inode.c 170.4 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56
	trace_ext4_begin_ordered_truncate(inode, new_size);
57 58 59 60
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
61 62
}

63
static void ext4_invalidatepage(struct page *page, unsigned long offset);
64 65 66 67 68 69
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
70

71 72 73
/*
 * Test whether an inode is a fast symlink.
 */
74
static int ext4_inode_is_fast_symlink(struct inode *inode)
75
{
76
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
77 78 79 80 81 82 83 84 85 86 87
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
88
	ext4_lblk_t needed;
89 90 91 92 93 94

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
95
	 * like a regular file for ext4 to try to delete it.  Things
96 97 98 99 100 101 102
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
103 104
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
105

106
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

123
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
124 125 126
	if (!IS_ERR(result))
		return result;

127
	ext4_std_error(inode->i_sb, PTR_ERR(result));
128 129 130 131 132 133 134 135 136 137 138
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
139 140 141
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
142
		return 0;
143
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
144 145 146 147 148 149 150 151 152
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
153
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
154
				 int nblocks)
155
{
156 157 158
	int ret;

	/*
159
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
160 161 162 163
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
164
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
165
	jbd_debug(2, "restarting handle %p\n", handle);
166 167 168
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
169
	ext4_discard_preallocations(inode);
170 171

	return ret;
172 173 174 175 176
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
177
void ext4_evict_inode(struct inode *inode)
178 179
{
	handle_t *handle;
180
	int err;
181

182
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
183 184 185 186 187
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

188
	if (!is_bad_inode(inode))
189
		dquot_initialize(inode);
190

191 192
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
193 194 195 196 197
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

198
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
199
	if (IS_ERR(handle)) {
200
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
201 202 203 204 205
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
206
		ext4_orphan_del(NULL, inode);
207 208 209 210
		goto no_delete;
	}

	if (IS_SYNC(inode))
211
		ext4_handle_sync(handle);
212
	inode->i_size = 0;
213 214
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
215
		ext4_warning(inode->i_sb,
216 217 218
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
219
	if (inode->i_blocks)
220
		ext4_truncate(inode);
221 222 223 224 225 226 227

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
228
	if (!ext4_handle_has_enough_credits(handle, 3)) {
229 230 231 232
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
233
			ext4_warning(inode->i_sb,
234 235 236
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
237
			ext4_orphan_del(NULL, inode);
238 239 240 241
			goto no_delete;
		}
	}

242
	/*
243
	 * Kill off the orphan record which ext4_truncate created.
244
	 * AKPM: I think this can be inside the above `if'.
245
	 * Note that ext4_orphan_del() has to be able to cope with the
246
	 * deletion of a non-existent orphan - this is because we don't
247
	 * know if ext4_truncate() actually created an orphan record.
248 249
	 * (Well, we could do this if we need to, but heck - it works)
	 */
250 251
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
252 253 254 255 256 257 258 259

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
260
	if (ext4_mark_inode_dirty(handle, inode))
261
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
262
		ext4_clear_inode(inode);
263
	else
264 265
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
266 267
	return;
no_delete:
A
Al Viro 已提交
268
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
284
 *	ext4_block_to_path - parse the block number into array of offsets
285 286 287
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
288 289
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
290
 *
291
 *	To store the locations of file's data ext4 uses a data structure common
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

314
static int ext4_block_to_path(struct inode *inode,
315 316
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
317
{
318 319 320
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
321 322 323 324 325
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

326
	if (i_block < direct_blocks) {
327 328
		offsets[n++] = i_block;
		final = direct_blocks;
329
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
330
		offsets[n++] = EXT4_IND_BLOCK;
331 332 333
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
334
		offsets[n++] = EXT4_DIND_BLOCK;
335 336 337 338
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
339
		offsets[n++] = EXT4_TIND_BLOCK;
340 341 342 343 344
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
345
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
346 347
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
348 349 350 351 352 353
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

354 355
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
356 357
				 __le32 *p, unsigned int max)
{
358
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
359
	__le32 *bref = p;
360 361
	unsigned int blk;

362
	while (bref < p+max) {
363
		blk = le32_to_cpu(*bref++);
364 365
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
366
						    blk, 1))) {
367
			es->s_last_error_block = cpu_to_le64(blk);
368 369
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
370 371 372 373
			return -EIO;
		}
	}
	return 0;
374 375 376 377
}


#define ext4_check_indirect_blockref(inode, bh)                         \
378 379
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
380 381 382
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
383 384
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
385 386
			      EXT4_NDIR_BLOCKS)

387
/**
388
 *	ext4_get_branch - read the chain of indirect blocks leading to data
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
413 414
 *
 *      Need to be called with
415
 *      down_read(&EXT4_I(inode)->i_data_sem)
416
 */
A
Aneesh Kumar K.V 已提交
417 418
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
419 420 421 422 423 424 425 426
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
427
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
428 429 430
	if (!p->key)
		goto no_block;
	while (--depth) {
431 432
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
433
			goto failure;
434

435 436 437 438 439 440 441 442 443 444 445
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
446

447
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
448 449 450 451 452 453 454 455 456 457 458 459 460
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
461
 *	ext4_find_near - find a place for allocation with sufficient locality
462 463 464
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
465
 *	This function returns the preferred place for block allocation.
466 467 468 469 470 471 472 473 474 475 476 477 478 479
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
480
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
481
{
482
	struct ext4_inode_info *ei = EXT4_I(inode);
483
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
484
	__le32 *p;
485
	ext4_fsblk_t bg_start;
486
	ext4_fsblk_t last_block;
487
	ext4_grpblk_t colour;
488 489
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
505 506 507 508 509 510 511
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
512 513
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

514 515 516 517 518 519 520
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

521 522
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
523
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
524 525
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
526 527 528 529
	return bg_start + colour;
}

/**
530
 *	ext4_find_goal - find a preferred place for allocation.
531 532 533 534
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
535
 *	Normally this function find the preferred place for block allocation,
536
 *	returns it.
537 538
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
539
 */
A
Aneesh Kumar K.V 已提交
540
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
541
				   Indirect *partial)
542
{
543 544
	ext4_fsblk_t goal;

545
	/*
546
	 * XXX need to get goal block from mballoc's data structures
547 548
	 */

549 550 551
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
552 553 554
}

/**
T
Theodore Ts'o 已提交
555
 *	ext4_blks_to_allocate - Look up the block map and count the number
556 557 558 559 560 561 562 563 564 565
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
566
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
567
				 int blocks_to_boundary)
568
{
569
	unsigned int count = 0;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
593
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
T
Theodore Ts'o 已提交
594 595 596 597
 *	@handle: handle for this transaction
 *	@inode: inode which needs allocated blocks
 *	@iblock: the logical block to start allocated at
 *	@goal: preferred physical block of allocation
598 599
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
T
Theodore Ts'o 已提交
600
 *	@blks: number of desired blocks
601 602
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
T
Theodore Ts'o 已提交
603 604 605 606
 *	@err: on return it will store the error code
 *
 *	This function will return the number of blocks allocated as
 *	requested by the passed-in parameters.
607
 */
608
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
609 610 611
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
612
{
613
	struct ext4_allocation_request ar;
614
	int target, i;
615
	unsigned long count = 0, blk_allocated = 0;
616
	int index = 0;
617
	ext4_fsblk_t current_block = 0;
618 619 620 621 622 623 624 625 626 627
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
628 629 630
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
631 632
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
633 634
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
635 636 637
		if (*err)
			goto failed_out;

638 639 640 641 642 643 644 645
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
646

647 648 649 650 651 652
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
653 654 655 656 657 658 659 660 661
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
662
			break;
663
		}
664 665
	}

666 667 668 669 670
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
671 672 673 674 675 676 677 678 679 680
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
681 682 683 684 685 686 687 688
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
689

690 691 692 693 694 695 696 697 698
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
699 700 701 702
			/*
			 * save the new block number
			 * for the first direct block
			 */
703 704
			new_blocks[index] = current_block;
		}
705
		blk_allocated += ar.len;
706 707
	}
allocated:
708
	/* total number of blocks allocated for direct blocks */
709
	ret = blk_allocated;
710 711 712
	*err = 0;
	return ret;
failed_out:
713
	for (i = 0; i < index; i++)
714
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
715 716 717 718
	return ret;
}

/**
719
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
T
Theodore Ts'o 已提交
720
 *	@handle: handle for this transaction
721 722 723
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
T
Theodore Ts'o 已提交
724
 *	@goal: preferred place for allocation
725 726 727 728 729 730 731
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
732
 *	the same format as ext4_get_branch() would do. We are calling it after
733 734
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
735
 *	picture as after the successful ext4_get_block(), except that in one
736 737 738 739 740 741
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
742
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
743 744
 *	as described above and return 0.
 */
745
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
746 747 748
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
749 750 751 752 753 754
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
755 756
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
757

