inode.c 157.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "ext4_extents.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
53 54 55 56
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
57 58
}

59 60
static void ext4_invalidatepage(struct page *page, unsigned long offset);

61 62 63
/*
 * Test whether an inode is a fast symlink.
 */
64
static int ext4_inode_is_fast_symlink(struct inode *inode)
65
{
66
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 68 69 70 71 72
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
73
 * The ext4 forget function must perform a revoke if we are freeing data
74 75 76 77 78 79
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
80 81
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
82
 */
83
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
84
		struct buffer_head *bh, ext4_fsblk_t blocknr)
85 86 87
{
	int err;

88 89 90
	if (!ext4_handle_valid(handle))
		return 0;

91 92 93 94 95
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96
		  "data mode %x\n",
97 98 99 100 101 102 103 104
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

105 106
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
107
		if (bh) {
108
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
109
			return ext4_journal_forget(handle, bh);
110 111 112 113 114 115 116
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
117 118
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
119
	if (err)
120
		ext4_abort(inode->i_sb, __func__,
121 122 123 124 125 126 127 128 129 130 131
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
132
	ext4_lblk_t needed;
133 134 135 136 137 138

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
139
	 * like a regular file for ext4 to try to delete it.  Things
140 141 142 143 144 145 146
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
147 148
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
149

150
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

167
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
168 169 170
	if (!IS_ERR(result))
		return result;

171
	ext4_std_error(inode->i_sb, PTR_ERR(result));
172 173 174 175 176 177 178 179 180 181 182
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
183 184 185
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
186
		return 0;
187
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
188 189 190 191 192 193 194 195 196
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
197
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
198
{
199
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
200
	jbd_debug(2, "restarting handle %p\n", handle);
201
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
202 203 204 205 206
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
207
void ext4_delete_inode(struct inode *inode)
208 209
{
	handle_t *handle;
210
	int err;
211

212 213
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
214 215 216 217 218
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

219
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
220
	if (IS_ERR(handle)) {
221
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
222 223 224 225 226
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
227
		ext4_orphan_del(NULL, inode);
228 229 230 231
		goto no_delete;
	}

	if (IS_SYNC(inode))
232
		ext4_handle_sync(handle);
233
	inode->i_size = 0;
234 235 236 237 238 239
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
240
	if (inode->i_blocks)
241
		ext4_truncate(inode);
242 243 244 245 246 247 248

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
249
	if (!ext4_handle_has_enough_credits(handle, 3)) {
250 251 252 253 254 255 256 257 258 259 260 261
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

262
	/*
263
	 * Kill off the orphan record which ext4_truncate created.
264
	 * AKPM: I think this can be inside the above `if'.
265
	 * Note that ext4_orphan_del() has to be able to cope with the
266
	 * deletion of a non-existent orphan - this is because we don't
267
	 * know if ext4_truncate() actually created an orphan record.
268 269
	 * (Well, we could do this if we need to, but heck - it works)
	 */
270 271
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
272 273 274 275 276 277 278 279

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
280
	if (ext4_mark_inode_dirty(handle, inode))
281 282 283
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
284 285
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
304
 *	ext4_block_to_path - parse the block number into array of offsets
305 306 307
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
308 309
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
310
 *
311
 *	To store the locations of file's data ext4 uses a data structure common
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

334
static int ext4_block_to_path(struct inode *inode,
335 336
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
337
{
338 339 340
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
341 342 343 344 345 346
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
347
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
348 349 350
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
351
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
352
		offsets[n++] = EXT4_IND_BLOCK;
353 354 355
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
356
		offsets[n++] = EXT4_DIND_BLOCK;
357 358 359 360
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
361
		offsets[n++] = EXT4_TIND_BLOCK;
362 363 364 365 366
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
367
		ext4_warning(inode->i_sb, "ext4_block_to_path",
368 369 370
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
371 372 373 374 375 376
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

377
static int __ext4_check_blockref(const char *function, struct inode *inode,
378 379
				 __le32 *p, unsigned int max)
{
380
	__le32 *bref = p;
381 382
	unsigned int blk;

383
	while (bref < p+max) {
384
		blk = le32_to_cpu(*bref++);
385 386
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
387
						    blk, 1))) {
388
			ext4_error(inode->i_sb, function,
389 390
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
391 392 393 394
			return -EIO;
		}
	}
	return 0;
395 396 397 398
}


#define ext4_check_indirect_blockref(inode, bh)                         \
399
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
400 401 402
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
403
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
404 405
			      EXT4_NDIR_BLOCKS)

406
/**
407
 *	ext4_get_branch - read the chain of indirect blocks leading to data
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
432 433
 *
 *      Need to be called with
434
 *      down_read(&EXT4_I(inode)->i_data_sem)
435
 */
A
Aneesh Kumar K.V 已提交
436 437
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
438 439 440 441 442 443 444 445
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
446
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
447 448 449
	if (!p->key)
		goto no_block;
	while (--depth) {
450 451
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
452
			goto failure;
453

454 455 456 457 458 459 460 461 462 463 464
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
465

466
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
467 468 469 470 471 472 473 474 475 476 477 478 479
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
480
 *	ext4_find_near - find a place for allocation with sufficient locality
481 482 483
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
484
 *	This function returns the preferred place for block allocation.
485 486 487 488 489 490 491 492 493 494 495 496 497 498
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
499
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
500
{
501
	struct ext4_inode_info *ei = EXT4_I(inode);
502
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
503
	__le32 *p;
504
	ext4_fsblk_t bg_start;
505
	ext4_fsblk_t last_block;
506
	ext4_grpblk_t colour;
507 508
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
524 525 526 527 528 529 530
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
531 532
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

533 534 535 536 537 538 539
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

540 541
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
542
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
543 544
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
545 546 547 548
	return bg_start + colour;
}

/**
549
 *	ext4_find_goal - find a preferred place for allocation.
550 551 552 553
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
554
 *	Normally this function find the preferred place for block allocation,
555
 *	returns it.
556
 */
A
Aneesh Kumar K.V 已提交
557
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
558
				   Indirect *partial)
559 560
{
	/*
561
	 * XXX need to get goal block from mballoc's data structures
562 563
	 */

564
	return ext4_find_near(inode, partial);
565 566 567
}

/**
568
 *	ext4_blks_to_allocate: Look up the block map and count the number
569 570 571 572 573 574 575 576 577 578
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
579
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
580
				 int blocks_to_boundary)
581
{
582
	unsigned int count = 0;
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
606
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
607 608 609 610 611 612 613 614
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
615
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
616 617 618
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
619
{
620
	struct ext4_allocation_request ar;
621
	int target, i;
622
	unsigned long count = 0, blk_allocated = 0;
623
	int index = 0;
624
	ext4_fsblk_t current_block = 0;
625 626 627 628 629 630 631 632 633 634
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
635 636 637
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
638 639
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
640 641
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
642 643 644 645 646 647 648 649 650
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
651 652 653 654 655 656 657 658 659
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
660
			break;
661
		}
662 663
	}

664 665 666 667 668
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
669 670 671 672 673 674 675 676 677 678 679
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

