inode.c 146.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187

A
Al Viro 已提交
188
	if (inode->i_nlink) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
216
		truncate_inode_pages(&inode->i_data, 0);
217
		ext4_ioend_shutdown(inode);
A
Al Viro 已提交
218 219 220
		goto no_delete;
	}

221
	if (!is_bad_inode(inode))
222
		dquot_initialize(inode);
223

224 225
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
226
	truncate_inode_pages(&inode->i_data, 0);
227
	ext4_ioend_shutdown(inode);
228 229 230 231

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
				       struct inode *inode,
				       struct ext4_map_blocks *es_map,
				       struct ext4_map_blocks *map,
				       int flags)
{
	int retval;

	map->m_flags = 0;
	/*
	 * There is a race window that the result is not the same.
	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
	 * is that we lookup a block mapping in extent status tree with
	 * out taking i_data_sem.  So at the time the unwritten extent
	 * could be converted.
	 */
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	} else {
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	}
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
	/*
	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
	 * because it shouldn't be marked in es_map->m_flags.
	 */
	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);

	/*
	 * We don't check m_len because extent will be collpased in status
	 * tree.  So the m_len might not equal.
	 */
	if (es_map->m_lblk != map->m_lblk ||
	    es_map->m_flags != map->m_flags ||
	    es_map->m_pblk != map->m_pblk) {
		printk("ES cache assertation failed for inode: %lu "
		       "es_cached ex [%d/%d/%llu/%x] != "
		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
		       inode->i_ino, es_map->m_lblk, es_map->m_len,
		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
		       map->m_len, map->m_pblk, map->m_flags,
		       retval, flags);
	}
}
#endif /* ES_AGGRESSIVE_TEST */

537
/*
538
 * The ext4_map_blocks() function tries to look up the requested blocks,
539
 * and returns if the blocks are already mapped.
540 541 542 543 544
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
545 546
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547 548 549 550 551 552 553 554
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
555
 * that case, buffer head is unmapped
556 557 558
 *
 * It returns the error in case of allocation failure.
 */
559 560
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
561
{
562
	struct extent_status es;
563
	int retval;
564 565 566 567 568
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
569

570 571 572 573
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
			map->m_pblk = ext4_es_pblock(&es) +
					map->m_lblk - es.es_lblk;
			map->m_flags |= ext4_es_is_written(&es) ?
					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
			retval = es.es_len - (map->m_lblk - es.es_lblk);
			if (retval > map->m_len)
				retval = map->m_len;
			map->m_len = retval;
		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
			retval = 0;
		} else {
			BUG_ON(1);
		}
591 592 593 594
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(handle, inode, map,
					   &orig_map, flags);
#endif
595 596 597
		goto found;
	}

598
	/*
599 600
	 * Try to see if we can get the block without requesting a new
	 * file system block.
601
	 */
602 603
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
604
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605 606
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
607
	} else {
608 609
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
610
	}
611 612 613 614
	if (retval > 0) {
		int ret;
		unsigned long long status;

615 616 617 618 619 620 621 622 623
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

624 625 626 627 628 629 630 631 632 633 634
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
635 636
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
637

638
found:
639
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640
		int ret = check_block_validity(inode, map);
641 642 643 644
		if (ret != 0)
			return ret;
	}

645
	/* If it is only a block(s) look up */
646
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647 648 649 650 651 652
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
653
	 * ext4_ext_get_block() returns the create = 0
654 655
	 * with buffer head unmapped.
	 */
656
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657 658
		return retval;

659
	/*
660 661
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
662
	 */
663
	map->m_flags &= ~EXT4_MAP_FLAGS;
664

665
	/*
666 667 668 669
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
670 671
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
672 673 674 675 676 677 678

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
679
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681 682 683 684
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
685
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
687
	} else {
688
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
689

690
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691 692 693 694 695
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
696
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697
		}
698

699 700 701 702 703 704 705
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
706
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707 708
			ext4_da_update_reserve_space(inode, retval, 1);
	}
709
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711

712 713 714 715
	if (retval > 0) {
		int ret;
		unsigned long long status;

716 717 718 719 720 721 722 723 724
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (allocation)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

725 726 727 728 729 730 731 732 733
		/*
		 * If the extent has been zeroed out, we don't need to update
		 * extent status tree.
		 */
		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
			if (ext4_es_is_written(&es))
				goto has_zeroout;
		}
734 735 736 737 738 739 740 741 742 743
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
744 745
	}

746
has_zeroout:
747
	up_write((&EXT4_I(inode)->i_data_sem));
748
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749
		int ret = check_block_validity(inode, map);
750 751 752
		if (ret != 0)
			return ret;
	}
753 754 755
	return retval;
}

756 757 758
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

759 760
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
761
{
762
	handle_t *handle = ext4_journal_current_handle();
763
	struct ext4_map_blocks map;
J
Jan Kara 已提交
764
	int ret = 0, started = 0;
765
	int dio_credits;
766

T
Tao Ma 已提交
767 768 769
	if (ext4_has_inline_data(inode))
		return -ERANGE;

770 771 772
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

773
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
774
		/* Direct IO write... */
775 776 777
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778 779
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
780
		if (IS_ERR(handle)) {
781
			ret = PTR_ERR(handle);
782
			return ret;
783
		}
J
Jan Kara 已提交
784
		started = 1;
785 786
	}

787
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
788
	if (ret > 0) {
789 790 791
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
792
		ret = 0;
793
	}
J
Jan Kara 已提交
794 795
	if (started)
		ext4_journal_stop(handle);
796 797 798
	return ret;
}

799 800 801 802 803 804 805
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

806 807 808
/*
 * `handle' can be NULL if create is zero
 */
809
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
810
				ext4_lblk_t block, int create, int *errp)
811
{
812 813
	struct ext4_map_blocks map;
	struct buffer_head *bh;
814 815 816 817
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

818 819 820 821
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
822

823 824 825
	/* ensure we send some value back into *errp */
	*errp = 0;

826 827
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
828 829 830 831 832 833
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
834
	if (unlikely(!bh)) {
835
		*errp = -ENOMEM;
836
		return NULL;
837
	}
838 839 840
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
841

842 843 844 845 846 847 848 849 850 851 852 853 854
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
855
		}
856 857 858 859 860 861 862
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
863
	}
864 865 866 867 868 869
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
870 871
}

872
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
873
			       ext4_lblk_t block, int create, int *err)
874
{
875
	struct buffer_head *bh;
876

877
	bh = ext4_getblk(handle, inode, block, create, err);
878 879 880 881
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
882
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883 884 885 886 887 888 889 890
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

891 892 893 894 895 896 897
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
898 899 900 901 902 903 904
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

905 906
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
907
	     block_start = block_end, bh = next) {
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
925
 * close off a transaction and start a new one between the ext4_get_block()
926
 * and the commit_write().  So doing the jbd2_journal_start at the start of
927 928
 * prepare_write() is the right place.
 *
929 930 931 932
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
933
 *
934
 * By accident, ext4 can be reentered when a transaction is open via
935 936 937 938 939 940
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
941
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942 943 944 945
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
946 947
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
948
{
949 950 951
	int dirty = buffer_dirty(bh);
	int ret;

952 953
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
954
	/*
C
Christoph Hellwig 已提交
955
	 * __block_write_begin() could have dirtied some buffers. Clean
956 957
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
958
	 * by __block_write_begin() isn't a real problem here as we clear
959 960 961 962 963 964 965 966 967
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
968 969
}