758
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
774 775 776 777 778
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

779 780 781
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
782
		err = ext4_journal_get_create_access(handle, bh);
783
		if (err) {
784 785
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
786 787 788 789 790 791 792 793
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
794
		if (n == indirect_blks) {
795 796 797 798 799 800
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
801
			for (i = 1; i < num; i++)
802 803 804 805 806 807
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

808 809
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
810 811 812 813 814 815 816
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
817
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
818
	for (i = 1; i <= n ; i++) {
819
		/*
820 821 822
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
823
		 */
824 825
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
826
	}
827 828
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
829

830
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
831 832 833 834 835

	return err;
}

/**
836
 * ext4_splice_branch - splice the allocated branch onto inode.
T
Theodore Ts'o 已提交
837
 * @handle: handle for this transaction
838 839 840
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
841
 *	ext4_alloc_branch)
842 843 844 845 846 847 848 849
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
850
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
851 852
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
853 854 855
{
	int i;
	int err = 0;
856
	ext4_fsblk_t current_block;
857 858 859 860 861 862 863 864

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
865
		err = ext4_journal_get_write_access(handle, where->bh);
866 867 868 869 870 871 872 873 874 875 876 877 878 879
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
880
			*(where->p + i) = cpu_to_le32(current_block++);
881 882 883 884 885 886 887 888 889 890 891
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
892
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
893 894
		 */
		jbd_debug(5, "splicing indirect only\n");
895 896
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
897 898 899 900 901 902
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
903
		ext4_mark_inode_dirty(handle, inode);
904 905 906 907 908 909
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
910
		/*
911 912 913
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
914
		 */
915 916
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
917
	}
918 919
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
920 921 922 923 924

	return err;
}

/*
925
 * The ext4_ind_map_blocks() function handles non-extents inodes
926
 * (i.e., using the traditional indirect/double-indirect i_blocks
927
 * scheme) for ext4_map_blocks().
928
 *
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
945
 *
946 947 948 949 950
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
951
 */
952 953
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
954
			       int flags)
955 956
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
957
	ext4_lblk_t offsets[4];
958 959
	Indirect chain[4];
	Indirect *partial;
960
	ext4_fsblk_t goal;
961 962 963 964
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
965
	ext4_fsblk_t first_block = 0;
966

967
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
968
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
969
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
970
				   &blocks_to_boundary);
971 972 973 974

	if (depth == 0)
		goto out;

975
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
976 977 978 979 980 981

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
982
		while (count < map->m_len && count <= blocks_to_boundary) {
983
			ext4_fsblk_t blk;
984 985 986 987 988 989 990 991

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
992
		goto got_it;
993 994 995
	}

	/* Next simple case - plain lookup or failed read of indirect block */
996
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
997 998 999
		goto cleanup;

	/*
1000
	 * Okay, we need to do block allocation.
1001
	*/
1002
	goal = ext4_find_goal(inode, map->m_lblk, partial);
1003 1004 1005 1006 1007 1008 1009 1010

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1011
	count = ext4_blks_to_allocate(partial, indirect_blks,
1012
				      map->m_len, blocks_to_boundary);
1013
	/*
1014
	 * Block out ext4_truncate while we alter the tree
1015
	 */
1016
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1017 1018
				&count, goal,
				offsets + (partial - chain), partial);
1019 1020

	/*
1021
	 * The ext4_splice_branch call will free and forget any buffers
1022 1023 1024 1025 1026 1027
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1028
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1029
					 partial, indirect_blks, count);
1030
	if (err)
1031 1032
		goto cleanup;

1033
	map->m_flags |= EXT4_MAP_NEW;
1034 1035

	ext4_update_inode_fsync_trans(handle, inode, 1);
1036
got_it:
1037 1038 1039
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1040
	if (count > blocks_to_boundary)
1041
		map->m_flags |= EXT4_MAP_BOUNDARY;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1055 1056
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1057
{
1058
	return &EXT4_I(inode)->i_reserved_quota;
1059
}
1060
#endif
1061

1062 1063
/*
 * Calculate the number of metadata blocks need to reserve
1064
 * to allocate a new block at @lblocks for non extent file based file
1065
 */
1066 1067
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1068
{
1069
	struct ext4_inode_info *ei = EXT4_I(inode);
1070
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1071
	int blk_bits;
1072

1073 1074
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1075

1076
	lblock -= EXT4_NDIR_BLOCKS;
1077

1078 1079 1080 1081 1082 1083 1084
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1085
	blk_bits = order_base_2(lblock);
1086
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1087 1088 1089 1090
}

/*
 * Calculate the number of metadata blocks need to reserve
1091
 * to allocate a block located at @lblock
1092
 */
1093
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1094
{
1095
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1096
		return ext4_ext_calc_metadata_amount(inode, lblock);
1097

1098
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1099 1100
}

1101 1102 1103 1104
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1105 1106
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1107 1108
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1109 1110 1111
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1112
	trace_ext4_da_update_reserve_space(inode, used);
1113 1114 1115 1116 1117 1118 1119 1120
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1121

1122 1123 1124
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1125 1126
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1127
	ei->i_allocated_meta_blocks = 0;
1128

1129 1130 1131 1132 1133 1134
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1135 1136
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1137
		ei->i_reserved_meta_blocks = 0;
1138
		ei->i_da_metadata_calc_len = 0;
1139
	}
1140
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1141

1142 1143
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1144
		dquot_claim_block(inode, used);
1145
	else {
1146 1147 1148
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1149
		 * not re-claim the quota for fallocated blocks.
1150
		 */
1151
		dquot_release_reservation_block(inode, used);
1152
	}
1153 1154 1155 1156 1157 1158

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1159 1160
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1161
		ext4_discard_preallocations(inode);
1162 1163
}

1164
static int __check_block_validity(struct inode *inode, const char *func,
1165 1166
				unsigned int line,
				struct ext4_map_blocks *map)
1167
{
1168 1169
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1170 1171 1172 1173
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1174 1175 1176 1177 1178
		return -EIO;
	}
	return 0;
}

1179
#define check_block_validity(inode, map)	\
1180
	__check_block_validity((inode), __func__, __LINE__, (map))
1181

1182
/*
1183 1184
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1218 1219 1220 1221 1222 1223 1224 1225 1226
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1227 1228 1229 1230 1231
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1232 1233
			if (num >= max_pages) {
				done = 1;
1234
				break;
1235
			}
1236 1237 1238 1239 1240 1241
		}
		pagevec_release(&pvec);
	}
	return num;
}

1242
/*
1243
 * The ext4_map_blocks() function tries to look up the requested blocks,
1244
 * and returns if the blocks are already mapped.
1245 1246 1247 1248 1249
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1250 1251
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1264 1265
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1266 1267
{
	int retval;
1268

1269 1270 1271 1272
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1273
	/*
1274 1275
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1276 1277
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1278
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1279
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1280
	} else {
1281
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1282
	}
1283
	up_read((&EXT4_I(inode)->i_data_sem));
1284

1285
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1286
		int ret = check_block_validity(inode, map);
1287 1288 1289 1290
		if (ret != 0)
			return ret;
	}

1291
	/* If it is only a block(s) look up */
1292
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1293 1294 1295 1296 1297 1298 1299 1300 1301
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1302
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1303 1304
		return retval;

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1315
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1316

1317
	/*
1318 1319 1320 1321
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1322 1323
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1324 1325 1326 1327 1328 1329 1330

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1331
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1332
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1333 1334 1335 1336
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1337
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1338
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1339
	} else {
1340
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1341

1342
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1343 1344 1345 1346 1347
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1348
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1349
		}
1350

1351 1352 1353 1354 1355 1356 1357
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1358
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1359 1360
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1361
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1362
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1363

1364
	up_write((&EXT4_I(inode)->i_data_sem));
1365
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1366
		int ret = check_block_validity(inode, map);
1367 1368 1369
		if (ret != 0)
			return ret;
	}
1370 1371 1372
	return retval;
}

1373 1374 1375
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1376 1377
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1378
{
1379
	handle_t *handle = ext4_journal_current_handle();
1380
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1381
	int ret = 0, started = 0;
1382
	int dio_credits;
1383

1384 1385 1386 1387
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1388
		/* Direct IO write... */
1389 1390 1391
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1392
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1393
		if (IS_ERR(handle)) {
1394
			ret = PTR_ERR(handle);
1395
			return ret;
1396
		}
J
Jan Kara 已提交
1397
		started = 1;
1398 1399
	}

