}

754
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
755
			       ext4_lblk_t block, int create, int *err)
756
{
757
	struct buffer_head *bh;
758

759
	bh = ext4_getblk(handle, inode, block, create, err);
760 761 762 763
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
764
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
765 766 767 768 769 770 771 772
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

773 774 775 776 777 778 779
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
780 781 782 783 784 785 786
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

787 788
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
789
	     block_start = block_end, bh = next) {
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
807
 * close off a transaction and start a new one between the ext4_get_block()
808
 * and the commit_write().  So doing the jbd2_journal_start at the start of
809 810
 * prepare_write() is the right place.
 *
811 812 813 814
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
815
 *
816
 * By accident, ext4 can be reentered when a transaction is open via
817 818 819 820 821 822
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
823
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
824 825 826 827
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
828 829
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
830
{
831 832 833
	int dirty = buffer_dirty(bh);
	int ret;

834 835
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
836
	/*
C
Christoph Hellwig 已提交
837
	 * __block_write_begin() could have dirtied some buffers. Clean
838 839
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
840
	 * by __block_write_begin() isn't a real problem here as we clear
841 842 843 844 845 846 847 848 849
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
850 851
}

852 853
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
854
static int ext4_write_begin(struct file *file, struct address_space *mapping,
855 856
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
857
{
858
	struct inode *inode = mapping->host;
859
	int ret, needed_blocks;
860 861
	handle_t *handle;
	int retries = 0;
862
	struct page *page;
863
	pgoff_t index;
864
	unsigned from, to;
N
Nick Piggin 已提交
865

866
	trace_ext4_write_begin(inode, pos, len, flags);
867 868 869 870 871
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
872
	index = pos >> PAGE_CACHE_SHIFT;
873 874
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
875

876 877 878 879
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
880 881 882
			return ret;
		if (ret == 1)
			return 0;
883 884
	}

885 886 887 888 889 890 891 892 893 894 895 896 897 898
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
899
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
900
	if (IS_ERR(handle)) {
901 902
		page_cache_release(page);
		return PTR_ERR(handle);
903
	}
904

905 906 907 908 909
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
910
		ext4_journal_stop(handle);
911
		goto retry_grab;
912
	}
913
	wait_on_page_writeback(page);
914

915
	if (ext4_should_dioread_nolock(inode))
916
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
917
	else
918
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
919 920

	if (!ret && ext4_should_journal_data(inode)) {
921 922 923
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
924
	}
N
Nick Piggin 已提交
925 926

	if (ret) {
927
		unlock_page(page);
928
		/*
929
		 * __block_write_begin may have instantiated a few blocks
930 931
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
932 933 934
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
935
		 */
936
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
937 938 939 940
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
941
			ext4_truncate_failed_write(inode);
942
			/*
943
			 * If truncate failed early the inode might
944 945 946 947 948 949 950
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
951

952 953 954 955 956 957 958
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
959 960 961
	return ret;
}

N
Nick Piggin 已提交
962 963
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
964 965 966 967
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
968
	return ext4_handle_dirty_metadata(handle, NULL, bh);
969 970
}

971
static int ext4_generic_write_end(struct file *file,
972 973 974
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
975 976 977 978 979
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

980 981 982 983 984 985
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1022 1023 1024 1025
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1026
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1027 1028
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1029
static int ext4_ordered_write_end(struct file *file,
1030 1031 1032
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1033
{
1034
	handle_t *handle = ext4_journal_current_handle();
1035
	struct inode *inode = mapping->host;
1036 1037
	int ret = 0, ret2;

1038
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1039
	ret = ext4_jbd2_file_inode(handle, inode);
1040 1041

	if (ret == 0) {
1042
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1043
							page, fsdata);
1044
		copied = ret2;
1045
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1046 1047 1048 1049 1050
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1051 1052
		if (ret2 < 0)
			ret = ret2;
1053 1054 1055
	} else {
		unlock_page(page);
		page_cache_release(page);
1056
	}
1057

1058
	ret2 = ext4_journal_stop(handle);
1059 1060
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1061

1062
	if (pos + len > inode->i_size) {
1063
		ext4_truncate_failed_write(inode);
1064
		/*
1065
		 * If truncate failed early the inode might still be
1066 1067 1068 1069 1070 1071 1072 1073
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1074
	return ret ? ret : copied;
1075 1076
}

N
Nick Piggin 已提交
1077
static int ext4_writeback_write_end(struct file *file,
1078 1079 1080
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1081
{
1082
	handle_t *handle = ext4_journal_current_handle();
1083
	struct inode *inode = mapping->host;
1084 1085
	int ret = 0, ret2;

1086
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1087
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1088
							page, fsdata);
1089
	copied = ret2;
1090
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1091 1092 1093 1094 1095 1096
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1097 1098
	if (ret2 < 0)
		ret = ret2;
1099

1100
	ret2 = ext4_journal_stop(handle);
1101 1102
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1103

1104
	if (pos + len > inode->i_size) {
1105
		ext4_truncate_failed_write(inode);
1106
		/*
1107
		 * If truncate failed early the inode might still be
1108 1109 1110 1111 1112 1113 1114
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1115
	return ret ? ret : copied;
1116 1117
}

N
Nick Piggin 已提交
1118
static int ext4_journalled_write_end(struct file *file,
1119 1120 1121
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1122
{
1123
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1124
	struct inode *inode = mapping->host;
1125 1126
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1127
	unsigned from, to;
1128
	loff_t new_i_size;
1129

1130
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1131 1132 1133
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1134 1135
	BUG_ON(!ext4_handle_valid(handle));

1136 1137 1138 1139 1140 1141 1142 1143 1144
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1145

1146 1147 1148 1149 1150
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1151 1152
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1153
		i_size_write(inode, pos+copied);
1154
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1155
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1156 1157
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1158
		ret2 = ext4_mark_inode_dirty(handle, inode);
1159 1160 1161
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1162