970 971
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
972
static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 974
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
975
{
976
	struct inode *inode = mapping->host;
977
	int ret, needed_blocks;
978 979
	handle_t *handle;
	int retries = 0;
980
	struct page *page;
981
	pgoff_t index;
982
	unsigned from, to;
N
Nick Piggin 已提交
983

984
	trace_ext4_write_begin(inode, pos, len, flags);
985 986 987 988 989
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990
	index = pos >> PAGE_CACHE_SHIFT;
991 992
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
993

994 995 996 997
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
998 999 1000
			return ret;
		if (ret == 1)
			return 0;
1001 1002
	}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
1017
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018
	if (IS_ERR(handle)) {
1019 1020
		page_cache_release(page);
		return PTR_ERR(handle);
1021
	}
1022

1023 1024 1025 1026 1027
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
1028
		ext4_journal_stop(handle);
1029
		goto retry_grab;
1030
	}
1031
	wait_on_page_writeback(page);
1032

1033
	if (ext4_should_dioread_nolock(inode))
1034
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035
	else
1036
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1037 1038

	if (!ret && ext4_should_journal_data(inode)) {
1039 1040 1041
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
1042
	}
N
Nick Piggin 已提交
1043 1044

	if (ret) {
1045
		unlock_page(page);
1046
		/*
1047
		 * __block_write_begin may have instantiated a few blocks
1048 1049
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1050 1051 1052
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1053
		 */
1054
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055 1056 1057 1058
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1059
			ext4_truncate_failed_write(inode);
1060
			/*
1061
			 * If truncate failed early the inode might
1062 1063 1064 1065 1066 1067 1068
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1069

1070 1071 1072 1073 1074 1075 1076
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
1077 1078 1079
	return ret;
}

N
Nick Piggin 已提交
1080 1081
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 1083 1084 1085
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1086
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 1088
}

1089
static int ext4_generic_write_end(struct file *file,
1090 1091 1092
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1093 1094 1095 1096 1097
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

1098 1099 1100 1101 1102 1103
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1140 1141 1142 1143
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1144
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1145 1146
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1147
static int ext4_ordered_write_end(struct file *file,
1148 1149 1150
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1151
{
1152
	handle_t *handle = ext4_journal_current_handle();
1153
	struct inode *inode = mapping->host;
1154 1155
	int ret = 0, ret2;

1156
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1157
	ret = ext4_jbd2_file_inode(handle, inode);
1158 1159

	if (ret == 0) {
1160
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1161
							page, fsdata);
1162
		copied = ret2;
1163
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 1165 1166 1167 1168
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1169 1170
		if (ret2 < 0)
			ret = ret2;
1171 1172 1173
	} else {
		unlock_page(page);
		page_cache_release(page);
1174
	}
1175

1176
	ret2 = ext4_journal_stop(handle);
1177 1178
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1179

1180
	if (pos + len > inode->i_size) {
1181
		ext4_truncate_failed_write(inode);
1182
		/*
1183
		 * If truncate failed early the inode might still be
1184 1185 1186 1187 1188 1189 1190 1191
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1192
	return ret ? ret : copied;
1193 1194
}

N
Nick Piggin 已提交
1195
static int ext4_writeback_write_end(struct file *file,
1196 1197 1198
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1199
{
1200
	handle_t *handle = ext4_journal_current_handle();
1201
	struct inode *inode = mapping->host;
1202 1203
	int ret = 0, ret2;

1204
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1205
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1206
							page, fsdata);
1207
	copied = ret2;
1208
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1209 1210 1211 1212 1213 1214
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1215 1216
	if (ret2 < 0)
		ret = ret2;
1217

1218
	ret2 = ext4_journal_stop(handle);
1219 1220
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1221

1222
	if (pos + len > inode->i_size) {
1223
		ext4_truncate_failed_write(inode);
1224
		/*
1225
		 * If truncate failed early the inode might still be
1226 1227 1228 1229 1230 1231 1232
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1233
	return ret ? ret : copied;
1234 1235
}

N
Nick Piggin 已提交
1236
static int ext4_journalled_write_end(struct file *file,
1237 1238 1239
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1240
{
1241
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1242
	struct inode *inode = mapping->host;
1243 1244
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1245
	unsigned from, to;
1246
	loff_t new_i_size;
1247

1248
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1249 1250 1251
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1252 1253
	BUG_ON(!ext4_handle_valid(handle));

1254 1255 1256 1257 1258 1259 1260 1261 1262
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1263

1264 1265 1266 1267 1268
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1269 1270
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1271
		i_size_write(inode, pos+copied);
1272
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1273
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1274 1275
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1276
		ret2 = ext4_mark_inode_dirty(handle, inode);
1277 1278 1279
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1280

1281
	unlock_page(page);
1282
	page_cache_release(page);
1283
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1284 1285 1286 1287 1288 1289
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1290
	ret2 = ext4_journal_stop(handle);
1291 1292
	if (!ret)
		ret = ret2;
1293
	if (pos + len > inode->i_size) {
1294
		ext4_truncate_failed_write(inode);
1295
		/*
1296
		 * If truncate failed early the inode might still be
1297 1298 1299 1300 1301 1302
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1303 1304

	return ret ? ret : copied;
1305
}
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/*
 * Reserve a metadata for a single block located at lblock
 */
static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
{
	int retries = 0;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int md_needed;
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
repeat:
	spin_lock(&ei->i_block_reservation_lock);
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
	trace_ext4_da_reserve_space(inode, md_needed);

	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			cond_resched();
			goto repeat;
		}
		return -ENOSPC;
	}
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);

	return 0;       /* success */
}

1356
/*
1357
 * Reserve a single cluster located at lblock
1358
 */
1359
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1360
{
A
Aneesh Kumar K.V 已提交
1361
	int retries = 0;
1362
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1363
	struct ext4_inode_info *ei = EXT4_I(inode);
1364
	unsigned int md_needed;
1365
	int ret;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1377 1378 1379 1380 1381 1382

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1383
repeat:
1384
	spin_lock(&ei->i_block_reservation_lock);
1385 1386 1387 1388 1389 1390
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1391 1392
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1393
	trace_ext4_da_reserve_space(inode, md_needed);
1394

1395 1396 1397 1398
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1399
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1400 1401 1402
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1403
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
L
Lukas Czerner 已提交
1404
			cond_resched();
A
Aneesh Kumar K.V 已提交
1405 1406
			goto repeat;
		}
1407
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1408 1409
		return -ENOSPC;
	}
1410
	ei->i_reserved_data_blocks++;
1411 1412
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1413

1414 1415 1416
	return 0;       /* success */
}

1417
static void ext4_da_release_space(struct inode *inode, int to_free)
1418 1419
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420
	struct ext4_inode_info *ei = EXT4_I(inode);
1421

1422 1423 1424
	if (!to_free)
		return;		/* Nothing to release, exit */

1425
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1426

L
Li Zefan 已提交
1427
	trace_ext4_da_release_space(inode, to_free);
1428
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1429
		/*
1430 1431 1432 1433
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1434
		 */
1435
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1436
			 "ino %lu, to_free %d with only %d reserved "
1437
			 "data blocks", inode->i_ino, to_free,
1438 1439 1440
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1441
	}
1442
	ei->i_reserved_data_blocks -= to_free;
1443