680 681 682 683 684 685 686 687 688
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
689 690 691 692
			/*
			 * save the new block number
			 * for the first direct block
			 */
693 694
			new_blocks[index] = current_block;
		}
695
		blk_allocated += ar.len;
696 697
	}
allocated:
698
	/* total number of blocks allocated for direct blocks */
699
	ret = blk_allocated;
700 701 702
	*err = 0;
	return ret;
failed_out:
703
	for (i = 0; i < index; i++)
704
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
705 706 707 708
	return ret;
}

/**
709
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
710 711 712 713 714 715 716 717 718 719
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
720
 *	the same format as ext4_get_branch() would do. We are calling it after
721 722
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
723
 *	picture as after the successful ext4_get_block(), except that in one
724 725 726 727 728 729
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
730
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
731 732
 *	as described above and return 0.
 */
733
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
734 735 736
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
737 738 739 740 741 742
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
743 744
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
745

746
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
765
		err = ext4_journal_get_create_access(handle, bh);
766 767 768 769 770 771 772 773 774 775
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
776
		if (n == indirect_blks) {
777 778 779 780 781 782
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
783
			for (i = 1; i < num; i++)
784 785 786 787 788 789
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

790 791
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
792 793 794 795 796 797 798 799
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
800
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
801
		ext4_journal_forget(handle, branch[i].bh);
802
	}
803
	for (i = 0; i < indirect_blks; i++)
804
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
805

806
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
807 808 809 810 811

	return err;
}

/**
812
 * ext4_splice_branch - splice the allocated branch onto inode.
813 814 815
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
816
 *	ext4_alloc_branch)
817 818 819 820 821 822 823 824
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
825
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
826 827
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
828 829 830
{
	int i;
	int err = 0;
831
	ext4_fsblk_t current_block;
832 833 834 835 836 837 838 839

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
840
		err = ext4_journal_get_write_access(handle, where->bh);
841 842 843 844 845 846 847 848 849 850 851 852 853 854
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
855
			*(where->p + i) = cpu_to_le32(current_block++);
856 857 858 859 860 861 862 863 864 865 866
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
867
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
868 869
		 */
		jbd_debug(5, "splicing indirect only\n");
870 871
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
872 873 874 875 876 877
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
878
		ext4_mark_inode_dirty(handle, inode);
879 880 881 882 883 884
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
885
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
886
		ext4_journal_forget(handle, where[i].bh);
887 888
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
889
	}
890
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
891 892 893 894 895

	return err;
}

/*
896 897 898 899
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
916
 *
917 918 919 920 921
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
922
 */
923
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
924 925 926
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
927 928
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
929
	ext4_lblk_t offsets[4];
930 931
	Indirect chain[4];
	Indirect *partial;
932
	ext4_fsblk_t goal;
933 934 935 936
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
937
	ext4_fsblk_t first_block = 0;
938

A
Alex Tomas 已提交
939
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
940
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
941
	depth = ext4_block_to_path(inode, iblock, offsets,
942
				   &blocks_to_boundary);
943 944 945 946

	if (depth == 0)
		goto out;

947
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
948 949 950 951 952 953 954 955

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
956
			ext4_fsblk_t blk;
957 958 959 960 961 962 963 964

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
965
		goto got_it;
966 967 968
	}

	/* Next simple case - plain lookup or failed read of indirect block */
969
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970 971 972
		goto cleanup;

	/*
973
	 * Okay, we need to do block allocation.
974
	*/
975
	goal = ext4_find_goal(inode, iblock, partial);
976 977 978 979 980 981 982 983

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
984
	count = ext4_blks_to_allocate(partial, indirect_blks,
985 986
					maxblocks, blocks_to_boundary);
	/*
987
	 * Block out ext4_truncate while we alter the tree
988
	 */
989
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
990 991
				&count, goal,
				offsets + (partial - chain), partial);
992 993

	/*
994
	 * The ext4_splice_branch call will free and forget any buffers
995 996 997 998 999 1000
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1001
		err = ext4_splice_branch(handle, inode, iblock,
1002 1003
					 partial, indirect_blks, count);
	else
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1061 1062 1063
	if (!blocks)
		return 0;

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1093 1094 1095 1096 1097

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1098 1099 1100 1101 1102 1103

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1104 1105 1106 1107 1108 1109 1110 1111

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static int check_block_validity(struct inode *inode, sector_t logical,
				sector_t phys, int len)
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
		ext4_error(inode->i_sb, "check_block_validity",
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		WARN_ON(1);
		return -EIO;
	}
	return 0;
}

1129
/*
1130
 * The ext4_get_blocks() function tries to look up the requested blocks,
1131
 * and returns if the blocks are already mapped.
1132 1133 1134 1135 1136 1137
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1138
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1151 1152
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1153
		    int flags)
1154 1155
{
	int retval;
1156 1157

	clear_buffer_mapped(bh);
1158
	clear_buffer_unwritten(bh);
1159

1160
	/*
1161 1162
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1163 1164 1165 1166
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1167
				bh, 0);
1168
	} else {
1169
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1170
					     bh, 0);
1171
	}
1172
	up_read((&EXT4_I(inode)->i_data_sem));
1173

1174
	if (retval > 0 && buffer_mapped(bh)) {
1175
		int ret = check_block_validity(inode, block,
1176 1177 1178 1179 1180
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}

1181
	/* If it is only a block(s) look up */
1182
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1193 1194
		return retval;

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1207
	/*
1208 1209 1210 1211
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1212 1213
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1214 1215 1216 1217 1218 1219 1220

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1221
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1222
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1223 1224 1225 1226
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1227 1228
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1229
					      bh, flags);
1230
	} else {
1231
		retval = ext4_ind_get_blocks(handle, inode, block,
1232
					     max_blocks, bh, flags);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1243
	}
1244

1245
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1246
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1247 1248 1249 1250 1251 1252 1253

	/*
	 * Update reserved blocks/metadata blocks after successful
	 * block allocation which had been deferred till now.
	 */
	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
		ext4_da_update_reserve_space(inode, retval);
1254

1255
	up_write((&EXT4_I(inode)->i_data_sem));
1256
	if (retval > 0 && buffer_mapped(bh)) {
1257
		int ret = check_block_validity(inode, block,
1258 1259 1260 1261
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}
1262 1263 1264
	return retval;
}

1265 1266 1267
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1268 1269
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1270
{
1271
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1272
	int ret = 0, started = 0;
1273
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1274
	int dio_credits;
1275

J
Jan Kara 已提交
1276 1277 1278 1279
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1280 1281
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1282
		if (IS_ERR(handle)) {
1283
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1284
			goto out;
1285
		}
J
Jan Kara 已提交
1286
		started = 1;
1287 1288
	}

1289
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1290
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1291 1292 1293
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1294
	}
J
Jan Kara 已提交
1295 1296 1297
	if (started)
		ext4_journal_stop(handle);
out:
1298 1299 1300 1301 1302 1303
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1304
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1305
				ext4_lblk_t block, int create, int *errp)
1306 1307 1308
{
	struct buffer_head dummy;
	int fatal = 0, err;
1309
	int flags = 0;
1310 1311 1312 1313 1314 1315

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1316 1317 1318
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1319
	/*
1320 1321
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1338
			J_ASSERT(handle != NULL);
1339 1340 1341 1342 1343