1163
	unlock_page(page);
1164
	page_cache_release(page);
1165
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166 1167 1168 1169 1170 1171
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1172
	ret2 = ext4_journal_stop(handle);
1173 1174
	if (!ret)
		ret = ret2;
1175
	if (pos + len > inode->i_size) {
1176
		ext4_truncate_failed_write(inode);
1177
		/*
1178
		 * If truncate failed early the inode might still be
1179 1180 1181 1182 1183 1184
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1185 1186

	return ret ? ret : copied;
1187
}
1188

1189
/*
1190
 * Reserve a single cluster located at lblock
1191
 */
1192
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1193
{
A
Aneesh Kumar K.V 已提交
1194
	int retries = 0;
1195
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1196
	struct ext4_inode_info *ei = EXT4_I(inode);
1197
	unsigned int md_needed;
1198
	int ret;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1210 1211 1212 1213 1214 1215

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1216
repeat:
1217
	spin_lock(&ei->i_block_reservation_lock);
1218 1219 1220 1221 1222 1223
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224 1225
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1226
	trace_ext4_da_reserve_space(inode, md_needed);
1227

1228 1229 1230 1231
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1232
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1233 1234 1235
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1236 1237 1238 1239
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1240
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1241 1242
		return -ENOSPC;
	}
1243
	ei->i_reserved_data_blocks++;
1244 1245
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1246

1247 1248 1249
	return 0;       /* success */
}

1250
static void ext4_da_release_space(struct inode *inode, int to_free)
1251 1252
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253
	struct ext4_inode_info *ei = EXT4_I(inode);
1254

1255 1256 1257
	if (!to_free)
		return;		/* Nothing to release, exit */

1258
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1259

L
Li Zefan 已提交
1260
	trace_ext4_da_release_space(inode, to_free);
1261
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1262
		/*
1263 1264 1265 1266
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1267
		 */
1268
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1269
			 "ino %lu, to_free %d with only %d reserved "
1270
			 "data blocks", inode->i_ino, to_free,
1271 1272 1273
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1274
	}
1275
	ei->i_reserved_data_blocks -= to_free;
1276

1277 1278 1279 1280 1281
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1282 1283
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1284
		 */
1285
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1286
				   ei->i_reserved_meta_blocks);
1287
		ei->i_reserved_meta_blocks = 0;
1288
		ei->i_da_metadata_calc_len = 0;
1289
	}
1290

1291
	/* update fs dirty data blocks counter */
1292
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1293 1294

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1295

1296
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1297 1298 1299
}

static void ext4_da_page_release_reservation(struct page *page,
1300
					     unsigned long offset)
1301 1302 1303 1304
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1305 1306 1307
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1308
	ext4_fsblk_t lblk;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1321

1322 1323 1324 1325 1326
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1327 1328 1329 1330 1331 1332 1333
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1334
		    !ext4_find_delalloc_cluster(inode, lblk))
1335 1336 1337 1338
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1339
}
1340

1341 1342 1343 1344 1345 1346
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1347
 * them with writepage() call back
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1358 1359
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1360
{
1361 1362 1363 1364 1365
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1366
	loff_t size = i_size_read(inode);
1367 1368
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1369
	sector_t pblock = 0, cur_logical = 0;
1370
	struct ext4_io_submit io_submit;
1371 1372

	BUG_ON(mpd->next_page <= mpd->first_page);
1373
	memset(&io_submit, 0, sizeof(io_submit));
1374 1375 1376
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1377
	 * If we look at mpd->b_blocknr we would only be looking
1378 1379
	 * at the currently mapped buffer_heads.
	 */
1380 1381 1382
	index = mpd->first_page;
	end = mpd->next_page - 1;

1383
	pagevec_init(&pvec, 0);
1384
	while (index <= end) {
1385
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1386 1387 1388
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1389
			int skip_page = 0;
1390 1391
			struct page *page = pvec.pages[i];

1392 1393 1394
			index = page->index;
			if (index > end)
				break;
1395 1396 1397 1398 1399

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1400 1401 1402 1403 1404 1405
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1406 1407 1408 1409 1410
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1411 1412
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1413
			do {
1414 1415 1416
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1417 1418 1419 1420
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1421 1422 1423 1424 1425 1426 1427
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1428

1429 1430 1431 1432 1433
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1434
					skip_page = 1;
1435 1436
				bh = bh->b_this_page;
				block_start += bh->b_size;
1437 1438
				cur_logical++;
				pblock++;
1439 1440
			} while (bh != page_bufs);

1441 1442 1443 1444
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1445

1446
			clear_page_dirty_for_io(page);
1447 1448
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1449
			if (!err)
1450
				mpd->pages_written++;
1451 1452 1453 1454 1455 1456 1457 1458 1459
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1460
	ext4_io_submit(&io_submit);
1461 1462 1463
	return ret;
}

1464
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1465 1466 1467 1468 1469 1470
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1471
	ext4_lblk_t start, last;
1472

1473 1474
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1475 1476 1477 1478 1479

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1480
	pagevec_init(&pvec, 0);
1481 1482 1483 1484 1485 1486
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1487
			if (page->index > end)
1488 1489 1490 1491 1492 1493 1494
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1495 1496
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1497 1498 1499 1500
	}
	return;
}

1501 1502 1503
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 1505 1506
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1507 1508
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1509 1510
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1511 1512
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1513
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1514 1515
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1516 1517 1518 1519
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1520
	       EXT4_I(inode)->i_reserved_meta_blocks);
1521 1522 1523
	return;
}

1524
/*
1525 1526
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1527
 *
1528
 * @mpd - bh describing space
1529 1530 1531 1532
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1533
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1534
{
1535
	int err, blks, get_blocks_flags;
1536
	struct ext4_map_blocks map, *mapp = NULL;
1537 1538 1539 1540
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1541 1542

	/*
1543 1544
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1545
	 */
1546 1547 1548 1549 1550
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1551 1552 1553 1554

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1555
	/*
1556
	 * Call ext4_map_blocks() to allocate any delayed allocation
1557 1558 1559 1560 1561 1562 1563 1564
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1565
	 * want to change *many* call functions, so ext4_map_blocks()
1566
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1567 1568 1569 1570 1571
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1572
	 */
1573 1574
	map.m_lblk = next;
	map.m_len = max_blocks;
1575
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1576 1577
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1578
	if (mpd->b_state & (1 << BH_Delay))
1579 1580
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1581
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1582
	if (blks < 0) {
1583 1584
		struct super_block *sb = mpd->inode->i_sb;