1444 1445 1446 1447 1448
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1449 1450
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1451
		 */
1452
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1453
				   ei->i_reserved_meta_blocks);
1454
		ei->i_reserved_meta_blocks = 0;
1455
		ei->i_da_metadata_calc_len = 0;
1456
	}
1457

1458
	/* update fs dirty data blocks counter */
1459
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1460 1461

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1462

1463
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1464 1465 1466
}

static void ext4_da_page_release_reservation(struct page *page,
1467
					     unsigned long offset)
1468 1469 1470 1471
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1472 1473 1474
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1475
	ext4_fsblk_t lblk;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1488

1489 1490 1491 1492 1493
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1494 1495 1496 1497 1498 1499 1500
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1501
		    !ext4_find_delalloc_cluster(inode, lblk))
1502 1503 1504 1505
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1506
}
1507

1508 1509 1510 1511 1512 1513
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1514
 * them with writepage() call back
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1525 1526
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1527
{
1528 1529 1530 1531 1532
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1533
	loff_t size = i_size_read(inode);
1534 1535
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1536
	sector_t pblock = 0, cur_logical = 0;
1537
	struct ext4_io_submit io_submit;
1538 1539

	BUG_ON(mpd->next_page <= mpd->first_page);
1540
	memset(&io_submit, 0, sizeof(io_submit));
1541 1542 1543
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1544
	 * If we look at mpd->b_blocknr we would only be looking
1545 1546
	 * at the currently mapped buffer_heads.
	 */
1547 1548 1549
	index = mpd->first_page;
	end = mpd->next_page - 1;

1550
	pagevec_init(&pvec, 0);
1551
	while (index <= end) {
1552
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1553 1554 1555
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1556
			int skip_page = 0;
1557 1558
			struct page *page = pvec.pages[i];

1559 1560 1561
			index = page->index;
			if (index > end)
				break;
1562 1563 1564 1565 1566

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1567 1568 1569 1570 1571 1572
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1573 1574 1575 1576 1577
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1578 1579
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1580
			do {
1581 1582 1583
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1584 1585 1586 1587
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1588 1589 1590 1591 1592 1593 1594
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1595

1596 1597 1598 1599 1600
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1601
					skip_page = 1;
1602 1603
				bh = bh->b_this_page;
				block_start += bh->b_size;
1604 1605
				cur_logical++;
				pblock++;
1606 1607
			} while (bh != page_bufs);

1608 1609 1610 1611
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1612

1613
			clear_page_dirty_for_io(page);
1614 1615
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1616
			if (!err)
1617
				mpd->pages_written++;
1618 1619 1620 1621 1622 1623 1624 1625 1626
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1627
	ext4_io_submit(&io_submit);
1628 1629 1630
	return ret;
}

1631
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1632 1633 1634 1635 1636 1637
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1638
	ext4_lblk_t start, last;
1639

1640 1641
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1642 1643 1644 1645 1646

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1647
	pagevec_init(&pvec, 0);
1648 1649 1650 1651 1652 1653
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1654
			if (page->index > end)
1655 1656 1657 1658 1659 1660 1661
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1662 1663
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1664 1665 1666 1667
	}
	return;
}

1668 1669 1670
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1671 1672 1673
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1674 1675
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1676 1677
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1678 1679
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1680
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1681 1682
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1683 1684 1685 1686
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1687
	       EXT4_I(inode)->i_reserved_meta_blocks);
1688 1689 1690
	return;
}

1691
/*
1692 1693
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1694
 *
1695
 * @mpd - bh describing space
1696 1697 1698 1699
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1700
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1701
{
1702
	int err, blks, get_blocks_flags;
1703
	struct ext4_map_blocks map, *mapp = NULL;
1704 1705 1706 1707
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1708 1709

	/*
1710 1711
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1712
	 */
1713 1714 1715 1716 1717
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1718 1719 1720 1721

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1722
	/*
1723
	 * Call ext4_map_blocks() to allocate any delayed allocation
1724 1725 1726 1727 1728 1729 1730 1731
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1732
	 * want to change *many* call functions, so ext4_map_blocks()
1733
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1734 1735 1736 1737 1738
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1739
	 */
1740 1741
	map.m_lblk = next;
	map.m_len = max_blocks;
1742
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1743 1744
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1745
	if (mpd->b_state & (1 << BH_Delay))
1746 1747
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1748
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1749
	if (blks < 0) {
1750 1751
		struct super_block *sb = mpd->inode->i_sb;

1752
		err = blks;
1753
		/*
1754
		 * If get block returns EAGAIN or ENOSPC and there
1755 1756
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1757 1758
		 */
		if (err == -EAGAIN)
1759
			goto submit_io;
1760

1761
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1762
			mpd->retval = err;
1763
			goto submit_io;
1764 1765
		}

1766
		/*
1767 1768 1769 1770 1771
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1772
		 */
1773 1774 1775 1776 1777 1778 1779 1780
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1781
				"This should not happen!! Data will be lost");
1782 1783
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1784
		}
1785
		/* invalidate all the pages */
1786
		ext4_da_block_invalidatepages(mpd);
1787 1788 1789

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1790
		return;
1791
	}
1792 1793
	BUG_ON(blks == 0);

1794
	mapp = &map;
1795 1796 1797
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1798

1799 1800
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1801 1802 1803
	}

	/*
1804
	 * Update on-disk size along with block allocation.
1805 1806 1807 1808 1809 1810
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1811 1812 1813 1814 1815
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1816 1817
	}

1818
submit_io:
1819
	mpage_da_submit_io(mpd, mapp);
1820
	mpd->io_done = 1;
1821 1822
}

1823 1824
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1825 1826 1827 1828 1829 1830

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1831
 * @b_state - b_state of the buffer head added
1832 1833 1834
 *
 * the function is used to collect contig. blocks in same state
 */
1835
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1836
				   unsigned long b_state)
1837 1838
{
	sector_t next;
1839 1840
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1841

1842 1843 1844 1845
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1846
	 * ext4_map_blocks() multiple times in a loop
1847
	 */
1848
	if (nrblocks >= (8*1024*1024 >> blkbits))
1849 1850
		goto flush_it;

1851 1852
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1863 1864 1865
	/*
	 * First block in the extent
	 */
1866 1867
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1868
		mpd->b_size = 1 << blkbits;
1869
		mpd->b_state = b_state & BH_FLAGS;
1870 1871 1872
		return;
	}

1873
	next = mpd->b_blocknr + nrblocks;
1874 1875 1876
	/*
	 * Can we merge the block to our big extent?
	 */
1877
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1878
		mpd->b_size += 1 << blkbits;
1879 1880 1881
		return;
	}

1882
flush_it:
1883 1884 1885 1886
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1887
	mpage_da_map_and_submit(mpd);
1888
	return;
1889 1890
}

1891
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1892
{
1893
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1894 1895
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
1906
	struct extent_status es;
1907 1908
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);
1909 1910 1911 1912 1913
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
1914 1915 1916 1917 1918 1919 1920 1921

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, iblock, &es)) {

		if (ext4_es_is_hole(&es)) {
			retval = 0;
			down_read((&EXT4_I(inode)->i_data_sem));
			goto add_delayed;
		}

		/*
		 * Delayed extent could be allocated by fallocate.
		 * So we need to check it.
		 */
		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
			map_bh(bh, inode->i_sb, invalid_block);
			set_buffer_new(bh);
			set_buffer_delay(bh);
			return 0;
		}