1400
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1401
	if (ret > 0) {
1402 1403 1404
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1405
		ret = 0;
1406
	}
J
Jan Kara 已提交
1407 1408
	if (started)
		ext4_journal_stop(handle);
1409 1410 1411
	return ret;
}

1412 1413 1414 1415 1416 1417 1418
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1419 1420 1421
/*
 * `handle' can be NULL if create is zero
 */
1422
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1423
				ext4_lblk_t block, int create, int *errp)
1424
{
1425 1426
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1427 1428 1429 1430
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1431 1432 1433 1434
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1446
	}
1447 1448 1449
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1464
		}
1465 1466 1467 1468 1469 1470 1471
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1472
	}
1473 1474 1475 1476 1477 1478
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1479 1480
}

1481
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1482
			       ext4_lblk_t block, int create, int *err)
1483
{
1484
	struct buffer_head *bh;
1485

1486
	bh = ext4_getblk(handle, inode, block, create, err);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1500 1501 1502 1503 1504 1505 1506
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1507 1508 1509 1510 1511 1512 1513
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1514 1515
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1516
	     block_start = block_end, bh = next) {
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1534
 * close off a transaction and start a new one between the ext4_get_block()
1535
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1536 1537
 * prepare_write() is the right place.
 *
1538 1539
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1540 1541 1542 1543
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1544
 * By accident, ext4 can be reentered when a transaction is open via
1545 1546 1547 1548 1549 1550
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1551
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1552 1553 1554 1555 1556
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1557
				       struct buffer_head *bh)
1558
{
1559 1560 1561
	int dirty = buffer_dirty(bh);
	int ret;

1562 1563
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1564
	/*
C
Christoph Hellwig 已提交
1565
	 * __block_write_begin() could have dirtied some buffers. Clean
1566 1567
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
1568
	 * by __block_write_begin() isn't a real problem here as we clear
1569 1570 1571 1572 1573 1574 1575 1576 1577
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1578 1579
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1590 1591
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1592
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1593 1594
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1595
{
1596
	struct inode *inode = mapping->host;
1597
	int ret, needed_blocks;
1598 1599
	handle_t *handle;
	int retries = 0;
1600
	struct page *page;
1601
	pgoff_t index;
1602
	unsigned from, to;
N
Nick Piggin 已提交
1603

1604
	trace_ext4_write_begin(inode, pos, len, flags);
1605 1606 1607 1608 1609
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1610
	index = pos >> PAGE_CACHE_SHIFT;
1611 1612
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1613 1614

retry:
1615 1616 1617 1618
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1619
	}
1620

1621 1622 1623 1624
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1625
	page = grab_cache_page_write_begin(mapping, index, flags);
1626 1627 1628 1629 1630 1631 1632
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1633
	if (ext4_should_dioread_nolock(inode))
1634
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1635
	else
1636
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1637 1638

	if (!ret && ext4_should_journal_data(inode)) {
1639 1640 1641
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1642 1643

	if (ret) {
1644 1645
		unlock_page(page);
		page_cache_release(page);
1646
		/*
1647
		 * __block_write_begin may have instantiated a few blocks
1648 1649
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1650 1651 1652
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1653
		 */
1654
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1655 1656 1657 1658
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1659
			ext4_truncate_failed_write(inode);
1660
			/*
1661
			 * If truncate failed early the inode might
1662 1663 1664 1665 1666 1667 1668
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1669 1670
	}

1671
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1672
		goto retry;
1673
out:
1674 1675 1676
	return ret;
}

N
Nick Piggin 已提交
1677 1678
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1679 1680 1681 1682
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1683
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1684 1685
}

1686
static int ext4_generic_write_end(struct file *file,
1687 1688 1689
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1732 1733 1734 1735
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1736
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1737 1738
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1739
static int ext4_ordered_write_end(struct file *file,
1740 1741 1742
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1743
{
1744
	handle_t *handle = ext4_journal_current_handle();
1745
	struct inode *inode = mapping->host;
1746 1747
	int ret = 0, ret2;

1748
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1749
	ret = ext4_jbd2_file_inode(handle, inode);
1750 1751

	if (ret == 0) {
1752
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1753
							page, fsdata);
1754
		copied = ret2;
1755
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1756 1757 1758 1759 1760
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1761 1762
		if (ret2 < 0)
			ret = ret2;
1763
	}
1764
	ret2 = ext4_journal_stop(handle);
1765 1766
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1767

1768
	if (pos + len > inode->i_size) {
1769
		ext4_truncate_failed_write(inode);
1770
		/*
1771
		 * If truncate failed early the inode might still be
1772 1773 1774 1775 1776 1777 1778 1779
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1780
	return ret ? ret : copied;
1781 1782
}

N
Nick Piggin 已提交
1783
static int ext4_writeback_write_end(struct file *file,
1784 1785 1786
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1787
{
1788
	handle_t *handle = ext4_journal_current_handle();
1789
	struct inode *inode = mapping->host;
1790 1791
	int ret = 0, ret2;

1792
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1793
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1794
							page, fsdata);
1795
	copied = ret2;
1796
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1797 1798 1799 1800 1801 1802
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1803 1804
	if (ret2 < 0)
		ret = ret2;
1805

1806
	ret2 = ext4_journal_stop(handle);
1807 1808
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1809

1810
	if (pos + len > inode->i_size) {
1811
		ext4_truncate_failed_write(inode);
1812
		/*
1813
		 * If truncate failed early the inode might still be
1814 1815 1816 1817 1818 1819 1820
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1821
	return ret ? ret : copied;
1822 1823
}

N
Nick Piggin 已提交
1824
static int ext4_journalled_write_end(struct file *file,
1825 1826 1827
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1828
{
1829
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1830
	struct inode *inode = mapping->host;
1831 1832
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1833
	unsigned from, to;
1834
	loff_t new_i_size;
1835

1836
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1837 1838 1839 1840 1841 1842 1843 1844
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1845 1846

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1847
				to, &partial, write_end_fn);
1848 1849
	if (!partial)
		SetPageUptodate(page);
1850 1851
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1852
		i_size_write(inode, pos+copied);
1853
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1854 1855
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1856
		ret2 = ext4_mark_inode_dirty(handle, inode);
1857 1858 1859
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1860

1861
	unlock_page(page);
1862
	page_cache_release(page);
1863
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1864 1865 1866 1867 1868 1869
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1870
	ret2 = ext4_journal_stop(handle);
1871 1872
	if (!ret)
		ret = ret2;
1873
	if (pos + len > inode->i_size) {
1874
		ext4_truncate_failed_write(inode);
1875
		/*
1876
		 * If truncate failed early the inode might still be
1877 1878 1879 1880 1881 1882
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1883 1884

	return ret ? ret : copied;
1885
}
1886

1887 1888 1889 1890
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1891
{
A
Aneesh Kumar K.V 已提交
1892
	int retries = 0;
1893
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1894
	struct ext4_inode_info *ei = EXT4_I(inode);
1895
	unsigned long md_needed;
1896
	int ret;
1897 1898 1899 1900 1901 1902

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1903
repeat:
1904
	spin_lock(&ei->i_block_reservation_lock);
1905
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1906
	trace_ext4_da_reserve_space(inode, md_needed);
1907
	spin_unlock(&ei->i_block_reservation_lock);
1908

1909
	/*
1910 1911 1912
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1913
	 */
1914
	ret = dquot_reserve_block(inode, 1);
1915 1916
	if (ret)
		return ret;
1917 1918 1919 1920
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1921
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1922
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1923 1924 1925 1926
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1927 1928
		return -ENOSPC;
	}
1929
	spin_lock(&ei->i_block_reservation_lock);
1930
	ei->i_reserved_data_blocks++;
1931 1932
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1933

1934 1935 1936
	return 0;       /* success */
}

1937
static void ext4_da_release_space(struct inode *inode, int to_free)
1938 1939
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1940
	struct ext4_inode_info *ei = EXT4_I(inode);
1941

1942 1943 1944
	if (!to_free)
		return;		/* Nothing to release, exit */

1945
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1946

L
Li Zefan 已提交
1947
	trace_ext4_da_release_space(inode, to_free);
1948
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1949
		/*
1950 1951 1952 1953
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1954
		 */
1955 1956 1957 1958 1959 1960
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1961
	}
1962
	ei->i_reserved_data_blocks -= to_free;
1963

1964 1965 1966 1967 1968 1969
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1970 1971
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1972
		ei->i_reserved_meta_blocks = 0;
1973
		ei->i_da_metadata_calc_len = 0;
1974
	}
1975

1976
	/* update fs dirty data blocks counter */
1977
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1978 1979

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1980

1981
	dquot_release_reservation_block(inode, to_free);
1982 1983 1984
}

static void ext4_da_page_release_reservation(struct page *page,
1985
					     unsigned long offset)
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
2002
	ext4_da_release_space(page->mapping->host, to_release);
2003
}
2004