1585
		err = blks;
1586
		/*
1587
		 * If get block returns EAGAIN or ENOSPC and there
1588 1589
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1590 1591
		 */
		if (err == -EAGAIN)
1592
			goto submit_io;
1593

1594
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1595
			mpd->retval = err;
1596
			goto submit_io;
1597 1598
		}

1599
		/*
1600 1601 1602 1603 1604
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1605
		 */
1606 1607 1608 1609 1610 1611 1612 1613
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1614
				"This should not happen!! Data will be lost");
1615 1616
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1617
		}
1618
		/* invalidate all the pages */
1619
		ext4_da_block_invalidatepages(mpd);
1620 1621 1622

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1623
		return;
1624
	}
1625 1626
	BUG_ON(blks == 0);

1627
	mapp = &map;
1628 1629 1630
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1631

1632 1633
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1634 1635 1636
	}

	/*
1637
	 * Update on-disk size along with block allocation.
1638 1639 1640 1641 1642 1643
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1644 1645 1646 1647 1648
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1649 1650
	}

1651
submit_io:
1652
	mpage_da_submit_io(mpd, mapp);
1653
	mpd->io_done = 1;
1654 1655
}

1656 1657
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1658 1659 1660 1661 1662 1663

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1664
 * @b_state - b_state of the buffer head added
1665 1666 1667
 *
 * the function is used to collect contig. blocks in same state
 */
1668
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1669
				   unsigned long b_state)
1670 1671
{
	sector_t next;
1672 1673
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1674

1675 1676 1677 1678
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1679
	 * ext4_map_blocks() multiple times in a loop
1680
	 */
1681
	if (nrblocks >= (8*1024*1024 >> blkbits))
1682 1683
		goto flush_it;

1684 1685
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1696 1697 1698
	/*
	 * First block in the extent
	 */
1699 1700
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1701
		mpd->b_size = 1 << blkbits;
1702
		mpd->b_state = b_state & BH_FLAGS;
1703 1704 1705
		return;
	}

1706
	next = mpd->b_blocknr + nrblocks;
1707 1708 1709
	/*
	 * Can we merge the block to our big extent?
	 */
1710
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1711
		mpd->b_size += 1 << blkbits;
1712 1713 1714
		return;
	}

1715
flush_it:
1716 1717 1718 1719
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1720
	mpage_da_map_and_submit(mpd);
1721
	return;
1722 1723
}

1724
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1725
{
1726
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1727 1728
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1785 1786 1787 1788
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
		if (retval)
			goto out_unlock;

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1805
/*
1806 1807 1808
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1809 1810 1811 1812 1813 1814 1815
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1816
 */
1817 1818
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
1819
{
1820
	struct ext4_map_blocks map;
1821 1822 1823
	int ret = 0;

	BUG_ON(create == 0);
1824 1825 1826 1827
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1828 1829 1830 1831 1832 1833

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1834 1835
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1836
		return ret;
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1849
		set_buffer_mapped(bh);
1850 1851
	}
	return 0;
1852
}
1853

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
1871
	struct buffer_head *page_bufs = NULL;
1872
	handle_t *handle = NULL;
1873 1874 1875
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
1876

1877
	ClearPageChecked(page);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
1894 1895 1896 1897
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

1898 1899
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
1900 1901 1902 1903 1904
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1905 1906
	BUG_ON(!ext4_handle_valid(handle));

1907 1908
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
1919 1920
	if (ret == 0)
		ret = err;
1921
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1922 1923 1924 1925
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

1926 1927 1928
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
1929
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1930
out:
1931
	brelse(inode_bh);
1932 1933 1934
	return ret;
}

1935
/*
1936 1937 1938 1939
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1940
 * we are writing back data modified via mmap(), no one guarantees in which
1941 1942 1943 1944
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1945 1946 1947
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1948
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1949
 *   - grab_page_cache when doing write_begin (have journal handle)
1950 1951 1952 1953 1954 1955 1956 1957 1958
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1959
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1975
 */
1976
static int ext4_writepage(struct page *page,
1977
			  struct writeback_control *wbc)
1978
{
1979
	int ret = 0;
1980
	loff_t size;
1981
	unsigned int len;
1982
	struct buffer_head *page_bufs = NULL;
1983
	struct inode *inode = page->mapping->host;
1984
	struct ext4_io_submit io_submit;
1985

L
Lukas Czerner 已提交
1986
	trace_ext4_writepage(page);
1987 1988 1989 1990 1991
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1992

T
Theodore Ts'o 已提交
1993
	page_bufs = page_buffers(page);
1994 1995 1996 1997 1998 1999 2000
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
2001 2002
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2003
		redirty_page_for_writepage(wbc, page);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2015
	}
2016

2017
	if (PageChecked(page) && ext4_should_journal_data(inode))
2018 2019 2020 2021
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2022
		return __ext4_journalled_writepage(page, len);
2023

2024 2025 2026
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2027 2028 2029
	return ret;
}

2030
/*
2031
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2032
 * calculate the total number of credits to reserve to fit
2033 2034 2035
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2036
 */
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2048
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2049 2050 2051 2052 2053
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2054

2055 2056
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2057
 * address space and accumulate pages that need writing, and call
2058 2059
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2060
 */
2061 2062
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2063
				struct writeback_control *wbc,
2064 2065
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2066
{
2067
	struct buffer_head	*bh, *head;
2068
	struct inode		*inode = mapping->host;
2069 2070 2071 2072 2073 2074
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2075

2076 2077 2078
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2079 2080 2081 2082
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2083
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2084 2085 2086 2087
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2088
	*done_index = index;
2089
	while (index <= end) {
2090
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2091 2092
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2093
			return 0;
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2105 2106
			if (page->index > end)
				goto out;
2107

2108 2109
			*done_index = page->index + 1;

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2120 2121 2122
			lock_page(page);

			/*
2123 2124 2125 2126 2127 2128
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2129
			 */
2130 2131 2132 2133
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2134 2135 2136 2137
				unlock_page(page);
				continue;
			}

2138
			wait_on_page_writeback(page);
2139 2140
			BUG_ON(PageWriteback(page));

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2152
			if (mpd->next_page != page->index)
2153 2154 2155 2156 2157
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2158 2159 2160 2161 2162
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2163
				/*
2164 2165 2166
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2167
				 */
2168 2169 2170 2171 2172 2173 2174
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2175
					/*
2176 2177 2178 2179 2180 2181 2182
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2183
					 */
2184 2185 2186 2187 2188 2189
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2190 2191 2192 2193