		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
		retval = es.es_len - (iblock - es.es_lblk);
		if (retval > map->m_len)
			retval = map->m_len;
		map->m_len = retval;
		if (ext4_es_is_written(&es))
			map->m_flags |= EXT4_MAP_MAPPED;
		else if (ext4_es_is_unwritten(&es))
			map->m_flags |= EXT4_MAP_UNWRITTEN;
		else
			BUG_ON(1);

1955 1956 1957
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
1958 1959 1960
		return retval;
	}

1961 1962 1963 1964 1965
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1979 1980
		retval = ext4_ext_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1981
	else
1982 1983
		retval = ext4_ind_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1984

1985
add_delayed:
1986
	if (retval == 0) {
1987
		int ret;
1988 1989 1990 1991
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
1992 1993 1994 1995 1996
		/*
		 * If the block was allocated from previously allocated cluster,
		 * then we don't need to reserve it again. However we still need
		 * to reserve metadata for every block we're going to write.
		 */
1997
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1998 1999
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
2000
				/* not enough space to reserve */
2001
				retval = ret;
2002
				goto out_unlock;
2003
			}
2004 2005 2006 2007 2008 2009 2010
		} else {
			ret = ext4_da_reserve_metadata(inode, iblock);
			if (ret) {
				/* not enough space to reserve */
				retval = ret;
				goto out_unlock;
			}
2011 2012
		}

2013 2014 2015 2016
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
2017
			goto out_unlock;
2018
		}
2019

2020 2021 2022 2023 2024 2025 2026 2027
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
2028 2029 2030 2031
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

2032 2033 2034 2035 2036 2037 2038 2039 2040
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

2041 2042 2043 2044 2045 2046
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
2047 2048 2049 2050 2051 2052 2053 2054
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

2055
/*
2056 2057 2058
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2059 2060 2061 2062 2063 2064 2065
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2066
 */
2067 2068
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
2069
{
2070
	struct ext4_map_blocks map;
2071 2072 2073
	int ret = 0;

	BUG_ON(create == 0);
2074 2075 2076 2077
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2078 2079 2080 2081 2082 2083

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2084 2085
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
2086
		return ret;
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2099
		set_buffer_mapped(bh);
2100 2101
	}
	return 0;
2102
}
2103

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
2121
	struct buffer_head *page_bufs = NULL;
2122
	handle_t *handle = NULL;
2123 2124 2125
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
2126

2127
	ClearPageChecked(page);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
2144 2145 2146 2147
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

2148 2149
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
2150 2151 2152 2153 2154
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2155 2156
	BUG_ON(!ext4_handle_valid(handle));

2157 2158
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
2159

2160 2161 2162 2163 2164 2165 2166 2167 2168
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
2169 2170
	if (ret == 0)
		ret = err;
2171
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2172 2173 2174 2175
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

2176 2177 2178
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
2179
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2180
out:
2181
	brelse(inode_bh);
2182 2183 2184
	return ret;
}

2185
/*
2186 2187 2188 2189
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2190
 * we are writing back data modified via mmap(), no one guarantees in which
2191 2192 2193 2194
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2195 2196 2197
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2198
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2199
 *   - grab_page_cache when doing write_begin (have journal handle)
2200 2201 2202 2203 2204 2205 2206 2207 2208
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2209
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2225
 */
2226
static int ext4_writepage(struct page *page,
2227
			  struct writeback_control *wbc)
2228
{
2229
	int ret = 0;
2230
	loff_t size;
2231
	unsigned int len;
2232
	struct buffer_head *page_bufs = NULL;
2233
	struct inode *inode = page->mapping->host;
2234
	struct ext4_io_submit io_submit;
2235

L
Lukas Czerner 已提交
2236
	trace_ext4_writepage(page);
2237 2238 2239 2240 2241
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2242

T
Theodore Ts'o 已提交
2243
	page_bufs = page_buffers(page);
2244 2245 2246 2247 2248 2249 2250
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
2251 2252
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2253
		redirty_page_for_writepage(wbc, page);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2265
	}
2266

2267
	if (PageChecked(page) && ext4_should_journal_data(inode))
2268 2269 2270 2271
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2272
		return __ext4_journalled_writepage(page, len);
2273

2274 2275 2276
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2277 2278 2279
	return ret;
}

2280
/*
2281
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2282
 * calculate the total number of credits to reserve to fit
2283 2284 2285
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2286
 */
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2298
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2299 2300 2301 2302 2303
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2304

2305 2306
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2307
 * address space and accumulate pages that need writing, and call
2308 2309
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2310
 */
2311 2312
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2313
				struct writeback_control *wbc,
2314 2315
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2316
{
2317
	struct buffer_head	*bh, *head;
2318
	struct inode		*inode = mapping->host;
2319 2320 2321 2322 2323 2324
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2325

2326 2327 2328
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2329 2330 2331 2332
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2333
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2334 2335 2336 2337
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2338
	*done_index = index;
2339
	while (index <= end) {
2340
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2341 2342
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2343
			return 0;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2355 2356
			if (page->index > end)
				goto out;
2357

2358 2359
			*done_index = page->index + 1;

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2370 2371 2372
			lock_page(page);

			/*
2373 2374 2375 2376 2377 2378
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2379
			 */
2380 2381 2382 2383
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2384 2385 2386 2387
				unlock_page(page);
				continue;
			}

2388
			wait_on_page_writeback(page);
2389 2390
			BUG_ON(PageWriteback(page));

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2402
			if (mpd->next_page != page->index)
2403 2404 2405 2406 2407
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2408 2409 2410 2411 2412
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2413
				/*
2414 2415 2416
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2417
				 */
2418 2419 2420 2421 2422 2423 2424
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2425
					/*
2426 2427 2428 2429 2430 2431 2432
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2433
					 */
2434 2435 2436 2437 2438 2439
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2440 2441 2442 2443

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2444
				    wbc->sync_mode == WB_SYNC_NONE)
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2455
					goto out;
2456 2457 2458 2459 2460
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2461 2462 2463
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2464 2465 2466
out:
	pagevec_release(&pvec);
	cond_resched();
2467 2468 2469 2470
	return ret;
}


2471
static int ext4_da_writepages(struct address_space *mapping,
2472
			      struct writeback_control *wbc)
2473
{
2474 2475
	pgoff_t	index;
	int range_whole = 0;
2476
	handle_t *handle = NULL;
2477
	struct mpage_da_data mpd;
2478
	struct inode *inode = mapping->host;
2479
	int pages_written = 0;
2480
	unsigned int max_pages;
2481
	int range_cyclic, cycled = 1, io_done = 0;
2482 2483
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2484
	loff_t range_start = wbc->range_start;
2485
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2486
	pgoff_t done_index = 0;
2487
	pgoff_t end;
S
Shaohua Li 已提交
2488
	struct blk_plug plug;
2489

2490
	trace_ext4_da_writepages(inode, wbc);
2491

2492 2493 2494 2495 2496
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2497
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2498
		return 0;
2499 2500 2501 2502 2503

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2504
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2505 2506 2507 2508 2509
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2510
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2511 2512
		return -EROFS;

2513 2514
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2515

2516 2517
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2518
		index = mapping->writeback_index;
2519 2520 2521 2522 2523
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2524 2525
		end = -1;
	} else {
2526
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2527 2528
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2529