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1344
			 * writes use ext4_get_block instead, so it's not a
1345 1346 1347 1348
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1349
			fatal = ext4_journal_get_create_access(handle, bh);
1350
			if (!fatal && !buffer_uptodate(bh)) {
1351
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1352 1353 1354
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1355 1356
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1373
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1374
			       ext4_lblk_t block, int create, int *err)
1375
{
1376
	struct buffer_head *bh;
1377

1378
	bh = ext4_getblk(handle, inode, block, create, err);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1392 1393 1394 1395 1396 1397 1398
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1399 1400 1401 1402 1403 1404 1405
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1406 1407
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1408
	     block_start = block_end, bh = next) {
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1426
 * close off a transaction and start a new one between the ext4_get_block()
1427
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1428 1429
 * prepare_write() is the right place.
 *
1430 1431
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1432 1433 1434 1435
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1436
 * By accident, ext4 can be reentered when a transaction is open via
1437 1438 1439 1440 1441 1442
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1443
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1444 1445 1446 1447 1448
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1449
				       struct buffer_head *bh)
1450 1451 1452
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1453
	return ext4_journal_get_write_access(handle, bh);
1454 1455
}

N
Nick Piggin 已提交
1456
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1457 1458
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1459
{
1460
	struct inode *inode = mapping->host;
1461
	int ret, needed_blocks;
1462 1463
	handle_t *handle;
	int retries = 0;
1464
	struct page *page;
1465
	pgoff_t index;
1466
	unsigned from, to;
N
Nick Piggin 已提交
1467

1468
	trace_ext4_write_begin(inode, pos, len, flags);
1469 1470 1471 1472 1473
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1474
	index = pos >> PAGE_CACHE_SHIFT;
1475 1476
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1477 1478

retry:
1479 1480 1481 1482
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1483
	}
1484

1485 1486 1487 1488
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1489
	page = grab_cache_page_write_begin(mapping, index, flags);
1490 1491 1492 1493 1494 1495 1496
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1497
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1498
				ext4_get_block);
N
Nick Piggin 已提交
1499 1500

	if (!ret && ext4_should_journal_data(inode)) {
1501 1502 1503
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1504 1505

	if (ret) {
1506 1507
		unlock_page(page);
		page_cache_release(page);
1508 1509 1510 1511
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1512 1513 1514
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1515
		 */
1516
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1517 1518 1519 1520
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1521
			ext4_truncate(inode);
1522
			/*
1523
			 * If truncate failed early the inode might
1524 1525 1526 1527 1528 1529 1530
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1531 1532
	}

1533
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1534
		goto retry;
1535
out:
1536 1537 1538
	return ret;
}

N
Nick Piggin 已提交
1539 1540
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1541 1542 1543 1544
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1545
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1546 1547
}

1548
static int ext4_generic_write_end(struct file *file,
1549 1550 1551
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1594 1595 1596 1597
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1598
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1599 1600
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1601
static int ext4_ordered_write_end(struct file *file,
1602 1603 1604
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1605
{
1606
	handle_t *handle = ext4_journal_current_handle();
1607
	struct inode *inode = mapping->host;
1608 1609
	int ret = 0, ret2;

1610
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1611
	ret = ext4_jbd2_file_inode(handle, inode);
1612 1613

	if (ret == 0) {
1614
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1615
							page, fsdata);
1616
		copied = ret2;
1617
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1618 1619 1620 1621 1622
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1623 1624
		if (ret2 < 0)
			ret = ret2;
1625
	}
1626
	ret2 = ext4_journal_stop(handle);
1627 1628
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1629

1630
	if (pos + len > inode->i_size) {
1631
		ext4_truncate(inode);
1632
		/*
1633
		 * If truncate failed early the inode might still be
1634 1635 1636 1637 1638 1639 1640 1641
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1642
	return ret ? ret : copied;
1643 1644
}

N
Nick Piggin 已提交
1645
static int ext4_writeback_write_end(struct file *file,
1646 1647 1648
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1649
{
1650
	handle_t *handle = ext4_journal_current_handle();
1651
	struct inode *inode = mapping->host;
1652 1653
	int ret = 0, ret2;

1654
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1655
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1656
							page, fsdata);
1657
	copied = ret2;
1658
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1659 1660 1661 1662 1663 1664
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1665 1666
	if (ret2 < 0)
		ret = ret2;
1667

1668
	ret2 = ext4_journal_stop(handle);
1669 1670
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1671

1672
	if (pos + len > inode->i_size) {
1673
		ext4_truncate(inode);
1674
		/*
1675
		 * If truncate failed early the inode might still be
1676 1677 1678 1679 1680 1681 1682
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1683
	return ret ? ret : copied;
1684 1685
}

N
Nick Piggin 已提交
1686
static int ext4_journalled_write_end(struct file *file,
1687 1688 1689
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1690
{
1691
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1692
	struct inode *inode = mapping->host;
1693 1694
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1695
	unsigned from, to;
1696
	loff_t new_i_size;
1697

1698
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1699 1700 1701 1702 1703 1704 1705 1706
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1707 1708

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1709
				to, &partial, write_end_fn);
1710 1711
	if (!partial)
		SetPageUptodate(page);
1712 1713
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1714
		i_size_write(inode, pos+copied);
1715
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1716 1717
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1718
		ret2 = ext4_mark_inode_dirty(handle, inode);
1719 1720 1721
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1722

1723
	unlock_page(page);
1724
	page_cache_release(page);
1725
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1726 1727 1728 1729 1730 1731
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1732
	ret2 = ext4_journal_stop(handle);
1733 1734
	if (!ret)
		ret = ret2;
1735
	if (pos + len > inode->i_size) {
1736
		ext4_truncate(inode);
1737
		/*
1738
		 * If truncate failed early the inode might still be
1739 1740 1741 1742 1743 1744
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1745 1746

	return ret ? ret : copied;
1747
}
1748 1749 1750

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1751
	int retries = 0;
1752 1753
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1754 1755 1756 1757 1758 1759

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1760
repeat:
1761 1762 1763 1764 1765 1766 1767 1768
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1779
	if (ext4_claim_free_blocks(sbi, total)) {
1780
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1781 1782 1783 1784
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1785
		vfs_dq_release_reservation_block(inode, total);
1786 1787 1788 1789 1790 1791 1792 1793 1794
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1795
static void ext4_da_release_space(struct inode *inode, int to_free)
1796 1797 1798 1799
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1800 1801 1802
	if (!to_free)
		return;		/* Nothing to release, exit */

1803
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1819
	/* recalculate the number of metablocks still need to be reserved */
1820
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1821 1822 1823 1824 1825 1826 1827 1828
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1829 1830
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1831 1832

	/* update per-inode reservations */
1833 1834
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1835 1836 1837 1838

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1839 1840

	vfs_dq_release_reservation_block(inode, release);
1841 1842 1843
}

static void ext4_da_page_release_reservation(struct page *page,
1844
					     unsigned long offset)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1861
	ext4_da_release_space(page->mapping->host, to_release);
1862
}
1863

1864 1865 1866 1867 1868 1869
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1870 1871 1872
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1873 1874
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1875
	int io_done;
1876
	int pages_written;
1877
	int retval;
1878 1879 1880 1881
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1882
 * them with writepage() call back
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1895
	long pages_skipped;
1896 1897 1898 1899 1900
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1901 1902