2005 2006 2007 2008 2009 2010
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
2011
 * them with writepage() call back
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2022 2023
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2024
{
2025 2026 2027 2028 2029
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2030
	loff_t size = i_size_read(inode);
2031 2032
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2033
	int journal_data = ext4_should_journal_data(inode);
2034
	sector_t pblock = 0, cur_logical = 0;
2035
	struct ext4_io_submit io_submit;
2036 2037

	BUG_ON(mpd->next_page <= mpd->first_page);
2038
	memset(&io_submit, 0, sizeof(io_submit));
2039 2040 2041
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2042
	 * If we look at mpd->b_blocknr we would only be looking
2043 2044
	 * at the currently mapped buffer_heads.
	 */
2045 2046 2047
	index = mpd->first_page;
	end = mpd->next_page - 1;

2048
	pagevec_init(&pvec, 0);
2049
	while (index <= end) {
2050
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2051 2052 2053
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2054
			int commit_write = 0, redirty_page = 0;
2055 2056
			struct page *page = pvec.pages[i];

2057 2058 2059
			index = page->index;
			if (index > end)
				break;
2060 2061 2062 2063 2064

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2065 2066 2067 2068 2069 2070
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2071 2072 2073 2074 2075
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2076
			/*
2077 2078
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2079
			 * __block_write_begin.  If this fails,
2080
			 * redirty the page and move on.
2081
			 */
2082
			if (!page_has_buffers(page)) {
2083
				if (__block_write_begin(page, 0, len,
2084 2085 2086 2087 2088 2089 2090 2091 2092
						noalloc_get_block_write)) {
				redirty_page:
					redirty_page_for_writepage(mpd->wbc,
								   page);
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2093

2094 2095
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2096
			do {
2097
				if (!bh)
2098
					goto redirty_page;
2099 2100 2101
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2102 2103 2104 2105
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2106 2107 2108 2109 2110 2111 2112
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2113

2114 2115 2116
				/* redirty page if block allocation undone */
				if (buffer_delay(bh) || buffer_unwritten(bh))
					redirty_page = 1;
2117 2118
				bh = bh->b_this_page;
				block_start += bh->b_size;
2119 2120
				cur_logical++;
				pblock++;
2121 2122 2123 2124
			} while (bh != page_bufs);

			if (redirty_page)
				goto redirty_page;
2125 2126 2127 2128 2129

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2130 2131 2132 2133 2134 2135
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2136
				err = __ext4_journalled_writepage(page, len);
2137
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2138 2139
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2140 2141 2142
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
2143 2144

			if (!err)
2145
				mpd->pages_written++;
2146 2147 2148 2149 2150 2151 2152 2153 2154
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2155
	ext4_io_submit(&io_submit);
2156 2157 2158
	return ret;
}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2177
			if (page->index > end)
2178 2179 2180 2181 2182 2183 2184
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2185 2186
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2187 2188 2189 2190
	}
	return;
}

2191 2192 2193
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2206 2207 2208
	return;
}

2209
/*
2210 2211
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2212
 *
2213
 * @mpd - bh describing space
2214 2215 2216 2217
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2218
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2219
{
2220
	int err, blks, get_blocks_flags;
2221
	struct ext4_map_blocks map, *mapp = NULL;
2222 2223 2224 2225
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2226 2227

	/*
2228 2229
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2230
	 */
2231 2232 2233 2234 2235
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2236 2237 2238 2239

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2240
	/*
2241
	 * Call ext4_map_blocks() to allocate any delayed allocation
2242 2243 2244 2245 2246 2247 2248 2249
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2250
	 * want to change *many* call functions, so ext4_map_blocks()
2251 2252 2253 2254 2255 2256
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2257
	 */
2258 2259
	map.m_lblk = next;
	map.m_len = max_blocks;
2260
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2261 2262
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2263
	if (mpd->b_state & (1 << BH_Delay))
2264 2265
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2266
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2267
	if (blks < 0) {
2268 2269
		struct super_block *sb = mpd->inode->i_sb;

2270
		err = blks;
2271
		/*
2272 2273 2274 2275
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2276 2277
		 */
		if (err == -EAGAIN)
2278
			goto submit_io;
2279 2280

		if (err == -ENOSPC &&
2281
		    ext4_count_free_blocks(sb)) {
2282
			mpd->retval = err;
2283
			goto submit_io;
2284 2285
		}

2286
		/*
2287 2288 2289 2290 2291
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2292
		 */
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2304
		}
2305
		/* invalidate all the pages */
2306
		ext4_da_block_invalidatepages(mpd, next,
2307
				mpd->b_size >> mpd->inode->i_blkbits);
2308
		return;
2309
	}
2310 2311
	BUG_ON(blks == 0);

2312
	mapp = &map;
2313 2314 2315
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2316

2317 2318 2319
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2320

2321 2322 2323
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2324 2325
			/* This only happens if the journal is aborted */
			return;
2326 2327 2328
	}

	/*
2329
	 * Update on-disk size along with block allocation.
2330 2331 2332 2333 2334 2335
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2336 2337 2338 2339 2340
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2341 2342
	}

2343
submit_io:
2344
	mpage_da_submit_io(mpd, mapp);
2345
	mpd->io_done = 1;
2346 2347
}

2348 2349
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2361 2362
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2363 2364
{
	sector_t next;
2365
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2366

2367 2368 2369 2370
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2371
	 * ext4_map_blocks() multiple times in a loop
2372 2373 2374 2375
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2376
	/* check if thereserved journal credits might overflow */
2377
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2398 2399 2400
	/*
	 * First block in the extent
	 */
2401 2402 2403 2404
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2405 2406 2407
		return;
	}

2408
	next = mpd->b_blocknr + nrblocks;
2409 2410 2411
	/*
	 * Can we merge the block to our big extent?
	 */
2412 2413
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2414 2415 2416
		return;
	}

2417
flush_it:
2418 2419 2420 2421
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2422
	mpage_da_map_and_submit(mpd);
2423
	return;
2424 2425
}

2426
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2427
{
2428
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2429 2430
}

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
2441 2442
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
2443 2444
{
	struct inode *inode = mpd->inode;
2445
	struct buffer_head *bh, *head;
2446 2447 2448 2449 2450 2451 2452 2453
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2454
		 * and start IO on them
2455 2456
		 */
		if (mpd->next_page != mpd->first_page) {
2457
			mpage_da_map_and_submit(mpd);
2458 2459 2460 2461 2462 2463
			/*
			 * skip rest of the page in the page_vec
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2474 2475 2476
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2477 2478 2479 2480 2481 2482 2483
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2484 2485
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2486 2487
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2488 2489 2490 2491 2492 2493 2494 2495
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2496 2497 2498 2499
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2500
			 * with the page in ext4_writepage
2501
			 */
2502
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2503 2504 2505
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2506 2507
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2508 2509 2510 2511 2512 2513 2514 2515 2516
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2517 2518
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2519
			}
2520 2521 2522 2523 2524 2525 2526 2527
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2528 2529 2530
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2531 2532 2533 2534 2535 2536 2537
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2538 2539
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2540
				  struct buffer_head *bh, int create)
2541
{
2542
	struct ext4_map_blocks map;
2543
	int ret = 0;
2544 2545 2546 2547
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2548 2549

	BUG_ON(create == 0);
2550 2551 2552 2553
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2554 2555 2556 2557 2558 2559

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2560 2561 2562 2563 2564 2565
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2566
		/*
C
Christoph Hellwig 已提交
2567
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2568
		 */
2569
		ret = ext4_da_reserve_space(inode, iblock);
2570 2571 2572 2573
		if (ret)
			/* not enough space to reserve */
			return ret;

2574 2575 2576 2577
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2578 2579
	}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2594
}
2595

2596 2597 2598
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
2599
 * callback function for block_write_begin() and block_write_full_page().
2600
 * These functions should only try to map a single block at a time.
2601 2602 2603 2604 2605
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2606 2607 2608
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2609 2610
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2611 2612
				   struct buffer_head *bh_result, int create)
{
2613
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2614
	return _ext4_get_block(inode, iblock, bh_result, 0);
2615 2616
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2639
	ClearPageChecked(page);
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2665
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2666 2667 2668 2669
out:
	return ret;
}

2670 2671 2672
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2673
/*
2674 2675 2676 2677 2678 2679 2680 2681 2682
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2683 2684 2685 2686 2687
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2713
 */
2714
static int ext4_writepage(struct page *page,
2715
			  struct writeback_control *wbc)
2716
{
T
Theodore Ts'o 已提交
2717
	int ret = 0, commit_write = 0;
2718
	loff_t size;
2719
	unsigned int len;
2720
	struct buffer_head *page_bufs = NULL;
2721 2722
	struct inode *inode = page->mapping->host;