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2547 2548 2549 2550 2551 2552
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2563
retry:
2564
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2565 2566
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2567
	blk_start_plug(&plug);
2568
	while (!ret && wbc->nr_to_write > 0) {
2569 2570 2571 2572 2573 2574 2575 2576

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2577
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2578

2579
		/* start a new transaction*/
2580 2581
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2582 2583
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2584
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2585
			       "%ld pages, ino %lu; err %d", __func__,
2586
				wbc->nr_to_write, inode->i_ino, ret);
2587
			blk_finish_plug(&plug);
2588 2589
			goto out_writepages;
		}
2590 2591

		/*
2592
		 * Now call write_cache_pages_da() to find the next
2593
		 * contiguous region of logical blocks that need
2594
		 * blocks to be allocated by ext4 and submit them.
2595
		 */
2596 2597
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2598
		/*
2599
		 * If we have a contiguous extent of pages and we
2600 2601 2602 2603
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2604
			mpage_da_map_and_submit(&mpd);
2605 2606
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2607
		trace_ext4_da_write_pages(inode, &mpd);
2608
		wbc->nr_to_write -= mpd.pages_written;
2609

2610
		ext4_journal_stop(handle);
2611

2612
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2613 2614 2615 2616
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2617
			jbd2_journal_force_commit_nested(sbi->s_journal);
2618 2619
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2620
			/*
2621 2622 2623
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2624
			 */
2625
			pages_written += mpd.pages_written;
2626
			ret = mpd.retval;
2627
			io_done = 1;
2628
		} else if (wbc->nr_to_write)
2629 2630 2631 2632 2633 2634
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2635
	}
S
Shaohua Li 已提交
2636
	blk_finish_plug(&plug);
2637 2638 2639 2640 2641 2642 2643
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2644 2645

	/* Update index */
2646
	wbc->range_cyclic = range_cyclic;
2647 2648 2649 2650 2651
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2652
		mapping->writeback_index = done_index;
2653

2654
out_writepages:
2655
	wbc->nr_to_write -= nr_to_writebump;
2656
	wbc->range_start = range_start;
2657
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2658
	return ret;
2659 2660
}

2661 2662 2663 2664 2665 2666 2667 2668
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2669
	 * counters can get slightly wrong with percpu_counter_batch getting
2670 2671 2672 2673
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2674 2675 2676
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2687
	if (2 * free_blocks < 3 * dirty_blocks ||
2688
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2689
		/*
2690 2691
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2692 2693 2694 2695 2696 2697
		 */
		return 1;
	}
	return 0;
}

2698
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2699 2700
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2701
{
2702
	int ret, retries = 0;
2703 2704 2705 2706 2707 2708
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2709 2710 2711 2712 2713 2714 2715

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2716
	trace_ext4_da_write_begin(inode, pos, len, flags);
2717 2718 2719 2720 2721 2722

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2723 2724 2725
			return ret;
		if (ret == 1)
			return 0;
2726 2727
	}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2741 2742 2743 2744 2745 2746
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2747
retry_journal:
2748
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2749
	if (IS_ERR(handle)) {
2750 2751
		page_cache_release(page);
		return PTR_ERR(handle);
2752 2753
	}

2754 2755 2756 2757 2758
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2759
		ext4_journal_stop(handle);
2760
		goto retry_grab;
2761
	}
2762 2763
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2764

2765
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2766 2767 2768
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2769 2770 2771 2772 2773 2774
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2775
			ext4_truncate_failed_write(inode);
2776 2777 2778 2779 2780 2781 2782

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2783 2784
	}

2785
	*pagep = page;
2786 2787 2788
	return ret;
}

2789 2790 2791 2792 2793
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2794
					    unsigned long offset)
2795 2796 2797 2798 2799 2800 2801 2802 2803
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2804
	for (i = 0; i < idx; i++)
2805 2806
		bh = bh->b_this_page;

2807
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2808 2809 2810 2811
		return 0;
	return 1;
}

2812
static int ext4_da_write_end(struct file *file,
2813 2814 2815
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2816 2817 2818 2819 2820
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2821
	unsigned long start, end;
2822 2823 2824
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2825 2826
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2827 2828
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2829
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2830 2831
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2832
		default:
2833 2834 2835
			BUG();
		}
	}
2836

2837
	trace_ext4_da_write_end(inode, pos, len, copied);
2838
	start = pos & (PAGE_CACHE_SIZE - 1);
2839
	end = start + copied - 1;
2840 2841 2842 2843 2844 2845 2846

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2847
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2848 2849
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2850
			down_write(&EXT4_I(inode)->i_data_sem);
2851
			if (new_i_size > EXT4_I(inode)->i_disksize)
2852 2853
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2854 2855 2856 2857 2858
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2859
		}
2860
	}
2861 2862 2863 2864 2865 2866 2867 2868

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2869
							page, fsdata);
2870

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2890
	ext4_da_page_release_reservation(page, offset);
2891 2892 2893 2894 2895 2896 2897

out:
	ext4_invalidatepage(page, offset);

	return;
}

2898 2899 2900 2901 2902
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2903 2904
	trace_ext4_alloc_da_blocks(inode);

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2915
	 *
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2928
	 * the pages by calling redirty_page_for_writepage() but that
2929 2930
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2931
	 * simplifying them because we wouldn't actually intend to
2932 2933 2934
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2935
	 *
2936 2937 2938 2939 2940 2941
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2942

2943 2944 2945 2946 2947
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2948
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2949 2950 2951 2952 2953 2954 2955 2956
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2957
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2958 2959 2960 2961 2962
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2963 2964 2965 2966 2967 2968
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2979 2980
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2992
		 * NB. EXT4_STATE_JDATA is not set on files other than
2993 2994 2995 2996 2997 2998
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2999
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3000
		journal = EXT4_JOURNAL(inode);
3001 3002 3003
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3004 3005 3006 3007 3008

		if (err)
			return 0;
	}

3009
	return generic_block_bmap(mapping, block, ext4_get_block);
3010 3011
}

3012
static int ext4_readpage(struct file *file, struct page *page)
3013
{
T
Tao Ma 已提交
3014 3015 3016
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

3017
	trace_ext4_readpage(page);
T
Tao Ma 已提交
3018 3019 3020 3021 3022 3023 3024 3025

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
3026 3027 3028
}

static int
3029
ext4_readpages(struct file *file, struct address_space *mapping,
3030 3031
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
3032 3033 3034 3035 3036 3037
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

3038
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3039 3040
}

3041
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3042
{
3043 3044
	trace_ext4_invalidatepage(page, offset);

3045 3046 3047 3048 3049 3050
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

3051 3052
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
3053 3054 3055 3056 3057
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

3058 3059 3060 3061 3062 3063
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3064 3065 3066 3067 3068 3069 3070 3071
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3072 3073
}

3074
static int ext4_releasepage(struct page *page, gfp_t wait)
3075
{
3076
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3077

3078 3079
	trace_ext4_releasepage(page);

3080 3081
	/* Page has dirty journalled data -> cannot release */
	if (PageChecked(page))
3082
		return 0;
3083 3084 3085 3086
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3087 3088
}

3089 3090 3091 3092 3093
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3094
int ext4_get_block_write(struct inode *inode, sector_t iblock,
3095 3096
		   struct buffer_head *bh_result, int create)
{
3097
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3098
		   inode->i_ino, create);
3099 3100
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3101 3102
}

3103
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3104
		   struct buffer_head *bh_result, int create)
3105
{
3106 3107 3108 3109
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
3110 3111
}