	BUG_ON(mpd->next_page <= mpd->first_page);
1903 1904 1905
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1906
	 * If we look at mpd->b_blocknr we would only be looking
1907 1908
	 * at the currently mapped buffer_heads.
	 */
1909 1910 1911
	index = mpd->first_page;
	end = mpd->next_page - 1;

1912
	pagevec_init(&pvec, 0);
1913
	while (index <= end) {
1914
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1915 1916 1917 1918 1919
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1920 1921 1922 1923 1924 1925 1926 1927
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1928
			pages_skipped = mpd->wbc->pages_skipped;
1929
			err = mapping->a_ops->writepage(page, mpd->wbc);
1930 1931 1932 1933 1934
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1935
				mpd->pages_written++;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
1958
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1959 1960 1961 1962 1963 1964 1965 1966 1967
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1968
	pgoff_t index, end;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2026
				} else if (buffer_mapped(bh))
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2086 2087 2088 2089 2090 2091 2092
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
2093
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2094
	printk(KERN_EMERG "dirty_blocks=%lld\n",
2095
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2096
	printk(KERN_EMERG "Block reservation details\n");
2097
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2098
			EXT4_I(inode)->i_reserved_data_blocks);
2099
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2100 2101 2102 2103
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

2104 2105 2106
/*
 * mpage_da_map_blocks - go through given space
 *
2107
 * @mpd - bh describing space
2108 2109 2110 2111
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2112
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2113
{
2114
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2115
	struct buffer_head new;
2116 2117 2118 2119
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2120 2121 2122 2123

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2124
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2125 2126
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2127
		return 0;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2138
	/*
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2155
	 */
2156 2157 2158 2159 2160
	new.b_state = 0;
	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
	if (mpd->b_state & (1 << BH_Delay))
		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2161
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2162
			       &new, get_blocks_flags);
2163 2164
	if (blks < 0) {
		err = blks;
2165 2166 2167 2168
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2169 2170 2171
		 */
		if (err == -EAGAIN)
			return 0;
2172 2173

		if (err == -ENOSPC &&
2174
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2175 2176 2177 2178
			mpd->retval = err;
			return 0;
		}

2179
		/*
2180 2181 2182 2183 2184
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2185 2186 2187 2188 2189 2190
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2191
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2192 2193
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2194
		if (err == -ENOSPC) {
2195
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2196
		}
2197
		/* invalidate all the pages */
2198
		ext4_da_block_invalidatepages(mpd, next,
2199
				mpd->b_size >> mpd->inode->i_blkbits);
2200 2201
		return err;
	}
2202 2203 2204
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2205

2206 2207
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2208

2209 2210 2211 2212
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2213 2214
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2215
		mpage_put_bnr_to_bhs(mpd, next, &new);
2216

2217 2218 2219 2220 2221 2222 2223
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2224
	 * Update on-disk size along with block allocation.
2225 2226 2227 2228 2229 2230 2231 2232 2233
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2234
	return 0;
2235 2236
}

2237 2238
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2250 2251
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2252 2253
{
	sector_t next;
2254
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2255

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2278 2279 2280
	/*
	 * First block in the extent
	 */
2281 2282 2283 2284
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2285 2286 2287
		return;
	}

2288
	next = mpd->b_blocknr + nrblocks;
2289 2290 2291
	/*
	 * Can we merge the block to our big extent?
	 */
2292 2293
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2294 2295 2296
		return;
	}

2297
flush_it:
2298 2299 2300 2301
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2302 2303
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2304 2305
	mpd->io_done = 1;
	return;
2306 2307
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation.
	 * We also need to consider unwritten buffer as unmapped.
	 */
	return (!buffer_mapped(bh) || buffer_delay(bh) ||
				buffer_unwritten(bh)) && buffer_dirty(bh);
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2333
	struct buffer_head *bh, *head;
2334 2335
	sector_t logical;

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2347 2348 2349 2350 2351 2352
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2353
		 * and start IO on them using writepage()
2354 2355
		 */
		if (mpd->next_page != mpd->first_page) {
2356 2357
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2358 2359 2360 2361 2362 2363 2364
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2375 2376 2377
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2378 2379 2380 2381 2382 2383 2384
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2385 2386
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2387 2388
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2389 2390 2391 2392 2393 2394 2395 2396
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2397 2398 2399 2400 2401 2402
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2403
			if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2404 2405 2406
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2407 2408
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2409 2410 2411 2412 2413 2414 2415 2416 2417
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2418 2419
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2420
			}
2421 2422 2423 2424 2425 2426 2427 2428
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2429 2430 2431
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2432 2433 2434 2435 2436 2437 2438
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2439 2440 2441 2442 2443
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2444 2445 2446 2447
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2448 2449 2450 2451 2452 2453 2454 2455 2456

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2457
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2458 2459
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2460 2461 2462 2463
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2464 2465 2466 2467 2468
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2469
		map_bh(bh_result, inode->i_sb, invalid_block);
2470 2471 2472 2473
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2474 2475 2476 2477 2478 2479 2480 2481
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2482
			set_buffer_new(bh_result);
2483 2484
			set_buffer_mapped(bh_result);
		}
2485 2486 2487 2488 2489
		ret = 0;
	}

	return ret;
}
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2508 2509 2510 2511 2512
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2513 2514
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2515 2516 2517 2518
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2519
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2520
	BUG_ON(create && ret == 0);
2521 2522 2523 2524 2525
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2526 2527 2528
}

/*
2529 2530 2531 2532 2533
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2534
 */
2535 2536 2537 2538
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2539
	loff_t size;
2540
	unsigned int len;
2541 2542 2543
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2544
	trace_ext4_da_writepage(inode, page);
2545 2546 2547 2548 2549
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2550

2551
	if (page_has_buffers(page)) {
2552
		page_bufs = page_buffers(page);
2553 2554
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2555
			/*
2556 2557
			 * We don't want to do  block allocation
			 * So redirty the page and return
2558 2559 2560
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2581
		ret = block_prepare_write(page, 0, len,
2582
					  noalloc_get_block_write);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2597 2598 2599 2600 2601
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2602
		/* now mark the buffer_heads as dirty and uptodate */
2603
		block_commit_write(page, 0, len);
2604 2605 2606
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2607
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2608
	else
2609 2610
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2611 2612 2613 2614

	return ret;
}

2615
/*
2616 2617 2618 2619 2620
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2621
 */
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2639

2640
static int ext4_da_writepages(struct address_space *mapping,
2641
			      struct writeback_control *wbc)
2642
{
2643 2644
	pgoff_t	index;
	int range_whole = 0;
2645
	handle_t *handle = NULL;
2646
	struct mpage_da_data mpd;
2647
	struct inode *inode = mapping->host;
2648
	int no_nrwrite_index_update;
2649 2650
	int pages_written = 0;
	long pages_skipped;
2651
	int range_cyclic, cycled = 1, io_done = 0;
2652 2653
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2654

2655
	trace_ext4_da_writepages(inode, wbc);
2656

2657 2658 2659 2660 2661
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2662
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2663
		return 0;
2664 2665 2666 2667 2668

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2669
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2670 2671 2672 2673 2674
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2675
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2676 2677
		return -EROFS;

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2688 2689
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2690

2691 2692
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2693
		index = mapping->writeback_index;
2694 2695 2696 2697 2698 2699
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2700
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2701