2723
	trace_ext4_writepage(inode, page);
2724 2725 2726 2727 2728
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2729

T
Theodore Ts'o 已提交
2730 2731
	/*
	 * If the page does not have buffers (for whatever reason),
2732
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2733 2734
	 * fails, redirty the page and move on.
	 */
2735
	if (!page_has_buffers(page)) {
2736
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2737 2738
					noalloc_get_block_write)) {
		redirty_page:
2739 2740 2741 2742
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2743 2744 2745 2746 2747
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2748
		/*
2749 2750 2751 2752
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2753
		 */
T
Theodore Ts'o 已提交
2754 2755 2756
		goto redirty_page;
	}
	if (commit_write)
2757
		/* now mark the buffer_heads as dirty and uptodate */
2758
		block_commit_write(page, 0, len);
2759

2760
	if (PageChecked(page) && ext4_should_journal_data(inode))
2761 2762 2763 2764
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2765
		return __ext4_journalled_writepage(page, len);
2766

T
Theodore Ts'o 已提交
2767
	if (buffer_uninit(page_bufs)) {
2768 2769 2770 2771
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2772 2773
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2774 2775 2776 2777

	return ret;
}

2778
/*
2779 2780 2781 2782 2783
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2784
 */
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2796
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2797 2798 2799 2800 2801
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2814 2815
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2816 2817 2818 2819
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
2820
	unsigned nr_pages;
2821 2822 2823
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;
2824
	int tag;
2825 2826 2827 2828 2829

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2830 2831 2832 2833 2834
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2835
	*done_index = index;
2836 2837 2838
	while (!done && (index <= end)) {
		int i;

2839
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

2859 2860
			*done_index = page->index + 1;

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2930
static int ext4_da_writepages(struct address_space *mapping,
2931
			      struct writeback_control *wbc)
2932
{
2933 2934
	pgoff_t	index;
	int range_whole = 0;
2935
	handle_t *handle = NULL;
2936
	struct mpage_da_data mpd;
2937
	struct inode *inode = mapping->host;
2938 2939
	int pages_written = 0;
	long pages_skipped;
2940
	unsigned int max_pages;
2941
	int range_cyclic, cycled = 1, io_done = 0;
2942 2943
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2944
	loff_t range_start = wbc->range_start;
2945
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
	pgoff_t done_index = 0;
2947
	pgoff_t end;
2948

2949
	trace_ext4_da_writepages(inode, wbc);
2950

2951 2952 2953 2954 2955
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2956
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2957
		return 0;
2958 2959 2960 2961 2962

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2963
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2964 2965 2966 2967 2968
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2969
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2970 2971
		return -EROFS;

2972 2973
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2974

2975 2976
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2977
		index = mapping->writeback_index;
2978 2979 2980 2981 2982
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2983 2984
		end = -1;
	} else {
2985
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2986 2987
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2988

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3006 3007 3008 3009 3010 3011
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3022 3023 3024
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3025 3026
	pages_skipped = wbc->pages_skipped;

3027
retry:
3028 3029 3030
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

3031
	while (!ret && wbc->nr_to_write > 0) {
3032 3033 3034 3035 3036 3037 3038 3039

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3040
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3041

3042 3043 3044 3045
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3046
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3047
			       "%ld pages, ino %lu; err %d", __func__,
3048
				wbc->nr_to_write, inode->i_ino, ret);
3049 3050
			goto out_writepages;
		}
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3069
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3070
		/*
3071
		 * If we have a contiguous extent of pages and we
3072 3073 3074 3075
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3076
			mpage_da_map_and_submit(&mpd);
3077 3078
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3079
		trace_ext4_da_write_pages(inode, &mpd);
3080
		wbc->nr_to_write -= mpd.pages_written;
3081

3082
		ext4_journal_stop(handle);
3083

3084
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3085 3086 3087 3088
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3089
			jbd2_journal_force_commit_nested(sbi->s_journal);
3090 3091 3092
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3093 3094 3095 3096
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3097 3098
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3099
			ret = 0;
3100
			io_done = 1;
3101
		} else if (wbc->nr_to_write)
3102 3103 3104 3105 3106 3107
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3108
	}
3109 3110 3111 3112 3113 3114 3115
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3116
	if (pages_skipped != wbc->pages_skipped)
3117 3118
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3119
			 "with nr_to_write = %ld ret = %d",
3120
			 __func__, wbc->nr_to_write, ret);
3121 3122

	/* Update index */
3123
	wbc->range_cyclic = range_cyclic;
3124 3125 3126 3127 3128
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
3129
		mapping->writeback_index = done_index;
3130

3131
out_writepages:
3132
	wbc->nr_to_write -= nr_to_writebump;
3133
	wbc->range_start = range_start;
3134
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3135
	return ret;
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145 3146
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3147
	 * counters can get slightly wrong with percpu_counter_batch getting
3148 3149 3150 3151 3152 3153 3154 3155 3156
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3157 3158
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3159 3160 3161
		 */
		return 1;
	}
3162 3163 3164 3165 3166 3167 3168
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3169 3170 3171
	return 0;
}

3172
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3173 3174
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3175
{
3176
	int ret, retries = 0;
3177 3178 3179 3180 3181 3182
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3183 3184 3185 3186 3187 3188 3189

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3190
	trace_ext4_da_write_begin(inode, pos, len, flags);
3191
retry:
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3203 3204 3205
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3206

3207
	page = grab_cache_page_write_begin(mapping, index, flags);
3208 3209 3210 3211 3212
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3213 3214
	*pagep = page;

3215
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3216 3217 3218 3219
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3220 3221 3222 3223 3224 3225
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3226
			ext4_truncate_failed_write(inode);
3227 3228
	}

3229 3230
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3231 3232 3233 3234
out:
	return ret;
}

3235 3236 3237 3238 3239
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3240
					    unsigned long offset)
3241 3242 3243 3244 3245 3246 3247 3248 3249
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3250
	for (i = 0; i < idx; i++)
3251 3252
		bh = bh->b_this_page;

3253
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3254 3255 3256 3257
		return 0;
	return 1;
}

3258
static int ext4_da_write_end(struct file *file,
3259 3260 3261
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3262 3263 3264 3265 3266
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3267
	unsigned long start, end;
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3281

3282
	trace_ext4_da_write_end(inode, pos, len, copied);
3283
	start = pos & (PAGE_CACHE_SIZE - 1);
3284
	end = start + copied - 1;
3285 3286 3287 3288 3289 3290 3291 3292

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3304

3305 3306 3307
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3308 3309 3310 3311 3312
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3313
		}
3314
	}
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3336
	ext4_da_page_release_reservation(page, offset);
3337 3338 3339 3340 3341 3342 3343

out:
	ext4_invalidatepage(page, offset);

	return;
}

3344 3345 3346 3347 3348
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3349 3350
	trace_ext4_alloc_da_blocks(inode);

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3361
	 *
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3381
	 *
3382 3383 3384 3385 3386 3387
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3388

3389 3390 3391 3392 3393
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3394
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3395 3396 3397 3398 3399 3400 3401 3402
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3403
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3404 3405 3406 3407 3408
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3419 3420
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3432
		 * NB. EXT4_STATE_JDATA is not set on files other than
3433 3434 3435 3436 3437 3438
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3439
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3440
		journal = EXT4_JOURNAL(inode);
3441 3442 3443
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3444 3445 3446 3447 3448

		if (err)
			return 0;
	}

3449
	return generic_block_bmap(mapping, block, ext4_get_block);
3450 3451
}

3452
static int ext4_readpage(struct file *file, struct page *page)
3453
{
3454
	return mpage_readpage(page, ext4_get_block);
3455 3456 3457
}

static int
3458
ext4_readpages(struct file *file, struct address_space *mapping,
3459 3460
		struct list_head *pages, unsigned nr_pages)
{
3461
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3462 3463
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3484
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3485
{
3486
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3487

3488 3489 3490 3491 3492
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3493 3494 3495 3496 3497 3498
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3499 3500 3501 3502
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3503 3504
}

3505
static int ext4_releasepage(struct page *page, gfp_t wait)
3506
{
3507
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3508 3509 3510 3511

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3512 3513 3514 3515
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3516 3517 3518
}

/*
3519 3520
 * O_DIRECT for ext3 (or indirect map) based files
 *
3521 3522 3523 3524 3525
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3526 3527
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3528
 */
3529
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3530 3531
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3532 3533 3534
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3535
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3536
	handle_t *handle;
3537 3538 3539
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3540
	int retries = 0;
3541 3542 3543 3544 3545