3112
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3113 3114
			    ssize_t size, void *private, int ret,
			    bool is_async)
3115
{
3116
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3117 3118
        ext4_io_end_t *io_end = iocb->private;

3119 3120
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3121
		goto out;
3122

3123
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3124
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3125 3126 3127
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

3128 3129
	iocb->private = NULL;

3130
	/* if not aio dio with unwritten extents, just free io and return */
3131
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3132
		ext4_free_io_end(io_end);
3133
out:
3134
		inode_dio_done(inode);
3135 3136 3137
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3138 3139
	}

3140 3141
	io_end->offset = offset;
	io_end->size = size;
3142 3143 3144 3145
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3146

3147
	ext4_add_complete_io(io_end);
3148
}
3149

3150 3151 3152 3153 3154
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3155
 * For holes, we fallocate those blocks, mark them as uninitialized
3156
 * If those blocks were preallocated, we mark sure they are split, but
3157
 * still keep the range to write as uninitialized.
3158
 *
3159
 * The unwritten extents will be converted to written when DIO is completed.
3160
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3161
 * set up an end_io call back function, which will do the conversion
3162
 * when async direct IO completed.
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
3177 3178 3179
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
3180
	loff_t final_size = offset + count;
3181

3182 3183 3184
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3185

3186
	BUG_ON(iocb->private == NULL);
3187

3188 3189
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3190

3191 3192 3193 3194 3195
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3196

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3223
		}
3224 3225
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3226
		/*
3227 3228 3229 3230
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3231
		 */
3232 3233
		ext4_inode_aio_set(inode, io_end);
	}
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3281

3282 3283 3284 3285 3286 3287
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3288
	}
3289

3290
	return ret;
3291 3292 3293 3294 3295 3296 3297 3298
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3299
	ssize_t ret;
3300

3301 3302 3303 3304 3305 3306
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3307 3308 3309 3310
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3311
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3312
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3313 3314 3315 3316 3317 3318
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3319 3320
}

3321
/*
3322
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3334
static int ext4_journalled_set_page_dirty(struct page *page)
3335 3336 3337 3338 3339
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3340
static const struct address_space_operations ext4_ordered_aops = {
3341 3342
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3343
	.writepage		= ext4_writepage,
3344 3345 3346 3347 3348 3349 3350 3351
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3352
	.error_remove_page	= generic_error_remove_page,
3353 3354
};

3355
static const struct address_space_operations ext4_writeback_aops = {
3356 3357
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3358
	.writepage		= ext4_writepage,
3359 3360 3361 3362 3363 3364 3365 3366
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3367
	.error_remove_page	= generic_error_remove_page,
3368 3369
};

3370
static const struct address_space_operations ext4_journalled_aops = {
3371 3372
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3373
	.writepage		= ext4_writepage,
3374 3375 3376 3377
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3378
	.invalidatepage		= ext4_journalled_invalidatepage,
3379
	.releasepage		= ext4_releasepage,
3380
	.direct_IO		= ext4_direct_IO,
3381
	.is_partially_uptodate  = block_is_partially_uptodate,
3382
	.error_remove_page	= generic_error_remove_page,
3383 3384
};

3385
static const struct address_space_operations ext4_da_aops = {
3386 3387
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3388
	.writepage		= ext4_writepage,
3389 3390 3391 3392 3393 3394 3395 3396 3397
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3398
	.error_remove_page	= generic_error_remove_page,
3399 3400
};

3401
void ext4_set_aops(struct inode *inode)
3402
{
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3417
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3418 3419 3420 3421
		break;
	default:
		BUG();
	}
3422 3423
}

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3444
		return -ENOMEM;
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3473
 * from:   The starting byte offset (from the beginning of the file)
3474 3475 3476 3477 3478 3479 3480
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3481
 *         for updating the contents of a page whose blocks may
3482 3483 3484
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3485
 * Returns zero on success or negative on failure.
3486
 */
E
Eric Sandeen 已提交
3487
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3513 3514
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3527 3528
		unsigned int end_of_block, range_to_discard;

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3614
		} else
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3638 3639 3640 3641 3642 3643 3644 3645
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3646
 * Returns: 0 on success or negative on failure
3647 3648 3649 3650 3651 3652
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3653
		return -EOPNOTSUPP;
3654

3655 3656
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3657

3658 3659
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3660
		return -EOPNOTSUPP;
3661 3662
	}

3663 3664
	trace_ext4_punch_hole(inode, offset, length);

3665 3666 3667
	return ext4_ext_punch_hole(file, offset, length);
}

3668
/*
3669
 * ext4_truncate()
3670
 *
3671 3672
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3673 3674
 * simultaneously on behalf of the same inode.
 *
3675
 * As we work through the truncate and commit bits of it to the journal there
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3689
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3690
 * that this inode's truncate did not complete and it will again call
3691 3692
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3693
 * that's fine - as long as they are linked from the inode, the post-crash
3694
 * ext4_truncate() run will find them and release them.
3695
 */
3696
void ext4_truncate(struct inode *inode)
3697
{
3698 3699
	trace_ext4_truncate_enter(inode);

3700
	if (!ext4_can_truncate(inode))
3701 3702
		return;

3703
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3704

3705
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3706
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3707

3708 3709 3710 3711 3712 3713 3714 3715
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3716
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3717
		ext4_ext_truncate(inode);
3718 3719
	else
		ext4_ind_truncate(inode);
3720

3721
	trace_ext4_truncate_exit(inode);
3722 3723 3724
}

/*
3725
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3726 3727 3728 3729
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3730 3731
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3732
{
3733 3734 3735 3736 3737 3738
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3739
	iloc->bh = NULL;
3740 3741
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3742

3743 3744 3745
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3746 3747
		return -EIO;

3748 3749 3750
	/*
	 * Figure out the offset within the block group inode table
	 */
3751
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3752 3753 3754 3755 3756 3757
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3758
	if (unlikely(!bh))
3759
		return -ENOMEM;
3760 3761
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3785
			int i, start;
3786

3787
			start = inode_offset & ~(inodes_per_block - 1);
3788

3789 3790
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3791
			if (unlikely(!bitmap_bh))
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3803
			for (i = start; i < start + inodes_per_block; i++) {
3804 3805
				if (i == inode_offset)
					continue;
3806
				if (ext4_test_bit(i, bitmap_bh->b_data))
3807 3808 3809
					break;
			}
			brelse(bitmap_bh);
3810
			if (i == start + inodes_per_block) {
3811 3812 3813 3814 3815 3816 3817 3818 3819
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3820 3821 3822 3823 3824 3825 3826 3827 3828
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3829
			/* s_inode_readahead_blks is always a power of 2 */
3830 3831 3832 3833 3834
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3835
			if (ext4_has_group_desc_csum(sb))
3836
				num -= ext4_itable_unused_count(sb, gdp);
3837 3838 3839 3840 3841 3842 3843
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3844 3845 3846 3847 3848
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3849
		trace_ext4_load_inode(inode);
3850 3851
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3852
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3853 3854
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3855 3856
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3857 3858 3859 3860 3861 3862 3863 3864 3865
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3866
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3867 3868
{
	/* We have all inode data except xattrs in memory here. */
3869
	return __ext4_get_inode_loc(inode, iloc,
3870
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3871 3872
}

3873
void ext4_set_inode_flags(struct inode *inode)
3874
{
3875
	unsigned int flags = EXT4_I(inode)->i_flags;
3876 3877