2702 2703 2704
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2705 2706 2707 2708 2709 2710 2711 2712
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2713
retry:
2714
	while (!ret && wbc->nr_to_write > 0) {
2715 2716 2717 2718 2719 2720 2721 2722

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2723
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2724

2725 2726 2727 2728
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2729
			printk(KERN_CRIT "%s: jbd2_start: "
2730 2731 2732
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2733 2734
			goto out_writepages;
		}
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2767

2768
		ext4_journal_stop(handle);
2769

2770
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2771 2772 2773 2774
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2775
			jbd2_journal_force_commit_nested(sbi->s_journal);
2776 2777 2778
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2779 2780 2781 2782
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2783 2784
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2785
			ret = 0;
2786
			io_done = 1;
2787
		} else if (wbc->nr_to_write)
2788 2789 2790 2791 2792 2793
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2794
	}
2795 2796 2797 2798 2799 2800 2801
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2802 2803 2804 2805 2806 2807 2808
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2809
	wbc->range_cyclic = range_cyclic;
2810 2811 2812 2813 2814 2815
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2816

2817
out_writepages:
2818 2819 2820
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2821
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2822
	return ret;
2823 2824
}

2825 2826 2827 2828 2829 2830 2831 2832 2833
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2834
	 * counters can get slightly wrong with percpu_counter_batch getting
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2852
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2853 2854
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2855
{
2856
	int ret, retries = 0;
2857 2858 2859 2860 2861 2862 2863 2864 2865
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2866 2867 2868 2869 2870 2871 2872

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2873
	trace_ext4_da_write_begin(inode, pos, len, flags);
2874
retry:
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2886 2887 2888
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2889

2890
	page = grab_cache_page_write_begin(mapping, index, flags);
2891 2892 2893 2894 2895
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2896 2897 2898
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2899
				ext4_da_get_block_prep);
2900 2901 2902 2903
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2904 2905 2906 2907 2908 2909
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2910
			ext4_truncate(inode);
2911 2912
	}

2913 2914
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2915 2916 2917 2918
out:
	return ret;
}

2919 2920 2921 2922 2923
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2924
					    unsigned long offset)
2925 2926 2927 2928 2929 2930 2931 2932 2933
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2934
	for (i = 0; i < idx; i++)
2935 2936
		bh = bh->b_this_page;

2937
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2938 2939 2940 2941
		return 0;
	return 1;
}

2942
static int ext4_da_write_end(struct file *file,
2943 2944 2945
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2946 2947 2948 2949 2950
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2951
	unsigned long start, end;
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2965

2966
	trace_ext4_da_write_end(inode, pos, len, copied);
2967
	start = pos & (PAGE_CACHE_SIZE - 1);
2968
	end = start + copied - 1;
2969 2970 2971 2972 2973 2974 2975 2976

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2988

2989 2990 2991
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2992 2993 2994 2995 2996
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2997
		}
2998
	}
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3020
	ext4_da_page_release_reservation(page, offset);
3021 3022 3023 3024 3025 3026 3027

out:
	ext4_invalidatepage(page, offset);

	return;
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3043
	 *
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3063
	 *
3064 3065 3066 3067 3068 3069
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3070

3071 3072 3073 3074 3075
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3076
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3077 3078 3079 3080 3081 3082 3083 3084
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3085
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3086 3087 3088 3089 3090
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3101
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3113
		 * NB. EXT4_STATE_JDATA is not set on files other than
3114 3115 3116 3117 3118 3119
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3120 3121
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3122 3123 3124
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3125 3126 3127 3128 3129

		if (err)
			return 0;
	}

3130
	return generic_block_bmap(mapping, block, ext4_get_block);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
3146 3147 3148 3149 3150 3151 3152 3153
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
3154
 *
3155
 * In all journaling modes block_write_full_page() will start the I/O.
3156 3157 3158
 *
 * Problem:
 *
3159 3160
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
3161 3162 3163
 *
 * Similar for:
 *
3164
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3165
 *
3166
 * Same applies to ext4_get_block().  We will deadlock on various things like
3167
 * lock_journal and i_data_sem
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
3198
static int __ext4_normal_writepage(struct page *page,
3199
				   struct writeback_control *wbc)
3200 3201 3202 3203
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
3204
		return nobh_writepage(page, noalloc_get_block_write, wbc);
3205
	else
3206 3207
		return block_write_full_page(page, noalloc_get_block_write,
					     wbc);
3208 3209
}

3210
static int ext4_normal_writepage(struct page *page,
3211
				 struct writeback_control *wbc)
3212 3213
{
	struct inode *inode = page->mapping->host;
3214 3215 3216
	loff_t size = i_size_read(inode);
	loff_t len;

3217
	trace_ext4_normal_writepage(inode, page);
3218 3219 3220 3221 3222
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3237 3238

	if (!ext4_journal_current_handle())
3239
		return __ext4_normal_writepage(page, wbc);
3240 3241 3242 3243 3244 3245 3246

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
3247
				       struct writeback_control *wbc)
3248
{
3249 3250
	loff_t size;
	unsigned int len;
3251 3252 3253
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
3254 3255 3256 3257
	handle_t *handle = NULL;
	int ret = 0;
	int err;

3258 3259 3260 3261 3262 3263
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
	ret = block_prepare_write(page, 0, len, noalloc_get_block_write);
3264 3265 3266 3267
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
3268
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
3269 3270 3271
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
3272

3273
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3274 3275
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3276
		goto out;
3277 3278
	}

3279 3280
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);
3281

3282 3283
	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
3284 3285
	if (ret == 0)
		ret = err;
3286
	err = ext4_journal_stop(handle);
3287 3288 3289
	if (!ret)
		ret = err;

3290
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
3291 3292 3293 3294
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3295
	unlock_page(page);
3296
out:
3297 3298 3299
	return ret;
}

3300
static int ext4_journalled_writepage(struct page *page,
3301
				     struct writeback_control *wbc)
3302 3303
{
	struct inode *inode = page->mapping->host;
3304 3305
	loff_t size = i_size_read(inode);
	loff_t len;
3306

3307
	trace_ext4_journalled_writepage(inode, page);
3308 3309 3310 3311 3312
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3327

3328
	if (ext4_journal_current_handle())
3329 3330
		goto no_write;

3331
	if (PageChecked(page)) {
3332 3333 3334 3335 3336
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3337
		return __ext4_journalled_writepage(page, wbc);
3338 3339 3340 3341 3342 3343
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3344 3345
		return block_write_full_page(page, noalloc_get_block_write,
					     wbc);
3346 3347 3348 3349
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3350
	return 0;
3351 3352
}

3353
static int ext4_readpage(struct file *file, struct page *page)
3354
{
3355
	return mpage_readpage(page, ext4_get_block);
3356 3357 3358
}

static int
3359
ext4_readpages(struct file *file, struct address_space *mapping,
3360 3361
		struct list_head *pages, unsigned nr_pages)
{
3362
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3363 3364
}

3365
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3366
{
3367
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3368 3369 3370 3371 3372 3373 3374

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3375 3376 3377 3378
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3379 3380
}

3381
static int ext4_releasepage(struct page *page, gfp_t wait)
3382
{
3383
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384 3385 3386 3387