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3546 3547 3548 3549 3550 3551
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3552
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3553 3554 3555 3556
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3557 3558
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3559
			ext4_journal_stop(handle);
3560 3561 3562
		}
	}

3563
retry:
3564
	if (rw == READ && ext4_should_dioread_nolock(inode))
3565
		ret = __blockdev_direct_IO(rw, iocb, inode,
3566 3567
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3568 3569
				 ext4_get_block, NULL, NULL, 0);
	else {
3570 3571
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3572
				 offset, nr_segs,
3573
				 ext4_get_block, NULL);
3574 3575 3576 3577 3578 3579 3580 3581 3582

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3583 3584
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3585

J
Jan Kara 已提交
3586
	if (orphan) {
3587 3588
		int err;

J
Jan Kara 已提交
3589 3590 3591 3592 3593 3594 3595
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3596 3597 3598
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3599 3600 3601
			goto out;
		}
		if (inode->i_nlink)
3602
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3603
		if (ret > 0) {
3604 3605 3606 3607 3608 3609 3610 3611
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3612
				 * ext4_mark_inode_dirty() to userspace.  So
3613 3614
				 * ignore it.
				 */
3615
				ext4_mark_inode_dirty(handle, inode);
3616 3617
			}
		}
3618
		err = ext4_journal_stop(handle);
3619 3620 3621 3622 3623 3624 3625
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3626 3627 3628 3629 3630
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3631
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3632 3633
		   struct buffer_head *bh_result, int create)
{
3634
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3635
		   inode->i_ino, create);
3636 3637
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3638 3639 3640
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3641 3642
			    ssize_t size, void *private, int ret,
			    bool is_async)
3643 3644 3645
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3646 3647
	unsigned long flags;
	struct ext4_inode_info *ei;
3648

3649 3650
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3651
		goto out;
3652

3653 3654 3655 3656 3657 3658
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3659
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3660 3661
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3662 3663 3664 3665
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3666 3667
	}

3668 3669
	io_end->offset = offset;
	io_end->size = size;
3670 3671 3672 3673
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3674 3675
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3676
	/* Add the io_end to per-inode completed aio dio list*/
3677 3678 3679 3680
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3681 3682 3683

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3684 3685
	iocb->private = NULL;
}
3686

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3704
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3752 3753 3754 3755 3756 3757 3758 3759 3760
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3761 3762 3763 3764
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3783 3784 3785
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3786 3787
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3788 3789
		 *
 		 * As to previously fallocated extents, ext4 get_block
3790 3791 3792
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3793 3794 3795 3796 3797 3798 3799 3800
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3801
 		 */
3802 3803 3804
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3805
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3806 3807 3808 3809
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3810
			 * direct IO, so that later ext4_map_blocks()
3811 3812 3813 3814 3815 3816 3817
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3818 3819 3820
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3821
					 ext4_get_block_write,
3822
					 ext4_end_io_dio);
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3842 3843
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3844
			int err;
3845 3846 3847 3848
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3849 3850 3851 3852
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3853
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3854
		}
3855 3856
		return ret;
	}
3857 3858

	/* for write the the end of file case, we fall back to old way */
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

3869
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3870 3871 3872 3873 3874
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3875
/*
3876
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3888
static int ext4_journalled_set_page_dirty(struct page *page)
3889 3890 3891 3892 3893
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3894
static const struct address_space_operations ext4_ordered_aops = {
3895 3896
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3897
	.writepage		= ext4_writepage,
3898 3899 3900 3901 3902 3903 3904 3905 3906
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3907
	.error_remove_page	= generic_error_remove_page,
3908 3909
};

3910
static const struct address_space_operations ext4_writeback_aops = {
3911 3912
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3913
	.writepage		= ext4_writepage,
3914 3915 3916 3917 3918 3919 3920 3921 3922
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3923
	.error_remove_page	= generic_error_remove_page,
3924 3925
};

3926
static const struct address_space_operations ext4_journalled_aops = {
3927 3928
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3929
	.writepage		= ext4_writepage,
3930 3931 3932 3933 3934 3935 3936 3937
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3938
	.error_remove_page	= generic_error_remove_page,
3939 3940
};

3941
static const struct address_space_operations ext4_da_aops = {
3942 3943
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3944
	.writepage		= ext4_writepage,
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3955
	.error_remove_page	= generic_error_remove_page,
3956 3957
};

3958
void ext4_set_aops(struct inode *inode)
3959
{
3960 3961 3962 3963
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3964
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3965 3966 3967
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3968 3969
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3970
	else
3971
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3972 3973 3974
}

/*
3975
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3976 3977 3978 3979
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3980
int ext4_block_truncate_page(handle_t *handle,
3981 3982
		struct address_space *mapping, loff_t from)
{
3983
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3984
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3985 3986
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3987 3988
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3989
	struct page *page;
3990 3991
	int err = 0;

3992 3993
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3994 3995 3996
	if (!page)
		return -EINVAL;

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4021
		ext4_get_block(inode, iblock, bh, 0);
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4042
	if (ext4_should_journal_data(inode)) {
4043
		BUFFER_TRACE(bh, "get write access");
4044
		err = ext4_journal_get_write_access(handle, bh);
4045 4046 4047 4048
		if (err)
			goto unlock;
	}

4049
	zero_user(page, offset, length);
4050 4051 4052 4053

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4054
	if (ext4_should_journal_data(inode)) {
4055
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4056
	} else {
4057
		if (ext4_should_order_data(inode))
4058
			err = ext4_jbd2_file_inode(handle, inode);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4082
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4083 4084
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4085
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4086 4087 4088
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4089
 *	This is a helper function used by ext4_truncate().
4090 4091 4092 4093 4094 4095 4096
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4097
 *	past the truncation point is possible until ext4_truncate()
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4116
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4117 4118
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4119 4120 4121 4122 4123
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4124
	/* Make k index the deepest non-null offset + 1 */
4125 4126
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4127
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4138
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4150
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4151 4152 4153 4154 4155 4156
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4157
	while (partial > p) {
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4173 4174 4175 4176 4177
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4178 4179
{
	__le32 *p;
4180
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4181 4182 4183

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4184

4185 4186
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4187 4188 4189
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4190 4191 4192
		return 1;
	}

4193 4194
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4195 4196
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4197
		}
4198
		ext4_mark_inode_dirty(handle, inode);
4199 4200
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4201 4202
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4203
			ext4_journal_get_write_access(handle, bh);
4204 4205 4206
		}
	}

4207 4208
	for (p = first; p < last; p++)
		*p = 0;
4209

4210
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4211
	return 0;
4212 4213 4214
}

/**
4215
 * ext4_free_data - free a list of data blocks
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4233
static void ext4_free_data(handle_t *handle, struct inode *inode,
4234 4235 4236
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4237
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4238 4239 4240 4241
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4242
	ext4_fsblk_t nr;		    /* Current block # */
4243 4244 4245 4246 4247 4248
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4249
		err = ext4_journal_get_write_access(handle, this_bh);
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4267 4268 4269 4270
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4271 4272 4273 4274 4275 4276 4277 4278
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4279
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4280 4281 4282
				  count, block_to_free_p, p);

	if (this_bh) {
4283
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4284 4285 4286 4287 4288 4289 4290

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4291
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4292
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4293
		else
4294 4295 4296 4297
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4298 4299 4300 4301
	}
}

/**
4302
 *	ext4_free_branches - free an array of branches
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4314
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4315 4316 4317
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4318
	ext4_fsblk_t nr;
4319 4320
	__le32 *p;

4321
	if (ext4_handle_is_aborted(handle))
4322 4323 4324 4325
		return;

	if (depth--) {
		struct buffer_head *bh;
4326
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4327 4328 4329 4330 4331 4332
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4333 4334
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4335 4336 4337 4338
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4339 4340 4341
				break;
			}

4342 4343 4344 4345 4346 4347 4348 4349
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4350 4351
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4352 4353 4354 4355 4356
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4357
			ext4_free_branches(handle, inode, bh,
4358 4359 4360
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4378
			if (ext4_handle_is_aborted(handle))
4379 4380
				return;
			if (try_to_extend_transaction(handle, inode)) {
4381
				ext4_mark_inode_dirty(handle, inode);
4382 4383
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4384 4385
			}

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4397
			ext4_free_blocks(handle, inode, 0, nr, 1,
4398 4399
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4400 4401 4402 4403 4404 4405 4406

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4407
				if (!ext4_journal_get_write_access(handle,
4408 4409 4410
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4411 4412 4413 4414
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4415 4416 4417 4418 4419 4420
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4421
		ext4_free_data(handle, inode, parent_bh, first, last);
4422 4423 4424
	}
}