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3878
	if (flags & EXT4_SYNC_FL)
3879
		inode->i_flags |= S_SYNC;
3880
	if (flags & EXT4_APPEND_FL)
3881
		inode->i_flags |= S_APPEND;
3882
	if (flags & EXT4_IMMUTABLE_FL)
3883
		inode->i_flags |= S_IMMUTABLE;
3884
	if (flags & EXT4_NOATIME_FL)
3885
		inode->i_flags |= S_NOATIME;
3886
	if (flags & EXT4_DIRSYNC_FL)
3887 3888 3889
		inode->i_flags |= S_DIRSYNC;
}

3890 3891 3892
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3913
}
3914

3915
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3916
				  struct ext4_inode_info *ei)
3917 3918
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3919 3920
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3921 3922 3923 3924 3925 3926

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3927
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3928 3929 3930 3931 3932
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3933 3934 3935 3936
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3937

3938 3939 3940 3941 3942 3943
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3944
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3945
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3946
		ext4_find_inline_data_nolock(inode);
3947 3948
	} else
		EXT4_I(inode)->i_inline_off = 0;
3949 3950
}

3951
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3952
{
3953 3954
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3955 3956
	struct ext4_inode_info *ei;
	struct inode *inode;
3957
	journal_t *journal = EXT4_SB(sb)->s_journal;
3958
	long ret;
3959
	int block;
3960 3961
	uid_t i_uid;
	gid_t i_gid;
3962

3963 3964 3965 3966 3967 3968 3969
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3970
	iloc.bh = NULL;
3971

3972 3973
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3974
		goto bad_inode;
3975
	raw_inode = ext4_raw_inode(&iloc);
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

4009
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4010 4011
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4012
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4013 4014
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4015
	}
4016 4017
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
4018
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4019

4020
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4021
	ei->i_inline_off = 0;
4022 4023 4024 4025 4026 4027 4028 4029 4030
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4031
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4032
			/* this inode is deleted */
4033
			ret = -ESTALE;
4034 4035 4036 4037 4038 4039 4040 4041
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4042
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4043
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4044
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4045 4046
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4047
	inode->i_size = ext4_isize(raw_inode);
4048
	ei->i_disksize = inode->i_size;
4049 4050 4051
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4052 4053
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4054
	ei->i_last_alloc_group = ~0;
4055 4056 4057 4058
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4059
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4060 4061 4062
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4074
		read_lock(&journal->j_state_lock);
4075 4076 4077 4078 4079 4080 4081 4082
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4083
		read_unlock(&journal->j_state_lock);
4084 4085 4086 4087
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4088
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4089 4090
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4091 4092
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4093
		} else {
4094
			ext4_iget_extra_inode(inode, raw_inode, ei);
4095
		}
4096
	}
4097

K
Kalpak Shah 已提交
4098 4099 4100 4101 4102
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4103 4104 4105 4106 4107 4108 4109
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4110
	ret = 0;
4111
	if (ei->i_file_acl &&
4112
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4113 4114
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4115 4116
		ret = -EIO;
		goto bad_inode;
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
4130
	}
4131
	if (ret)
4132
		goto bad_inode;
4133

4134
	if (S_ISREG(inode->i_mode)) {
4135 4136 4137
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4138
	} else if (S_ISDIR(inode->i_mode)) {
4139 4140
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4141
	} else if (S_ISLNK(inode->i_mode)) {
4142
		if (ext4_inode_is_fast_symlink(inode)) {
4143
			inode->i_op = &ext4_fast_symlink_inode_operations;
4144 4145 4146
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4147 4148
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4149
		}
4150 4151
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4152
		inode->i_op = &ext4_special_inode_operations;
4153 4154 4155 4156 4157 4158
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4159 4160
	} else {
		ret = -EIO;
4161
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4162
		goto bad_inode;
4163
	}
4164
	brelse(iloc.bh);
4165
	ext4_set_inode_flags(inode);
4166 4167
	unlock_new_inode(inode);
	return inode;
4168 4169

bad_inode:
4170
	brelse(iloc.bh);
4171 4172
	iget_failed(inode);
	return ERR_PTR(ret);
4173 4174
}

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4185
		 * i_blocks can be represented in a 32 bit variable
4186 4187
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4188
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4189
		raw_inode->i_blocks_high = 0;
4190
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4191 4192 4193 4194 4195 4196
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4197 4198 4199 4200
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4201
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4202
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4203
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4204
	} else {
4205
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4206 4207 4208 4209
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4210
	}
4211
	return 0;
4212 4213
}

4214 4215 4216 4217 4218 4219 4220
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4221
static int ext4_do_update_inode(handle_t *handle,
4222
				struct inode *inode,
4223
				struct ext4_iloc *iloc)
4224
{
4225 4226
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4227 4228
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4229
	int need_datasync = 0;
4230 4231
	uid_t i_uid;
	gid_t i_gid;
4232 4233 4234

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4235
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4236
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4237

4238
	ext4_get_inode_flags(ei);
4239
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4240 4241
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4242
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4243 4244
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4245 4246 4247 4248
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4249
		if (!ei->i_dtime) {
4250
			raw_inode->i_uid_high =
4251
				cpu_to_le16(high_16_bits(i_uid));
4252
			raw_inode->i_gid_high =
4253
				cpu_to_le16(high_16_bits(i_gid));
4254 4255 4256 4257 4258
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4259 4260
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4261 4262 4263 4264
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4265 4266 4267 4268 4269 4270

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4271 4272
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4273
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4274
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4275 4276
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4277 4278
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4279
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4280 4281 4282 4283
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4299
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4300
			ext4_handle_sync(handle);
4301
			err = ext4_handle_dirty_super(handle, sb);
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4316
	} else if (!ext4_has_inline_data(inode)) {
4317 4318
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4319
	}
4320

4321 4322 4323 4324 4325
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4326
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4327 4328
	}

4329 4330
	ext4_inode_csum_set(inode, raw_inode, ei);

4331
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4332
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4333 4334
	if (!err)
		err = rc;
4335
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4336

4337
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4338
out_brelse:
4339
	brelse(bh);
4340
	ext4_std_error(inode->i_sb, err);
4341 4342 4343 4344
	return err;
}

/*
4345
 * ext4_write_inode()
4346 4347 4348 4349 4350
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4351
 *   transaction to commit.
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4362
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4379
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4380
{
4381 4382
	int err;

4383 4384 4385
	if (current->flags & PF_MEMALLOC)
		return 0;

4386 4387 4388 4389 4390 4391
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4392

4393
		if (wbc->sync_mode != WB_SYNC_ALL)
4394 4395 4396 4397 4398
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4399

4400
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4401 4402
		if (err)
			return err;
4403
		if (wbc->sync_mode == WB_SYNC_ALL)
4404 4405
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4406 4407
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4408 4409
			err = -EIO;
		}
4410
		brelse(iloc.bh);
4411 4412
	}
	return err;
4413 4414
}

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4456
/*
4457
 * ext4_setattr()
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4471 4472 4473 4474 4475 4476 4477 4478
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4479
 */
4480
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4481 4482 4483
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4484
	int orphan = 0;
4485 4486 4487 4488 4489 4490
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4491
	if (is_quota_modification(inode, attr))
4492
		dquot_initialize(inode);
4493 4494
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4495 4496 4497 4498
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4499 4500 4501
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4502 4503 4504 4505
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4506
		error = dquot_transfer(inode, attr);
4507
		if (error) {
4508
			ext4_journal_stop(handle);
4509 4510 4511 4512 4513 4514 4515 4516
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4517 4518
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4519 4520
	}