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3388 3389 3390 3391
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3392 3393 3394 3395 3396 3397 3398 3399
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3400 3401
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3402
 */
3403
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3404 3405
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3406 3407 3408
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3409
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3410
	handle_t *handle;
3411 3412 3413 3414 3415 3416 3417 3418
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3419 3420 3421 3422 3423 3424
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3425
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3426 3427 3428 3429
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3430 3431
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3432
			ext4_journal_stop(handle);
3433 3434 3435 3436 3437
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3438
				 ext4_get_block, NULL);
3439

J
Jan Kara 已提交
3440
	if (orphan) {
3441 3442
		int err;

J
Jan Kara 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3453
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3454
		if (ret > 0) {
3455 3456 3457 3458 3459 3460 3461 3462
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3463
				 * ext4_mark_inode_dirty() to userspace.  So
3464 3465
				 * ignore it.
				 */
3466
				ext4_mark_inode_dirty(handle, inode);
3467 3468
			}
		}
3469
		err = ext4_journal_stop(handle);
3470 3471 3472 3473 3474 3475 3476 3477
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3478
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3490
static int ext4_journalled_set_page_dirty(struct page *page)
3491 3492 3493 3494 3495
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3496
static const struct address_space_operations ext4_ordered_aops = {
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3509 3510
};

3511
static const struct address_space_operations ext4_writeback_aops = {
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3524 3525
};

3526
static const struct address_space_operations ext4_journalled_aops = {
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3538 3539
};

3540
static const struct address_space_operations ext4_da_aops = {
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3554 3555
};

3556
void ext4_set_aops(struct inode *inode)
3557
{
3558 3559 3560 3561
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3562
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3563 3564 3565
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3566 3567
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3568
	else
3569
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3570 3571 3572
}

/*
3573
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3574 3575 3576 3577
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3578
int ext4_block_truncate_page(handle_t *handle,
3579 3580
		struct address_space *mapping, loff_t from)
{
3581
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3582
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3583 3584
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3585 3586
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3587
	struct page *page;
3588 3589
	int err = 0;

3590 3591
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3592 3593 3594
	if (!page)
		return -EINVAL;

3595 3596 3597 3598 3599 3600 3601 3602 3603
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3604
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3605
		zero_user(page, offset, length);
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3630
		ext4_get_block(inode, iblock, bh, 0);
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3651
	if (ext4_should_journal_data(inode)) {
3652
		BUFFER_TRACE(bh, "get write access");
3653
		err = ext4_journal_get_write_access(handle, bh);
3654 3655 3656 3657
		if (err)
			goto unlock;
	}

3658
	zero_user(page, offset, length);
3659 3660 3661 3662

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3663
	if (ext4_should_journal_data(inode)) {
3664
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3665
	} else {
3666
		if (ext4_should_order_data(inode))
3667
			err = ext4_jbd2_file_inode(handle, inode);
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3691
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3692 3693
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3694
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3695 3696 3697
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3698
 *	This is a helper function used by ext4_truncate().
3699 3700 3701 3702 3703 3704 3705
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3706
 *	past the truncation point is possible until ext4_truncate()
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3725
static Indirect *ext4_find_shared(struct inode *inode, int depth,
3726 3727
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
3728 3729 3730 3731 3732 3733 3734 3735
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3736
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3747
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3759
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3760 3761 3762 3763 3764 3765
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3766
	while (partial > p) {
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3782
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3783 3784 3785 3786
			      struct buffer_head *bh,
			      ext4_fsblk_t block_to_free,
			      unsigned long count, __le32 *first,
			      __le32 *last)
3787 3788 3789 3790
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3791 3792
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3793
		}
3794 3795
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3796 3797
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3798
			ext4_journal_get_write_access(handle, bh);
3799 3800 3801 3802
		}
	}

	/*
3803 3804 3805 3806 3807
	 * Any buffers which are on the journal will be in memory. We
	 * find them on the hash table so jbd2_journal_revoke() will
	 * run jbd2_journal_forget() on them.  We've already detached
	 * each block from the file, so bforget() in
	 * jbd2_journal_forget() should be safe.
3808
	 *
3809
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3810 3811 3812 3813
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3814
			struct buffer_head *tbh;
3815 3816

			*p = 0;
A
Aneesh Kumar K.V 已提交
3817 3818
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3819 3820 3821
		}
	}

3822
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3823 3824 3825
}

/**
3826
 * ext4_free_data - free a list of data blocks
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3844
static void ext4_free_data(handle_t *handle, struct inode *inode,
3845 3846 3847
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3848
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3849 3850 3851 3852
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3853
	ext4_fsblk_t nr;		    /* Current block # */
3854 3855 3856 3857 3858 3859
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3860
		err = ext4_journal_get_write_access(handle, this_bh);
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3878
				ext4_clear_blocks(handle, inode, this_bh,
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3889
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3890 3891 3892
				  count, block_to_free_p, p);

	if (this_bh) {
3893
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3894 3895 3896 3897 3898 3899 3900

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3901
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3902
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3903 3904 3905 3906 3907 3908
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3909 3910 3911 3912
	}
}

/**
3913
 *	ext4_free_branches - free an array of branches
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3925
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3926 3927 3928
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3929
	ext4_fsblk_t nr;
3930 3931
	__le32 *p;

3932
	if (ext4_handle_is_aborted(handle))
3933 3934 3935 3936
		return;

	if (depth--) {
		struct buffer_head *bh;
3937
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3952
				ext4_error(inode->i_sb, "ext4_free_branches",
3953
					   "Read failure, inode=%lu, block=%llu",
3954 3955 3956 3957 3958 3959
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3960
			ext4_free_branches(handle, inode, bh,
3961 3962 3963
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3964 3965 3966 3967 3968

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3969
			 * jbd2_journal_revoke().
3970 3971 3972
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3973
			 * transaction then jbd2_journal_forget() will simply
3974
			 * brelse() it.  That means that if the underlying
3975
			 * block is reallocated in ext4_get_block(),
3976 3977 3978 3979 3980 3981 3982 3983
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3984
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4002
			if (ext4_handle_is_aborted(handle))
4003 4004
				return;
			if (try_to_extend_transaction(handle, inode)) {
4005 4006
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
4007 4008
			}

4009
			ext4_free_blocks(handle, inode, nr, 1, 1);
4010 4011 4012 4013 4014 4015 4016

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4017
				if (!ext4_journal_get_write_access(handle,
4018 4019 4020
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4021 4022 4023 4024
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4025 4026 4027 4028 4029 4030
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4031
		ext4_free_data(handle, inode, parent_bh, first, last);
4032 4033 4034
	}
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4048
/*
4049
 * ext4_truncate()
4050
 *
4051 4052
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4069
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4070
 * that this inode's truncate did not complete and it will again call
4071 4072
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4073
 * that's fine - as long as they are linked from the inode, the post-crash
4074
 * ext4_truncate() run will find them and release them.
4075
 */
4076
void ext4_truncate(struct inode *inode)
4077 4078
{
	handle_t *handle;
4079
	struct ext4_inode_info *ei = EXT4_I(inode);
4080
	__le32 *i_data = ei->i_data;
4081
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4082
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4083
	ext4_lblk_t offsets[4];
4084 4085 4086 4087
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4088
	ext4_lblk_t last_block;
4089 4090
	unsigned blocksize = inode->i_sb->s_blocksize;

4091
	if (!ext4_can_truncate(inode))
4092 4093
		return;