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4438
/*
4439
 * ext4_truncate()
4440
 *
4441 4442
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4459
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4460
 * that this inode's truncate did not complete and it will again call
4461 4462
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4463
 * that's fine - as long as they are linked from the inode, the post-crash
4464
 * ext4_truncate() run will find them and release them.
4465
 */
4466
void ext4_truncate(struct inode *inode)
4467 4468
{
	handle_t *handle;
4469
	struct ext4_inode_info *ei = EXT4_I(inode);
4470
	__le32 *i_data = ei->i_data;
4471
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4472
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4473
	ext4_lblk_t offsets[4];
4474 4475 4476 4477
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4478
	ext4_lblk_t last_block;
4479 4480
	unsigned blocksize = inode->i_sb->s_blocksize;

4481
	if (!ext4_can_truncate(inode))
4482 4483
		return;

4484
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4485

4486
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4487
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4488

4489
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4490
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4491 4492
		return;
	}
A
Alex Tomas 已提交
4493

4494
	handle = start_transaction(inode);
4495
	if (IS_ERR(handle))
4496 4497 4498
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4499
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4500

4501 4502 4503
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4504

4505
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4518
	if (ext4_orphan_add(handle, inode))
4519 4520
		goto out_stop;

4521 4522 4523 4524 4525
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4526

4527
	ext4_discard_preallocations(inode);
4528

4529 4530 4531 4532 4533
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4534
	 * ext4 *really* writes onto the disk inode.
4535 4536 4537 4538
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4539 4540
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4541 4542 4543
		goto do_indirects;
	}

4544
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4545 4546 4547 4548
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4549
			ext4_free_branches(handle, inode, NULL,
4550 4551 4552 4553 4554 4555 4556 4557 4558
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4559
			ext4_free_branches(handle, inode, partial->bh,
4560 4561 4562 4563 4564 4565
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4566
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4567 4568 4569
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4570
		brelse(partial->bh);
4571 4572 4573 4574 4575 4576
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4577
		nr = i_data[EXT4_IND_BLOCK];
4578
		if (nr) {
4579 4580
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4581
		}
4582 4583
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4584
		if (nr) {
4585 4586
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4587
		}
4588 4589
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4590
		if (nr) {
4591 4592
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4593
		}
4594
	case EXT4_TIND_BLOCK:
4595 4596 4597
		;
	}

4598
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4599
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4600
	ext4_mark_inode_dirty(handle, inode);
4601 4602 4603 4604 4605 4606

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4607
		ext4_handle_sync(handle);
4608 4609 4610 4611 4612
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4613
	 * ext4_delete_inode(), and we allow that function to clean up the
4614 4615 4616
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4617
		ext4_orphan_del(handle, inode);
4618

4619
	ext4_journal_stop(handle);
4620 4621 4622
}

/*
4623
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4624 4625 4626 4627
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4628 4629
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4630
{
4631 4632 4633 4634 4635 4636
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4637
	iloc->bh = NULL;
4638 4639
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4640

4641 4642 4643
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4644 4645
		return -EIO;

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4656
	if (!bh) {
4657 4658
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4659 4660 4661 4662
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4686
			int i, start;
4687

4688
			start = inode_offset & ~(inodes_per_block - 1);
4689

4690 4691
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4704
			for (i = start; i < start + inodes_per_block; i++) {
4705 4706
				if (i == inode_offset)
					continue;
4707
				if (ext4_test_bit(i, bitmap_bh->b_data))
4708 4709 4710
					break;
			}
			brelse(bitmap_bh);
4711
			if (i == start + inodes_per_block) {
4712 4713 4714 4715 4716 4717 4718 4719 4720
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4721 4722 4723 4724 4725 4726 4727 4728 4729
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4730
			/* s_inode_readahead_blks is always a power of 2 */
4731 4732 4733 4734 4735 4736 4737
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4738
				num -= ext4_itable_unused_count(sb, gdp);
4739 4740 4741 4742 4743 4744 4745
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4756 4757
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4758 4759 4760 4761 4762 4763 4764 4765 4766
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4767
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4768 4769
{
	/* We have all inode data except xattrs in memory here. */
4770
	return __ext4_get_inode_loc(inode, iloc,
4771
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4772 4773
}

4774
void ext4_set_inode_flags(struct inode *inode)
4775
{
4776
	unsigned int flags = EXT4_I(inode)->i_flags;
4777 4778

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4779
	if (flags & EXT4_SYNC_FL)
4780
		inode->i_flags |= S_SYNC;
4781
	if (flags & EXT4_APPEND_FL)
4782
		inode->i_flags |= S_APPEND;
4783
	if (flags & EXT4_IMMUTABLE_FL)
4784
		inode->i_flags |= S_IMMUTABLE;
4785
	if (flags & EXT4_NOATIME_FL)
4786
		inode->i_flags |= S_NOATIME;
4787
	if (flags & EXT4_DIRSYNC_FL)
4788 4789 4790
		inode->i_flags |= S_DIRSYNC;
}

4791 4792 4793
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4814
}
4815

4816
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4817
				  struct ext4_inode_info *ei)
4818 4819
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4820 4821
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4822 4823 4824 4825 4826 4827

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4828
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4829 4830 4831 4832 4833
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4834 4835 4836 4837
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4838

4839
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4840
{
4841 4842
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4843 4844
	struct ext4_inode_info *ei;
	struct inode *inode;
4845
	journal_t *journal = EXT4_SB(sb)->s_journal;
4846
	long ret;
4847 4848
	int block;

4849 4850 4851 4852 4853 4854 4855
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4856
	iloc.bh = 0;
4857

4858 4859
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4860
		goto bad_inode;
4861
	raw_inode = ext4_raw_inode(&iloc);
4862 4863 4864
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4865
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4866 4867 4868 4869 4870
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4871
	ei->i_state_flags = 0;
4872 4873 4874 4875 4876 4877 4878 4879 4880
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4881
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4882
			/* this inode is deleted */
4883
			ret = -ESTALE;
4884 4885 4886 4887 4888 4889 4890 4891
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4892
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4893
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4894
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4895 4896
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4897
	inode->i_size = ext4_isize(raw_inode);
4898
	ei->i_disksize = inode->i_size;
4899 4900 4901
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4902 4903
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4904
	ei->i_last_alloc_group = ~0;
4905 4906 4907 4908
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4909
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4910 4911 4912
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4924
		read_lock(&journal->j_state_lock);
4925 4926 4927 4928 4929 4930 4931 4932
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4933
		read_unlock(&journal->j_state_lock);
4934 4935 4936 4937
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4938
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4940
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4941
		    EXT4_INODE_SIZE(inode->i_sb)) {
4942
			ret = -EIO;
4943
			goto bad_inode;
4944
		}
4945 4946
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4947 4948
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4949 4950
		} else {
			__le32 *magic = (void *)raw_inode +
4951
					EXT4_GOOD_OLD_INODE_SIZE +
4952
					ei->i_extra_isize;
4953
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4954
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4955 4956 4957 4958
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4959 4960 4961 4962 4963
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4964 4965 4966 4967 4968 4969 4970
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4971
	ret = 0;
4972
	if (ei->i_file_acl &&
4973
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4974 4975
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4976 4977
		ret = -EIO;
		goto bad_inode;
4978
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4979 4980 4981 4982 4983
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4984
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4985 4986
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4987
		/* Validate block references which are part of inode */
4988 4989
		ret = ext4_check_inode_blockref(inode);
	}
4990
	if (ret)
4991
		goto bad_inode;
4992

4993
	if (S_ISREG(inode->i_mode)) {
4994 4995 4996
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4997
	} else if (S_ISDIR(inode->i_mode)) {
4998 4999
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5000
	} else if (S_ISLNK(inode->i_mode)) {
5001
		if (ext4_inode_is_fast_symlink(inode)) {
5002
			inode->i_op = &ext4_fast_symlink_inode_operations;
5003 5004 5005
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5006 5007
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5008
		}
5009 5010
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5011
		inode->i_op = &ext4_special_inode_operations;
5012 5013 5014 5015 5016 5017
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5018 5019
	} else {
		ret = -EIO;
5020
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5021
		goto bad_inode;
5022
	}
5023
	brelse(iloc.bh);
5024
	ext4_set_inode_flags(inode);
5025 5026
	unlock_new_inode(inode);
	return inode;
5027 5028

bad_inode:
5029
	brelse(iloc.bh);
5030 5031
	iget_failed(inode);
	return ERR_PTR(ret);
5032 5033
}

5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5047
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5048
		raw_inode->i_blocks_high = 0;
5049
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5050 5051 5052 5053 5054 5055
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5056 5057 5058 5059
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5060
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5061
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5062
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5063
	} else {
5064
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5065 5066 5067 5068
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5069
	}
5070
	return 0;
5071 5072
}