4521
	if (attr->ia_valid & ATTR_SIZE) {
4522

4523
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4524 4525
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4526 4527
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4528 4529 4530
		}
	}

4531
	if (S_ISREG(inode->i_mode) &&
4532
	    attr->ia_valid & ATTR_SIZE &&
4533
	    (attr->ia_size < inode->i_size)) {
4534 4535
		handle_t *handle;

4536
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4537 4538 4539 4540
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4541 4542 4543 4544
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4545 4546
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4547 4548
		if (!error)
			error = rc;
4549
		ext4_journal_stop(handle);
4550 4551 4552 4553 4554 4555

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4556 4557
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4558 4559 4560 4561 4562
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4563
				orphan = 0;
4564 4565 4566 4567
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4568 4569
	}

4570
	if (attr->ia_valid & ATTR_SIZE) {
4571 4572 4573 4574 4575 4576 4577 4578 4579
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4580
			if (orphan) {
4581 4582 4583 4584 4585 4586
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4587
			}
4588 4589 4590 4591 4592
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4593
		}
4594
		ext4_truncate(inode);
4595
	}
4596

C
Christoph Hellwig 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4606
	if (orphan && inode->i_nlink)
4607
		ext4_orphan_del(NULL, inode);
4608 4609

	if (!rc && (ia_valid & ATTR_MODE))
4610
		rc = ext4_acl_chmod(inode);
4611 4612

err_out:
4613
	ext4_std_error(inode->i_sb, error);
4614 4615 4616 4617 4618
	if (!error)
		error = rc;
	return error;
}

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4638 4639
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4640 4641 4642 4643

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4644

4645 4646
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4647
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4648
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4649
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4650
}
4651

4652
/*
4653 4654 4655
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4656
 *
4657
 * If datablocks are discontiguous, they are possible to spread over
4658
 * different block groups too. If they are contiguous, with flexbg,
4659
 * they could still across block group boundary.
4660
 *
4661 4662
 * Also account for superblock, inode, quota and xattr blocks
 */
4663
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4664
{
4665 4666
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4693 4694
	if (groups > ngroups)
		groups = ngroups;
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4708
 * Calculate the total number of credits to reserve to fit
4709 4710
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4711
 *
4712
 * This could be called via ext4_write_begin()
4713
 *
4714
 * We need to consider the worse case, when
4715
 * one new block per extent.
4716
 */
A
Alex Tomas 已提交
4717
int ext4_writepage_trans_blocks(struct inode *inode)
4718
{
4719
	int bpp = ext4_journal_blocks_per_page(inode);
4720 4721
	int ret;

4722
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4723

4724
	/* Account for data blocks for journalled mode */
4725
	if (ext4_should_journal_data(inode))
4726
		ret += bpp;
4727 4728
	return ret;
}
4729 4730 4731 4732 4733

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4734
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4735 4736 4737 4738 4739 4740 4741 4742 4743
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4744
/*
4745
 * The caller must have previously called ext4_reserve_inode_write().
4746 4747
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4748
int ext4_mark_iloc_dirty(handle_t *handle,
4749
			 struct inode *inode, struct ext4_iloc *iloc)
4750 4751 4752
{
	int err = 0;

4753
	if (IS_I_VERSION(inode))
4754 4755
		inode_inc_iversion(inode);

4756 4757 4758
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4759
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4760
	err = ext4_do_update_inode(handle, inode, iloc);
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4771 4772
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4773
{
4774 4775 4776 4777 4778 4779 4780 4781 4782
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4783 4784
		}
	}
4785
	ext4_std_error(inode->i_sb, err);
4786 4787 4788
	return err;
}

4789 4790 4791 4792
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4793 4794 4795 4796
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4809 4810
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4835
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4836
{
4837
	struct ext4_iloc iloc;
4838 4839 4840
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4841 4842

	might_sleep();
4843
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4844
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4845 4846
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4847
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4861 4862
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4863 4864
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4865
					ext4_warning(inode->i_sb,
4866 4867 4868
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4869 4870
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4871 4872 4873 4874
				}
			}
		}
	}
4875
	if (!err)
4876
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4877 4878 4879 4880
	return err;
}

/*
4881
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4882 4883 4884 4885 4886
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4887
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4888 4889 4890 4891 4892 4893
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4894
void ext4_dirty_inode(struct inode *inode, int flags)
4895 4896 4897
{
	handle_t *handle;

4898
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4899 4900
	if (IS_ERR(handle))
		goto out;
4901 4902 4903

	ext4_mark_inode_dirty(handle, inode);

4904
	ext4_journal_stop(handle);
4905 4906 4907 4908 4909 4910 4911 4912
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4913
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4914 4915 4916
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4917
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4918
{
4919
	struct ext4_iloc iloc;
4920 4921 4922

	int err = 0;
	if (handle) {
4923
		err = ext4_get_inode_loc(inode, &iloc);
4924 4925
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4926
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4927
			if (!err)
4928
				err = ext4_handle_dirty_metadata(handle,
4929
								 NULL,
4930
								 iloc.bh);
4931 4932 4933
			brelse(iloc.bh);
		}
	}
4934
	ext4_std_error(inode->i_sb, err);
4935 4936 4937 4938
	return err;
}
#endif

4939
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4955
	journal = EXT4_JOURNAL(inode);
4956 4957
	if (!journal)
		return 0;
4958
	if (is_journal_aborted(journal))
4959
		return -EROFS;
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4971

4972 4973 4974 4975
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4976
	jbd2_journal_lock_updates(journal);
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4987
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4988 4989
	else {
		jbd2_journal_flush(journal);
4990
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4991
	}
4992
	ext4_set_aops(inode);
4993

4994
	jbd2_journal_unlock_updates(journal);
4995
	ext4_inode_resume_unlocked_dio(inode);
4996 4997 4998

	/* Finally we can mark the inode as dirty. */

4999
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5000 5001 5002
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5003
	err = ext4_mark_inode_dirty(handle, inode);
5004
	ext4_handle_sync(handle);
5005 5006
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5007 5008 5009

	return err;
}
5010 5011 5012 5013 5014 5015

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5016
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5017
{
5018
	struct page *page = vmf->page;
5019 5020
	loff_t size;
	unsigned long len;
5021
	int ret;
5022 5023 5024
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
5025 5026 5027
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
5028

5029
	sb_start_pagefault(inode->i_sb);
5030
	file_update_time(vma->vm_file);
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
5041
	}
5042 5043

	lock_page(page);
5044 5045 5046 5047 5048 5049
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
5050
	}
5051 5052 5053 5054 5055

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
5056
	/*
5057 5058
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
5059
	 */
5060
	if (page_has_buffers(page)) {
5061 5062 5063
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
5064 5065 5066 5067
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
5068
		}
5069
	}
5070
	unlock_page(page);
5071 5072 5073 5074 5075 5076
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
5077 5078
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
5079
	if (IS_ERR(handle)) {
5080
		ret = VM_FAULT_SIGBUS;
5081 5082 5083 5084
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
5085
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5086 5087 5088
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
5089
			ext4_journal_stop(handle);
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
5100
	sb_end_pagefault(inode->i_sb);
5101 5102
	return ret;
}