4094 4095
	if (ei->i_disksize && inode->i_size == 0 &&
	    !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4096 4097
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
4098
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4099
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4100 4101
		return;
	}
A
Alex Tomas 已提交
4102

4103
	handle = start_transaction(inode);
4104
	if (IS_ERR(handle))
4105 4106 4107
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4108
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4109

4110 4111 4112
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4113

4114
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4127
	if (ext4_orphan_add(handle, inode))
4128 4129
		goto out_stop;

4130 4131 4132 4133 4134
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4135

4136
	ext4_discard_preallocations(inode);
4137

4138 4139 4140 4141 4142
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4143
	 * ext4 *really* writes onto the disk inode.
4144 4145 4146 4147
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4148 4149
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4150 4151 4152
		goto do_indirects;
	}

4153
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4154 4155 4156 4157
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4158
			ext4_free_branches(handle, inode, NULL,
4159 4160 4161 4162 4163 4164 4165 4166 4167
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4168
			ext4_free_branches(handle, inode, partial->bh,
4169 4170 4171 4172 4173 4174
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4175
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4176 4177 4178
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4179
		brelse(partial->bh);
4180 4181 4182 4183 4184 4185
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4186
		nr = i_data[EXT4_IND_BLOCK];
4187
		if (nr) {
4188 4189
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4190
		}
4191 4192
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4193
		if (nr) {
4194 4195
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4196
		}
4197 4198
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4199
		if (nr) {
4200 4201
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4202
		}
4203
	case EXT4_TIND_BLOCK:
4204 4205 4206
		;
	}

4207
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4208
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4209
	ext4_mark_inode_dirty(handle, inode);
4210 4211 4212 4213 4214 4215

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4216
		ext4_handle_sync(handle);
4217 4218 4219 4220 4221
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4222
	 * ext4_delete_inode(), and we allow that function to clean up the
4223 4224 4225
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4226
		ext4_orphan_del(handle, inode);
4227

4228
	ext4_journal_stop(handle);
4229 4230 4231
}

/*
4232
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4233 4234 4235 4236
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4237 4238
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4239
{
4240 4241 4242 4243 4244 4245
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4246
	iloc->bh = NULL;
4247 4248
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4249

4250 4251 4252
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4253 4254
		return -EIO;

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4265
	if (!bh) {
4266 4267 4268
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4269 4270 4271 4272
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4296
			int i, start;
4297

4298
			start = inode_offset & ~(inodes_per_block - 1);
4299

4300 4301
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4314
			for (i = start; i < start + inodes_per_block; i++) {
4315 4316
				if (i == inode_offset)
					continue;
4317
				if (ext4_test_bit(i, bitmap_bh->b_data))
4318 4319 4320
					break;
			}
			brelse(bitmap_bh);
4321
			if (i == start + inodes_per_block) {
4322 4323 4324 4325 4326 4327 4328 4329 4330
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4331 4332 4333 4334 4335 4336 4337 4338 4339
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4340
			/* s_inode_readahead_blks is always a power of 2 */
4341 4342 4343 4344 4345 4346 4347
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4348
				num -= ext4_itable_unused_count(sb, gdp);
4349 4350 4351 4352 4353 4354 4355
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4366 4367 4368
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4369 4370 4371 4372 4373 4374 4375 4376 4377
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4378
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4379 4380
{
	/* We have all inode data except xattrs in memory here. */
4381 4382
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4383 4384
}

4385
void ext4_set_inode_flags(struct inode *inode)
4386
{
4387
	unsigned int flags = EXT4_I(inode)->i_flags;
4388 4389

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4390
	if (flags & EXT4_SYNC_FL)
4391
		inode->i_flags |= S_SYNC;
4392
	if (flags & EXT4_APPEND_FL)
4393
		inode->i_flags |= S_APPEND;
4394
	if (flags & EXT4_IMMUTABLE_FL)
4395
		inode->i_flags |= S_IMMUTABLE;
4396
	if (flags & EXT4_NOATIME_FL)
4397
		inode->i_flags |= S_NOATIME;
4398
	if (flags & EXT4_DIRSYNC_FL)
4399 4400 4401
		inode->i_flags |= S_DIRSYNC;
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4420

4421
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4422
				  struct ext4_inode_info *ei)
4423 4424
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4425 4426
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4427 4428 4429 4430 4431 4432

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4433 4434 4435 4436 4437 4438
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4439 4440 4441 4442
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4443

4444
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4445
{
4446 4447
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4448
	struct ext4_inode_info *ei;
4449
	struct buffer_head *bh;
4450 4451
	struct inode *inode;
	long ret;
4452 4453
	int block;

4454 4455 4456 4457 4458 4459 4460
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4461

4462 4463
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4464 4465
		goto bad_inode;
	bh = iloc.bh;
4466
	raw_inode = ext4_raw_inode(&iloc);
4467 4468 4469
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4470
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4486
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4487
			/* this inode is deleted */
4488
			brelse(bh);
4489
			ret = -ESTALE;
4490 4491 4492 4493 4494 4495 4496 4497
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4498
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4499
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4500
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4501 4502
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4503
	inode->i_size = ext4_isize(raw_inode);
4504 4505 4506
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4507
	ei->i_last_alloc_group = ~0;
4508 4509 4510 4511
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4512
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4513 4514 4515
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4516
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4517
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4518
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4519
		    EXT4_INODE_SIZE(inode->i_sb)) {
4520
			brelse(bh);
4521
			ret = -EIO;
4522
			goto bad_inode;
4523
		}
4524 4525
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4526 4527
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4528 4529
		} else {
			__le32 *magic = (void *)raw_inode +
4530
					EXT4_GOOD_OLD_INODE_SIZE +
4531
					ei->i_extra_isize;
4532
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4533
				ei->i_state |= EXT4_STATE_XATTR;
4534 4535 4536 4537
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4538 4539 4540 4541 4542
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4543 4544 4545 4546 4547 4548 4549
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4550
	ret = 0;
4551
	if (ei->i_file_acl &&
4552
	    ((ei->i_file_acl <
4553 4554 4555 4556 4557 4558 4559 4560 4561
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4562 4563 4564 4565 4566
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4567
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4568 4569
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4570
		/* Validate block references which are part of inode */
4571 4572 4573
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
4574 4575
		brelse(bh);
		goto bad_inode;
4576 4577
	}

4578
	if (S_ISREG(inode->i_mode)) {
4579 4580 4581
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4582
	} else if (S_ISDIR(inode->i_mode)) {
4583 4584
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4585
	} else if (S_ISLNK(inode->i_mode)) {
4586
		if (ext4_inode_is_fast_symlink(inode)) {
4587
			inode->i_op = &ext4_fast_symlink_inode_operations;
4588 4589 4590
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4591 4592
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4593
		}
4594 4595
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4596
		inode->i_op = &ext4_special_inode_operations;
4597 4598 4599 4600 4601 4602
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4603 4604 4605
	} else {
		brelse(bh);
		ret = -EIO;
4606
		ext4_error(inode->i_sb, __func__,
4607 4608 4609
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4610
	}
4611
	brelse(iloc.bh);
4612
	ext4_set_inode_flags(inode);
4613 4614
	unlock_new_inode(inode);
	return inode;
4615 4616

bad_inode:
4617 4618
	iget_failed(inode);
	return ERR_PTR(ret);
4619 4620
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4634
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4635
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4636
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4637 4638 4639 4640 4641 4642
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4643 4644 4645 4646
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4647
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4648
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4649
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4650
	} else {
A
Aneesh Kumar K.V 已提交
4651 4652 4653 4654 4655
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4656
	}
4657
	return 0;
4658 4659
}