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2194
				    wbc->sync_mode == WB_SYNC_NONE)
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2205
					goto out;
2206 2207 2208 2209 2210
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2211 2212 2213
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2214 2215 2216
out:
	pagevec_release(&pvec);
	cond_resched();
2217 2218 2219 2220
	return ret;
}


2221
static int ext4_da_writepages(struct address_space *mapping,
2222
			      struct writeback_control *wbc)
2223
{
2224 2225
	pgoff_t	index;
	int range_whole = 0;
2226
	handle_t *handle = NULL;
2227
	struct mpage_da_data mpd;
2228
	struct inode *inode = mapping->host;
2229
	int pages_written = 0;
2230
	unsigned int max_pages;
2231
	int range_cyclic, cycled = 1, io_done = 0;
2232 2233
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2234
	loff_t range_start = wbc->range_start;
2235
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2236
	pgoff_t done_index = 0;
2237
	pgoff_t end;
S
Shaohua Li 已提交
2238
	struct blk_plug plug;
2239

2240
	trace_ext4_da_writepages(inode, wbc);
2241

2242 2243 2244 2245 2246
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2247
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2248
		return 0;
2249 2250 2251 2252 2253

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2254
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2255 2256 2257 2258 2259
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2260
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2261 2262
		return -EROFS;

2263 2264
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2265

2266 2267
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2268
		index = mapping->writeback_index;
2269 2270 2271 2272 2273
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2274 2275
		end = -1;
	} else {
2276
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2277 2278
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2297 2298 2299 2300 2301 2302
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2313
retry:
2314
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2315 2316
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2317
	blk_start_plug(&plug);
2318
	while (!ret && wbc->nr_to_write > 0) {
2319 2320 2321 2322 2323 2324 2325 2326

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2327
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2328

2329
		/* start a new transaction*/
2330 2331
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2332 2333
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2334
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2335
			       "%ld pages, ino %lu; err %d", __func__,
2336
				wbc->nr_to_write, inode->i_ino, ret);
2337
			blk_finish_plug(&plug);
2338 2339
			goto out_writepages;
		}
2340 2341

		/*
2342
		 * Now call write_cache_pages_da() to find the next
2343
		 * contiguous region of logical blocks that need
2344
		 * blocks to be allocated by ext4 and submit them.
2345
		 */
2346 2347
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2348
		/*
2349
		 * If we have a contiguous extent of pages and we
2350 2351 2352 2353
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2354
			mpage_da_map_and_submit(&mpd);
2355 2356
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2357
		trace_ext4_da_write_pages(inode, &mpd);
2358
		wbc->nr_to_write -= mpd.pages_written;
2359

2360
		ext4_journal_stop(handle);
2361

2362
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2363 2364 2365 2366
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2367
			jbd2_journal_force_commit_nested(sbi->s_journal);
2368 2369
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2370
			/*
2371 2372 2373
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2374
			 */
2375
			pages_written += mpd.pages_written;
2376
			ret = mpd.retval;
2377
			io_done = 1;
2378
		} else if (wbc->nr_to_write)
2379 2380 2381 2382 2383 2384
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2385
	}
S
Shaohua Li 已提交
2386
	blk_finish_plug(&plug);
2387 2388 2389 2390 2391 2392 2393
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2394 2395

	/* Update index */
2396
	wbc->range_cyclic = range_cyclic;
2397 2398 2399 2400 2401
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2402
		mapping->writeback_index = done_index;
2403

2404
out_writepages:
2405
	wbc->nr_to_write -= nr_to_writebump;
2406
	wbc->range_start = range_start;
2407
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2408
	return ret;
2409 2410
}

2411 2412 2413 2414 2415 2416 2417 2418
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2419
	 * counters can get slightly wrong with percpu_counter_batch getting
2420 2421 2422 2423
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2424 2425 2426
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2437
	if (2 * free_blocks < 3 * dirty_blocks ||
2438
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2439
		/*
2440 2441
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2442 2443 2444 2445 2446 2447
		 */
		return 1;
	}
	return 0;
}

2448
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2449 2450
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2451
{
2452
	int ret, retries = 0;
2453 2454 2455 2456 2457 2458
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2459 2460 2461 2462 2463 2464 2465

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2466
	trace_ext4_da_write_begin(inode, pos, len, flags);
2467 2468 2469 2470 2471 2472

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2473 2474 2475
			return ret;
		if (ret == 1)
			return 0;
2476 2477
	}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2491 2492 2493 2494 2495 2496
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2497
retry_journal:
2498
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2499
	if (IS_ERR(handle)) {
2500 2501
		page_cache_release(page);
		return PTR_ERR(handle);
2502 2503
	}

2504 2505 2506 2507 2508
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2509
		ext4_journal_stop(handle);
2510
		goto retry_grab;
2511
	}
2512 2513
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2514

2515
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2516 2517 2518
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2519 2520 2521 2522 2523 2524
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2525
			ext4_truncate_failed_write(inode);
2526 2527 2528 2529 2530 2531 2532

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2533 2534
	}

2535
	*pagep = page;
2536 2537 2538
	return ret;
}

2539 2540 2541 2542 2543
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2544
					    unsigned long offset)
2545 2546 2547 2548 2549 2550 2551 2552 2553
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2554
	for (i = 0; i < idx; i++)
2555 2556
		bh = bh->b_this_page;

2557
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2558 2559 2560 2561
		return 0;
	return 1;
}

2562
static int ext4_da_write_end(struct file *file,
2563 2564 2565
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2566 2567 2568 2569 2570
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2571
	unsigned long start, end;
2572 2573 2574
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2575 2576
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2577 2578
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2579
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2580 2581
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2582
		default:
2583 2584 2585
			BUG();
		}
	}
2586

2587
	trace_ext4_da_write_end(inode, pos, len, copied);
2588
	start = pos & (PAGE_CACHE_SIZE - 1);
2589
	end = start + copied - 1;
2590 2591 2592 2593 2594 2595 2596