5073 5074 5075 5076 5077 5078 5079
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5080
static int ext4_do_update_inode(handle_t *handle,
5081
				struct inode *inode,
5082
				struct ext4_iloc *iloc)
5083
{
5084 5085
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5086 5087 5088 5089 5090
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5091
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5092
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5093

5094
	ext4_get_inode_flags(ei);
5095
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5096
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5097 5098 5099 5100 5101 5102
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5103
		if (!ei->i_dtime) {
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5121 5122 5123 5124 5125 5126

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5127 5128
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5129
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5130
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5131 5132
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5133 5134
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5135
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5152
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5153
			sb->s_dirt = 1;
5154
			ext4_handle_sync(handle);
5155
			err = ext4_handle_dirty_metadata(handle, NULL,
5156
					EXT4_SB(sb)->s_sbh);
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5171 5172 5173
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5174

5175 5176 5177 5178 5179
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5180
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5181 5182
	}

5183
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5184
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5185 5186
	if (!err)
		err = rc;
5187
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5188

5189
	ext4_update_inode_fsync_trans(handle, inode, 0);
5190
out_brelse:
5191
	brelse(bh);
5192
	ext4_std_error(inode->i_sb, err);
5193 5194 5195 5196
	return err;
}

/*
5197
 * ext4_write_inode()
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5214
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5231
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5232
{
5233 5234
	int err;

5235 5236 5237
	if (current->flags & PF_MEMALLOC)
		return 0;

5238 5239 5240 5241 5242 5243
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5244

5245
		if (wbc->sync_mode != WB_SYNC_ALL)
5246 5247 5248 5249 5250
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5251

5252
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5253 5254
		if (err)
			return err;
5255
		if (wbc->sync_mode == WB_SYNC_ALL)
5256 5257
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5258 5259
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5260 5261
			err = -EIO;
		}
5262
		brelse(iloc.bh);
5263 5264
	}
	return err;
5265 5266 5267
}

/*
5268
 * ext4_setattr()
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5282 5283 5284 5285 5286 5287 5288 5289
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5290
 */
5291
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5292 5293 5294
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5295
	int orphan = 0;
5296 5297 5298 5299 5300 5301
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5302
	if (is_quota_modification(inode, attr))
5303
		dquot_initialize(inode);
5304 5305 5306 5307 5308 5309
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5310
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5311
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5312 5313 5314 5315
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5316
		error = dquot_transfer(inode, attr);
5317
		if (error) {
5318
			ext4_journal_stop(handle);
5319 5320 5321 5322 5323 5324 5325 5326
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5327 5328
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5329 5330
	}

5331
	if (attr->ia_valid & ATTR_SIZE) {
5332
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5333 5334
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5335 5336
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5337 5338 5339
		}
	}

5340
	if (S_ISREG(inode->i_mode) &&
5341 5342
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5343
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5344 5345
		handle_t *handle;

5346
		handle = ext4_journal_start(inode, 3);
5347 5348 5349 5350
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5351 5352 5353 5354
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5355 5356
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5357 5358
		if (!error)
			error = rc;
5359
		ext4_journal_stop(handle);
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5372
				orphan = 0;
5373 5374 5375 5376
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5377
		/* ext4_truncate will clear the flag */
5378
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5379
			ext4_truncate(inode);
5380 5381
	}

C
Christoph Hellwig 已提交
5382 5383 5384
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5385

C
Christoph Hellwig 已提交
5386 5387 5388 5389 5390 5391 5392 5393 5394
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5395
	if (orphan && inode->i_nlink)
5396
		ext4_orphan_del(NULL, inode);
5397 5398

	if (!rc && (ia_valid & ATTR_MODE))
5399
		rc = ext4_acl_chmod(inode);
5400 5401

err_out:
5402
	ext4_std_error(inode->i_sb, error);
5403 5404 5405 5406 5407
	if (!error)
		error = rc;
	return error;
}

5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5432

5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5460
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5461 5462
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5463
}
5464

5465
/*
5466 5467 5468
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5469
 *
5470
 * If datablocks are discontiguous, they are possible to spread over
5471
 * different block groups too. If they are contiuguous, with flexbg,
5472
 * they could still across block group boundary.
5473
 *
5474 5475
 * Also account for superblock, inode, quota and xattr blocks
 */
5476
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5477
{
5478 5479
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5506 5507
	if (groups > ngroups)
		groups = ngroups;
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5522 5523
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5524
 *
5525
 * This could be called via ext4_write_begin()
5526
 *
5527
 * We need to consider the worse case, when
5528
 * one new block per extent.
5529
 */
A
Alex Tomas 已提交
5530
int ext4_writepage_trans_blocks(struct inode *inode)
5531
{
5532
	int bpp = ext4_journal_blocks_per_page(inode);
5533 5534
	int ret;

5535
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5536

5537
	/* Account for data blocks for journalled mode */
5538
	if (ext4_should_journal_data(inode))
5539
		ret += bpp;
5540 5541
	return ret;
}
5542 5543 5544 5545 5546

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5547
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5548 5549 5550 5551 5552 5553 5554 5555 5556
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5557
/*
5558
 * The caller must have previously called ext4_reserve_inode_write().
5559 5560
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5561
int ext4_mark_iloc_dirty(handle_t *handle,
5562
			 struct inode *inode, struct ext4_iloc *iloc)
5563 5564 5565
{
	int err = 0;

5566 5567 5568
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5569 5570 5571
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5572
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5573
	err = ext4_do_update_inode(handle, inode, iloc);
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5584 5585
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5586
{
5587 5588 5589 5590 5591 5592 5593 5594 5595
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5596 5597
		}
	}
5598
	ext4_std_error(inode->i_sb, err);
5599 5600 5601
	return err;
}

5602 5603 5604 5605
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5606 5607 5608 5609
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5622 5623
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5656
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5657
{
5658
	struct ext4_iloc iloc;
5659 5660 5661
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5662 5663

	might_sleep();
5664
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5665
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5666 5667
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5668
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5682 5683
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5684 5685
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5686
					ext4_warning(inode->i_sb,
5687 5688 5689
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5690 5691
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5692 5693 5694 5695
				}
			}
		}
	}
5696
	if (!err)
5697
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5698 5699 5700 5701
	return err;
}

/*
5702
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5703 5704 5705 5706 5707
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5708
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5709 5710 5711 5712 5713 5714
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5715
void ext4_dirty_inode(struct inode *inode)
5716 5717 5718
{
	handle_t *handle;

5719
	handle = ext4_journal_start(inode, 2);
5720 5721
	if (IS_ERR(handle))
		goto out;
5722 5723 5724

	ext4_mark_inode_dirty(handle, inode);

5725
	ext4_journal_stop(handle);
5726 5727 5728 5729 5730 5731 5732 5733
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5734
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5735 5736 5737
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5738
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5739
{
5740
	struct ext4_iloc iloc;
5741 5742 5743

	int err = 0;
	if (handle) {
5744
		err = ext4_get_inode_loc(inode, &iloc);
5745 5746
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5747
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5748
			if (!err)
5749
				err = ext4_handle_dirty_metadata(handle,
5750
								 NULL,
5751
								 iloc.bh);
5752 5753 5754
			brelse(iloc.bh);
		}
	}
5755
	ext4_std_error(inode->i_sb, err);
5756 5757 5758 5759
	return err;
}
#endif

5760
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5776
	journal = EXT4_JOURNAL(inode);
5777 5778
	if (!journal)
		return 0;
5779
	if (is_journal_aborted(journal))
5780 5781
		return -EROFS;

5782 5783
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5794
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5795
	else
5796
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5797
	ext4_set_aops(inode);
5798

5799
	jbd2_journal_unlock_updates(journal);
5800 5801 5802

	/* Finally we can mark the inode as dirty. */

5803
	handle = ext4_journal_start(inode, 1);
5804 5805 5806
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5807
	err = ext4_mark_inode_dirty(handle, inode);
5808
	ext4_handle_sync(handle);
5809 5810
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5811 5812 5813

	return err;
}
5814 5815 5816 5817 5818 5819

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5820
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5821
{
5822
	struct page *page = vmf->page;
5823 5824 5825
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5826
	void *fsdata;
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5851 5852 5853 5854 5855 5856 5857
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5858 5859
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5860 5861
					ext4_bh_unmapped)) {
			unlock_page(page);
5862
			goto out_unlock;
5863
		}
5864
	}
5865
	unlock_page(page);
5866 5867 5868 5869 5870 5871 5872 5873
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5874
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5875 5876 5877
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5878
			len, len, page, fsdata);
5879 5880 5881 5882
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5883 5884
	if (ret)
		ret = VM_FAULT_SIGBUS;
5885 5886 5887
	up_read(&inode->i_alloc_sem);
	return ret;
}