4660 4661 4662 4663 4664 4665 4666
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4667
static int ext4_do_update_inode(handle_t *handle,
4668
				struct inode *inode,
4669
				struct ext4_iloc *iloc)
4670
{
4671 4672
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4673 4674 4675 4676 4677
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4678 4679
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4680

4681
	ext4_get_inode_flags(ei);
4682
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4683
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4684 4685 4686 4687 4688 4689
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4690
		if (!ei->i_dtime) {
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4708 4709 4710 4711 4712 4713

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4714 4715
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4716
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4717 4718
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4719 4720
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4721 4722
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4723
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4740
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4741
			sb->s_dirt = 1;
4742 4743
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4744
					EXT4_SB(sb)->s_sbh);
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4759 4760 4761
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4762

4763 4764 4765 4766 4767
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4768
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4769 4770
	}

4771 4772
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4773 4774
	if (!err)
		err = rc;
4775
	ei->i_state &= ~EXT4_STATE_NEW;
4776 4777

out_brelse:
4778
	brelse(bh);
4779
	ext4_std_error(inode->i_sb, err);
4780 4781 4782 4783
	return err;
}

/*
4784
 * ext4_write_inode()
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4801
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4818
int ext4_write_inode(struct inode *inode, int wait)
4819 4820 4821 4822
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4823
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4824
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4825 4826 4827 4828 4829 4830 4831
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4832
	return ext4_force_commit(inode->i_sb);
4833 4834 4835
}

/*
4836
 * ext4_setattr()
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4850 4851 4852 4853 4854 4855 4856 4857
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4858
 */
4859
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4875 4876
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4877 4878 4879 4880
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4881
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4882
		if (error) {
4883
			ext4_journal_stop(handle);
4884 4885 4886 4887 4888 4889 4890 4891
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4892 4893
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4894 4895
	}

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4907 4908 4909 4910
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4911
		handle = ext4_journal_start(inode, 3);
4912 4913 4914 4915 4916
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4917 4918 4919
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4920 4921
		if (!error)
			error = rc;
4922
		ext4_journal_stop(handle);
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4939 4940 4941 4942
	}

	rc = inode_setattr(inode, attr);

4943
	/* If inode_setattr's call to ext4_truncate failed to get a
4944 4945 4946
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4947
		ext4_orphan_del(NULL, inode);
4948 4949

	if (!rc && (ia_valid & ATTR_MODE))
4950
		rc = ext4_acl_chmod(inode);
4951 4952

err_out:
4953
	ext4_std_error(inode->i_sb, error);
4954 4955 4956 4957 4958
	if (!error)
		error = rc;
	return error;
}

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4985

4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5014 5015
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5016
}
5017

5018
/*
5019 5020 5021
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5022
 *
5023 5024 5025
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
5026
 *
5027 5028 5029 5030
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5031 5032
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5059 5060
	if (groups > ngroups)
		groups = ngroups;
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5075 5076
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5077
 *
5078
 * This could be called via ext4_write_begin()
5079
 *
5080
 * We need to consider the worse case, when
5081
 * one new block per extent.
5082
 */
A
Alex Tomas 已提交
5083
int ext4_writepage_trans_blocks(struct inode *inode)
5084
{
5085
	int bpp = ext4_journal_blocks_per_page(inode);
5086 5087
	int ret;

5088
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5089

5090
	/* Account for data blocks for journalled mode */
5091
	if (ext4_should_journal_data(inode))
5092
		ret += bpp;
5093 5094
	return ret;
}
5095 5096 5097 5098 5099

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5100
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5101 5102 5103 5104 5105 5106 5107 5108 5109
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5110
/*
5111
 * The caller must have previously called ext4_reserve_inode_write().
5112 5113
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5114
int ext4_mark_iloc_dirty(handle_t *handle,
5115
			 struct inode *inode, struct ext4_iloc *iloc)
5116 5117 5118
{
	int err = 0;

5119 5120 5121
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5122 5123 5124
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5125
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5126
	err = ext4_do_update_inode(handle, inode, iloc);
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5137 5138
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5139
{
5140 5141 5142 5143 5144 5145 5146 5147 5148
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5149 5150
		}
	}
5151
	ext4_std_error(inode->i_sb, err);
5152 5153 5154
	return err;
}

5155 5156 5157 5158
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5159 5160 5161 5162
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5211
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5212
{
5213
	struct ext4_iloc iloc;
5214 5215 5216
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5217 5218

	might_sleep();
5219
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5220 5221
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5237 5238
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5239
					ext4_warning(inode->i_sb, __func__,
5240 5241 5242
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5243 5244
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5245 5246 5247 5248
				}
			}
		}
	}
5249
	if (!err)
5250
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5251 5252 5253 5254
	return err;
}

/*
5255
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5256 5257 5258 5259 5260
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5261
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5262 5263 5264 5265 5266 5267
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5268
void ext4_dirty_inode(struct inode *inode)
5269
{
5270
	handle_t *current_handle = ext4_journal_current_handle();
5271 5272
	handle_t *handle;

5273 5274 5275 5276 5277
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5278
	handle = ext4_journal_start(inode, 2);
5279 5280 5281 5282 5283 5284
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5285
		       __func__);
5286 5287 5288
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5289
		ext4_mark_inode_dirty(handle, inode);
5290
	}
5291
	ext4_journal_stop(handle);
5292 5293 5294 5295 5296 5297 5298 5299
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5300
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5301 5302 5303
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5304
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5305
{
5306
	struct ext4_iloc iloc;
5307 5308 5309

	int err = 0;
	if (handle) {
5310
		err = ext4_get_inode_loc(inode, &iloc);
5311 5312
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5313
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5314
			if (!err)
5315 5316 5317
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5318 5319 5320
			brelse(iloc.bh);
		}
	}
5321
	ext4_std_error(inode->i_sb, err);
5322 5323 5324 5325
	return err;
}
#endif

5326
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5342
	journal = EXT4_JOURNAL(inode);
5343 5344
	if (!journal)
		return 0;
5345
	if (is_journal_aborted(journal))
5346 5347
		return -EROFS;

5348 5349
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5360
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5361
	else
5362 5363
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5364

5365
	jbd2_journal_unlock_updates(journal);
5366 5367 5368

	/* Finally we can mark the inode as dirty. */

5369
	handle = ext4_journal_start(inode, 1);
5370 5371 5372
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5373
	err = ext4_mark_inode_dirty(handle, inode);
5374
	ext4_handle_sync(handle);
5375 5376
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5377 5378 5379

	return err;
}
5380 5381 5382 5383 5384 5385

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5386
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5387
{
5388
	struct page *page = vmf->page;
5389 5390 5391
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5392
	void *fsdata;
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5431
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5432 5433 5434
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5435
			len, len, page, fsdata);
5436 5437 5438 5439
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5440 5441
	if (ret)
		ret = VM_FAULT_SIGBUS;
5442 5443 5444
	up_read(&inode->i_alloc_sem);
	return ret;
}