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2597
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2598 2599
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2600
			down_write(&EXT4_I(inode)->i_data_sem);
2601
			if (new_i_size > EXT4_I(inode)->i_disksize)
2602 2603
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2604 2605 2606 2607 2608
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2609
		}
2610
	}
2611 2612 2613 2614 2615 2616 2617 2618

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2619
							page, fsdata);
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2640
	ext4_da_page_release_reservation(page, offset);
2641 2642 2643 2644 2645 2646 2647

out:
	ext4_invalidatepage(page, offset);

	return;
}

2648 2649 2650 2651 2652
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2653 2654
	trace_ext4_alloc_da_blocks(inode);

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2665
	 *
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2678
	 * the pages by calling redirty_page_for_writepage() but that
2679 2680
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2681
	 * simplifying them because we wouldn't actually intend to
2682 2683 2684
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2685
	 *
2686 2687 2688 2689 2690 2691
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2692

2693 2694 2695 2696 2697
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2698
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2699 2700 2701 2702 2703 2704 2705 2706
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2707
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2708 2709 2710 2711 2712
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2713 2714 2715 2716 2717 2718
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2729 2730
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2742
		 * NB. EXT4_STATE_JDATA is not set on files other than
2743 2744 2745 2746 2747 2748
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2749
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2750
		journal = EXT4_JOURNAL(inode);
2751 2752 2753
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2754 2755 2756 2757 2758

		if (err)
			return 0;
	}

2759
	return generic_block_bmap(mapping, block, ext4_get_block);
2760 2761
}

2762
static int ext4_readpage(struct file *file, struct page *page)
2763
{
T
Tao Ma 已提交
2764 2765 2766
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2767
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2768 2769 2770 2771 2772 2773 2774 2775

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2776 2777 2778
}

static int
2779
ext4_readpages(struct file *file, struct address_space *mapping,
2780 2781
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2782 2783 2784 2785 2786 2787
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2788
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2789 2790
}

2791
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2792
{
2793 2794
	trace_ext4_invalidatepage(page, offset);

2795 2796 2797 2798 2799 2800
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2801 2802
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2803 2804 2805 2806 2807
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2808 2809 2810 2811 2812 2813
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2814 2815 2816 2817 2818 2819 2820 2821
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2822 2823
}

2824
static int ext4_releasepage(struct page *page, gfp_t wait)
2825
{
2826
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2827

2828 2829
	trace_ext4_releasepage(page);

2830 2831 2832
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2833 2834 2835 2836
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2837 2838
}

2839 2840 2841 2842 2843
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2844
int ext4_get_block_write(struct inode *inode, sector_t iblock,
2845 2846
		   struct buffer_head *bh_result, int create)
{
2847
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2848
		   inode->i_ino, create);
2849 2850
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2851 2852
}

2853
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2854
		   struct buffer_head *bh_result, int create)
2855
{
2856 2857 2858 2859
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2860 2861
}

2862
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2863 2864
			    ssize_t size, void *private, int ret,
			    bool is_async)
2865
{
2866
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2867 2868
        ext4_io_end_t *io_end = iocb->private;

2869 2870
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2871
		goto out;
2872

2873
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2874
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2875 2876 2877
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2878 2879
	iocb->private = NULL;

2880
	/* if not aio dio with unwritten extents, just free io and return */
2881
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2882
		ext4_free_io_end(io_end);
2883
out:
2884
		inode_dio_done(inode);
2885 2886 2887
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
2888 2889
	}

2890 2891
	io_end->offset = offset;
	io_end->size = size;
2892 2893 2894 2895
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2896

2897
	ext4_add_complete_io(io_end);
2898
}
2899

2900 2901 2902 2903 2904
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2905
 * For holes, we fallocate those blocks, mark them as uninitialized
2906
 * If those blocks were preallocated, we mark sure they are split, but
2907
 * still keep the range to write as uninitialized.
2908
 *
2909
 * The unwritten extents will be converted to written when DIO is completed.
2910
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2911
 * set up an end_io call back function, which will do the conversion
2912
 * when async direct IO completed.
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2927 2928 2929
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2930
	loff_t final_size = offset + count;
2931

2932 2933 2934
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2935

2936
	BUG_ON(iocb->private == NULL);
2937

2938 2939
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2940

2941 2942 2943 2944 2945
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
2973
		}
2974 2975
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
2976
		/*
2977 2978 2979 2980
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
2981
		 */
2982 2983
		ext4_inode_aio_set(inode, io_end);
	}
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3031

3032 3033 3034 3035 3036 3037
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3038
	}
3039

3040
	return ret;
3041 3042 3043 3044 3045 3046 3047 3048
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3049
	ssize_t ret;
3050

3051 3052 3053 3054 3055 3056
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3057 3058 3059 3060
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3061
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3062
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3063 3064 3065 3066 3067 3068
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3069 3070
}

3071
/*
3072
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3084
static int ext4_journalled_set_page_dirty(struct page *page)
3085 3086 3087 3088 3089
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3090
static const struct address_space_operations ext4_ordered_aops = {
3091 3092
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3093
	.writepage		= ext4_writepage,
3094 3095 3096 3097 3098 3099 3100 3101
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3102
	.error_remove_page	= generic_error_remove_page,
3103 3104
};

3105
static const struct address_space_operations ext4_writeback_aops = {
3106 3107
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3108
	.writepage		= ext4_writepage,
3109 3110 3111 3112 3113 3114 3115 3116
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3117
	.error_remove_page	= generic_error_remove_page,
3118 3119
};

3120
static const struct address_space_operations ext4_journalled_aops = {
3121 3122
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3123
	.writepage		= ext4_writepage,
3124 3125 3126 3127
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3128
	.invalidatepage		= ext4_journalled_invalidatepage,
3129
	.releasepage		= ext4_releasepage,
3130
	.direct_IO		= ext4_direct_IO,
3131
	.is_partially_uptodate  = block_is_partially_uptodate,
3132
	.error_remove_page	= generic_error_remove_page,
3133 3134
};

3135
static const struct address_space_operations ext4_da_aops = {
3136 3137
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3138
	.writepage		= ext4_writepage,
3139 3140 3141 3142 3143 3144 3145 3146 3147
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3148
	.error_remove_page	= generic_error_remove_page,
3149 3150
};

3151
void ext4_set_aops(struct inode *inode)
3152
{
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3167
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3168 3169 3170 3171
		break;
	default:
		BUG();
	}
3172 3173
}

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3194
		return -ENOMEM;
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3223
 * from:   The starting byte offset (from the beginning of the file)
3224 3225 3226 3227 3228 3229 3230
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3231
 *         for updating the contents of a page whose blocks may
3232 3233 3234
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3235
 * Returns zero on success or negative on failure.
3236
 */
E
Eric Sandeen 已提交
3237
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3263 3264
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3277 3278
		unsigned int end_of_block, range_to_discard;

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3364
		} else
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3388 3389 3390 3391 3392 3393 3394 3395
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3396
 * Returns: 0 on success or negative on failure
3397 3398 3399 3400 3401 3402
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3403
		return -EOPNOTSUPP;
3404

3405 3406
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3407

3408 3409
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3410
		return -EOPNOTSUPP;
3411 3412
	}

3413 3414
	trace_ext4_punch_hole(inode, offset, length);

3415 3416 3417
	return ext4_ext_punch_hole(file, offset, length);
}

3418
/*
3419
 * ext4_truncate()
3420
 *
3421 3422
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3423 3424
 * simultaneously on behalf of the same inode.
 *
3425
 * As we work through the truncate and commit bits of it to the journal there
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3439
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3440
 * that this inode's truncate did not complete and it will again call
3441 3442
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3443
 * that's fine - as long as they are linked from the inode, the post-crash
3444
 * ext4_truncate() run will find them and release them.
3445
 */
3446
void ext4_truncate(struct inode *inode)
3447
{
3448 3449
	trace_ext4_truncate_enter(inode);

3450
	if (!ext4_can_truncate(inode))
3451 3452
		return;

3453
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3454

3455
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3456
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3457

3458 3459 3460 3461 3462 3463 3464 3465
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3466
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3467
		ext4_ext_truncate(inode);
3468 3469
	else
		ext4_ind_truncate(inode);
3470

3471
	trace_ext4_truncate_exit(inode);
3472 3473 3474
}

/*
3475
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3476 3477 3478 3479
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3480 3481
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3482
{
3483 3484 3485 3486 3487 3488
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3489
	iloc->bh = NULL;
3490 3491
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3492

3493 3494 3495
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3496 3497
		return -EIO;

3498 3499 3500
	/*
	 * Figure out the offset within the block group inode table
	 */
3501
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3502 3503 3504 3505 3506 3507
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3508
	if (unlikely(!bh))
3509
		return -ENOMEM;
3510 3511
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3535
			int i, start;
3536

3537
			start = inode_offset & ~(inodes_per_block - 1);
3538

3539 3540
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3541
			if (unlikely(!bitmap_bh))
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3553
			for (i = start; i < start + inodes_per_block; i++) {
3554 3555
				if (i == inode_offset)
					continue;
3556
				if (ext4_test_bit(i, bitmap_bh->b_data))
3557 3558 3559
					break;
			}
			brelse(bitmap_bh);
3560
			if (i == start + inodes_per_block) {
3561 3562 3563 3564 3565 3566 3567 3568 3569
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3570 3571 3572 3573 3574 3575 3576 3577 3578
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3579
			/* s_inode_readahead_blks is always a power of 2 */
3580 3581 3582 3583 3584
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3585
			if (ext4_has_group_desc_csum(sb))
3586
				num -= ext4_itable_unused_count(sb, gdp);
3587 3588 3589 3590 3591 3592 3593
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3594 3595 3596 3597 3598
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3599
		trace_ext4_load_inode(inode);
3600 3601
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3602
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3603 3604
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3605 3606
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3607 3608 3609 3610 3611 3612 3613 3614 3615
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3616
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3617 3618
{
	/* We have all inode data except xattrs in memory here. */
3619
	return __ext4_get_inode_loc(inode, iloc,
3620
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3621 3622
}

3623
void ext4_set_inode_flags(struct inode *inode)
3624
{
3625
	unsigned int flags = EXT4_I(inode)->i_flags;
3626 3627

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3628
	if (flags & EXT4_SYNC_FL)
3629
		inode->i_flags |= S_SYNC;
3630
	if (flags & EXT4_APPEND_FL)
3631
		inode->i_flags |= S_APPEND;
3632
	if (flags & EXT4_IMMUTABLE_FL)
3633
		inode->i_flags |= S_IMMUTABLE;
3634
	if (flags & EXT4_NOATIME_FL)
3635
		inode->i_flags |= S_NOATIME;
3636
	if (flags & EXT4_DIRSYNC_FL)
3637 3638 3639
		inode->i_flags |= S_DIRSYNC;
}

3640 3641 3642
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3663
}
3664

3665
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3666
				  struct ext4_inode_info *ei)
3667 3668
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3669 3670
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3671 3672 3673 3674 3675 3676

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3677
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3678 3679 3680 3681 3682
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3683 3684 3685 3686
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3687

3688 3689 3690 3691 3692 3693
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3694
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3695
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3696
		ext4_find_inline_data_nolock(inode);
3697 3698
	} else
		EXT4_I(inode)->i_inline_off = 0;
3699 3700
}

3701
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3702
{
3703 3704
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3705 3706
	struct ext4_inode_info *ei;
	struct inode *inode;
3707
	journal_t *journal = EXT4_SB(sb)->s_journal;
3708
	long ret;
3709
	int block;
3710 3711
	uid_t i_uid;
	gid_t i_gid;
3712

3713 3714 3715 3716 3717 3718 3719
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3720
	iloc.bh = NULL;
3721

3722 3723
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3724
		goto bad_inode;
3725
	raw_inode = ext4_raw_inode(&iloc);
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3759
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3760 3761
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3762
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3763 3764
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3765
	}
3766 3767
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3768
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3769

3770
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3771
	ei->i_inline_off = 0;
3772 3773 3774 3775 3776 3777 3778 3779 3780
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3781
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3782
			/* this inode is deleted */
3783
			ret = -ESTALE;
3784 3785 3786 3787 3788 3789 3790 3791
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3792
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3793
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3794
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3795 3796
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3797
	inode->i_size = ext4_isize(raw_inode);
3798
	ei->i_disksize = inode->i_size;
3799 3800 3801
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3802 3803
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3804
	ei->i_last_alloc_group = ~0;
3805 3806 3807 3808
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3809
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3810 3811 3812
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3824
		read_lock(&journal->j_state_lock);
3825 3826 3827 3828 3829 3830 3831 3832
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3833
		read_unlock(&journal->j_state_lock);
3834 3835 3836 3837
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3838
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3839 3840
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3841 3842
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3843
		} else {
3844
			ext4_iget_extra_inode(inode, raw_inode, ei);
3845
		}
3846
	}
3847

K
Kalpak Shah 已提交
3848 3849 3850 3851 3852
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3853 3854 3855 3856 3857 3858 3859
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3860
	ret = 0;
3861
	if (ei->i_file_acl &&
3862
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3863 3864
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3865 3866
		ret = -EIO;
		goto bad_inode;
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
3880
	}
3881
	if (ret)
3882
		goto bad_inode;
3883

3884
	if (S_ISREG(inode->i_mode)) {
3885 3886 3887
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3888
	} else if (S_ISDIR(inode->i_mode)) {
3889 3890
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3891
	} else if (S_ISLNK(inode->i_mode)) {
3892
		if (ext4_inode_is_fast_symlink(inode)) {
3893
			inode->i_op = &ext4_fast_symlink_inode_operations;
3894 3895 3896
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3897 3898
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3899
		}
3900 3901
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3902
		inode->i_op = &ext4_special_inode_operations;
3903 3904 3905 3906 3907 3908
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3909 3910
	} else {
		ret = -EIO;
3911
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3912
		goto bad_inode;
3913
	}
3914
	brelse(iloc.bh);
3915
	ext4_set_inode_flags(inode);
3916 3917
	unlock_new_inode(inode);
	return inode;
3918 3919

bad_inode:
3920
	brelse(iloc.bh);
3921 3922
	iget_failed(inode);
	return ERR_PTR(ret);
3923 3924
}

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3935
		 * i_blocks can be represented in a 32 bit variable
3936 3937
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3938
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3939
		raw_inode->i_blocks_high = 0;
3940
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3941 3942 3943 3944 3945 3946
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3947 3948 3949 3950
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3951
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3952
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3953
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3954
	} else {
3955
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3956 3957 3958 3959
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3960
	}
3961
	return 0;
3962 3963
}

3964 3965 3966 3967 3968 3969 3970
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3971
static int ext4_do_update_inode(handle_t *handle,
3972
				struct inode *inode,
3973
				struct ext4_iloc *iloc)
3974
{
3975 3976
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3977 3978
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
3979
	int need_datasync = 0;
3980 3981
	uid_t i_uid;
	gid_t i_gid;
3982 3983 3984

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3985
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3986
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3987

3988
	ext4_get_inode_flags(ei);
3989
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3990 3991
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
3992
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3993 3994
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3995 3996 3997 3998
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3999
		if (!ei->i_dtime) {
4000
			raw_inode->i_uid_high =
4001
				cpu_to_le16(high_16_bits(i_uid));
4002
			raw_inode->i_gid_high =
4003
				cpu_to_le16(high_16_bits(i_gid));
4004 4005 4006 4007 4008
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4009 4010
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4011 4012 4013 4014
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4015 4016 4017 4018 4019 4020

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4021 4022
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4023
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4024
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4025 4026
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4027 4028
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4029
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4030 4031 4032 4033
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4049
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4050
			ext4_handle_sync(handle);
4051
			err = ext4_handle_dirty_super(handle, sb);
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4066
	} else if (!ext4_has_inline_data(inode)) {
4067 4068
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4069
	}
4070

4071 4072 4073 4074 4075
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4076
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4077 4078
	}

4079 4080
	ext4_inode_csum_set(inode, raw_inode, ei);

4081
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4082
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4083 4084
	if (!err)
		err = rc;
4085
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4086

4087
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4088
out_brelse:
4089
	brelse(bh);
4090
	ext4_std_error(inode->i_sb, err);
4091 4092 4093 4094
	return err;
}

/*
4095
 * ext4_write_inode()
4096 4097 4098 4099 4100
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4101
 *   transaction to commit.
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4112
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4129
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4130
{
4131 4132
	int err;

4133 4134 4135
	if (current->flags & PF_MEMALLOC)
		return 0;

4136 4137 4138 4139 4140 4141
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4142

4143
		if (wbc->sync_mode != WB_SYNC_ALL)
4144 4145 4146 4147 4148
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4149

4150
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4151 4152
		if (err)
			return err;
4153
		if (wbc->sync_mode == WB_SYNC_ALL)
4154 4155
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4156 4157
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4158 4159
			err = -EIO;
		}
4160
		brelse(iloc.bh);
4161 4162
	}
	return err;
4163 4164
}

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4206
/*
4207
 * ext4_setattr()
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4221 4222 4223 4224 4225 4226 4227 4228
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4229
 */
4230
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4231 4232 4233
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4234
	int orphan = 0;
4235 4236 4237 4238 4239 4240
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4241
	if (is_quota_modification(inode, attr))
4242
		dquot_initialize(inode);
4243 4244
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4245 4246 4247 4248
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4249 4250 4251
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4252 4253 4254 4255
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4256
		error = dquot_transfer(inode, attr);
4257
		if (error) {
4258
			ext4_journal_stop(handle);
4259 4260 4261 4262 4263 4264 4265 4266
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4267 4268
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4269 4270
	}

4271
	if (attr->ia_valid & ATTR_SIZE) {
4272

4273
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4274 4275
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4276 4277
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4278 4279 4280
		}
	}

4281
	if (S_ISREG(inode->i_mode) &&
4282
	    attr->ia_valid & ATTR_SIZE &&
4283
	    (attr->ia_size < inode->i_size)) {
4284 4285
		handle_t *handle;

4286
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4287 4288 4289 4290
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4291 4292 4293 4294
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4295 4296
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4297 4298
		if (!error)
			error = rc;
4299
		ext4_journal_stop(handle);
4300 4301 4302 4303 4304 4305

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4306 4307
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4308 4309 4310 4311 4312
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4313
				orphan = 0;
4314 4315 4316 4317
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4318 4319
	}

4320
	if (attr->ia_valid & ATTR_SIZE) {
4321 4322 4323 4324 4325 4326 4327 4328 4329
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4330
			if (orphan) {
4331 4332 4333 4334 4335 4336
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4337
			}
4338 4339 4340 4341 4342
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4343
		}
4344
		ext4_truncate(inode);
4345
	}
4346

C
Christoph Hellwig 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4356
	if (orphan && inode->i_nlink)
4357
		ext4_orphan_del(NULL, inode);
4358 4359

	if (!rc && (ia_valid & ATTR_MODE))
4360
		rc = ext4_acl_chmod(inode);
4361 4362

err_out:
4363
	ext4_std_error(inode->i_sb, error);
4364 4365 4366 4367 4368
	if (!error)
		error = rc;
	return error;
}

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4388 4389
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4390 4391 4392 4393

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4394

4395 4396
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4397
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4398
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4399
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4400
}
4401

4402
/*
4403 4404 4405
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4406
 *
4407
 * If datablocks are discontiguous, they are possible to spread over
4408
 * different block groups too. If they are contiguous, with flexbg,
4409
 * they could still across block group boundary.
4410
 *
4411 4412
 * Also account for superblock, inode, quota and xattr blocks
 */
4413
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4414
{
4415 4416
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4443 4444
	if (groups > ngroups)
		groups = ngroups;
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4458
 * Calculate the total number of credits to reserve to fit
4459 4460
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4461
 *
4462
 * This could be called via ext4_write_begin()
4463
 *
4464
 * We need to consider the worse case, when
4465
 * one new block per extent.
4466
 */
A
Alex Tomas 已提交
4467
int ext4_writepage_trans_blocks(struct inode *inode)
4468
{
4469
	int bpp = ext4_journal_blocks_per_page(inode);
4470 4471
	int ret;

4472
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4473

4474
	/* Account for data blocks for journalled mode */
4475
	if (ext4_should_journal_data(inode))
4476
		ret += bpp;
4477 4478
	return ret;
}
4479 4480 4481 4482 4483

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4484
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4485 4486 4487 4488 4489 4490 4491 4492 4493
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4494
/*
4495
 * The caller must have previously called ext4_reserve_inode_write().
4496 4497
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4498
int ext4_mark_iloc_dirty(handle_t *handle,
4499
			 struct inode *inode, struct ext4_iloc *iloc)
4500 4501 4502
{
	int err = 0;

4503
	if (IS_I_VERSION(inode))
4504 4505
		inode_inc_iversion(inode);

4506 4507 4508
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4509
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4510
	err = ext4_do_update_inode(handle, inode, iloc);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4521 4522
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4523
{
4524 4525 4526 4527 4528 4529 4530 4531 4532
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4533 4534
		}
	}
4535
	ext4_std_error(inode->i_sb, err);
4536 4537 4538
	return err;
}

4539 4540 4541 4542
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4543 4544 4545 4546
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4559 4560
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4585
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4586
{
4587
	struct ext4_iloc iloc;
4588 4589 4590
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4591 4592

	might_sleep();
4593
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4594
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4595 4596
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4597
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4611 4612
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4613 4614
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4615
					ext4_warning(inode->i_sb,
4616 4617 4618
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4619 4620
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4621 4622 4623 4624
				}
			}
		}
	}
4625
	if (!err)
4626
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4627 4628 4629 4630
	return err;
}

/*
4631
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4632 4633 4634 4635 4636
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4637
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4638 4639 4640 4641 4642 4643
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4644
void ext4_dirty_inode(struct inode *inode, int flags)
4645 4646 4647
{
	handle_t *handle;

4648
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4649 4650
	if (IS_ERR(handle))
		goto out;
4651 4652 4653

	ext4_mark_inode_dirty(handle, inode);

4654
	ext4_journal_stop(handle);
4655 4656 4657 4658 4659 4660 4661 4662
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4663
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4664 4665 4666
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4667
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4668
{
4669
	struct ext4_iloc iloc;
4670 4671 4672

	int err = 0;
	if (handle) {
4673
		err = ext4_get_inode_loc(inode, &iloc);
4674 4675
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4676
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4677
			if (!err)
4678
				err = ext4_handle_dirty_metadata(handle,
4679
								 NULL,
4680
								 iloc.bh);
4681 4682 4683
			brelse(iloc.bh);
		}
	}
4684
	ext4_std_error(inode->i_sb, err);
4685 4686 4687 4688
	return err;
}
#endif

4689
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4705
	journal = EXT4_JOURNAL(inode);
4706 4707
	if (!journal)
		return 0;
4708
	if (is_journal_aborted(journal))
4709
		return -EROFS;
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4721

4722 4723 4724 4725
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4726
	jbd2_journal_lock_updates(journal);
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4737
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4738 4739
	else {
		jbd2_journal_flush(journal);
4740
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4741
	}
4742
	ext4_set_aops(inode);
4743

4744
	jbd2_journal_unlock_updates(journal);
4745
	ext4_inode_resume_unlocked_dio(inode);
4746 4747 4748

	/* Finally we can mark the inode as dirty. */

4749
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4750 4751 4752
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4753
	err = ext4_mark_inode_dirty(handle, inode);
4754
	ext4_handle_sync(handle);
4755 4756
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4757 4758 4759

	return err;
}
4760 4761 4762 4763 4764 4765

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4766
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4767
{
4768
	struct page *page = vmf->page;
4769 4770
	loff_t size;
	unsigned long len;
4771
	int ret;
4772 4773 4774
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4775 4776 4777
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4778

4779
	sb_start_pagefault(inode->i_sb);
4780
	file_update_time(vma->vm_file);
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4791
	}
4792 4793

	lock_page(page);
4794 4795 4796 4797 4798 4799
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4800
	}
4801 4802 4803 4804 4805

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4806
	/*
4807 4808
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4809
	 */
4810
	if (page_has_buffers(page)) {
4811 4812 4813
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4814 4815 4816 4817
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4818
		}
4819
	}
4820
	unlock_page(page);
4821 4822 4823 4824 4825 4826
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
4827 4828
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
4829
	if (IS_ERR(handle)) {
4830
		ret = VM_FAULT_SIGBUS;
4831 4832 4833 4834
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
4835
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4836 4837 4838
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4839
			ext4_journal_stop(handle);
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4850
	sb_end_pagefault(inode->i_sb);
4851 4852
	return ret;
}