m25p80.c 33.1 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
47
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
48
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
49
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
50 51
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

52 53 54 55 56 57
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

58 59 60 61 62
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

63
/* Used for Macronix and Winbond flashes. */
64 65 66
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

67 68 69
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

70 71 72
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
73
/* meaning of other SR_* bits may differ between vendors */
74 75 76 77 78 79
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
80
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
B
Brian Norris 已提交
81
#define	MAX_CMD_SIZE		6
82

83 84
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

85 86 87 88
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
89
	struct mutex		lock;
90
	struct mtd_info		mtd;
91 92
	u16			page_size;
	u16			addr_width;
93
	u8			erase_opcode;
94 95
	u8			read_opcode;
	u8			program_opcode;
96
	u8			*command;
97
	bool			fast_read;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

133 134 135 136 137 138 139 140 141 142 143
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
144 145 146 147 148 149 150 151 152

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

153
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
154 155
}

156 157 158 159 160 161 162 163 164
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
165

166 167 168
/*
 * Enable/disable 4-byte addressing mode.
 */
169
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
170
{
171 172 173
	int status;
	bool need_wren = false;

174
	switch (JEDEC_MFR(jedec_id)) {
175
	case CFI_MFR_ST: /* Micron, actually */
176 177 178
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
179
	case 0xEF /* winbond */:
180 181 182
		if (need_wren)
			write_enable(flash);

183
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
184 185 186 187 188 189
		status = spi_write(flash->spi, flash->command, 1);

		if (need_wren)
			write_disable(flash);

		return status;
190 191 192 193 194 195
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
196 197
}

198 199 200 201 202 203
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
204
	unsigned long deadline;
205 206
	int sr;

P
Peter Horton 已提交
207 208 209
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
210 211 212 213 214
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
215 216 217
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
218 219 220 221

	return 1;
}

C
Chen Gong 已提交
222 223 224 225 226
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
227
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
228
{
229 230
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
231 232 233 234 235 236 237 238 239

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
240
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
241 242 243 244 245

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
246

247 248 249 250 251 252
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
253
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
254 255 256 257 258 259 260
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

261 262 263 264 265 266 267 268
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
269 270
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
271 272 273 274 275 276 277 278 279

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
280
	flash->command[0] = flash->erase_opcode;
281
	m25p_addr2cmd(flash, offset, flash->command);
282

283
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
302
	uint32_t rem;
303

304 305 306
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
307

308 309
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
310 311 312 313 314
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
315
	mutex_lock(&flash->lock);
316

317
	/* whole-chip erase? */
318 319 320 321 322 323
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
324 325 326 327 328 329 330

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
331 332 333 334 335 336 337 338 339 340
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
341 342 343
		}
	}

D
David Brownell 已提交
344
	mutex_unlock(&flash->lock);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
362
	uint8_t opcode;
363

364 365
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
366

367 368 369 370
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
371
	t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
372 373 374 375 376 377
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
378
	mutex_lock(&flash->lock);
379 380 381 382

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
383
		mutex_unlock(&flash->lock);
384 385 386 387
		return 1;
	}

	/* Set up the write data buffer. */
388
	opcode = flash->read_opcode;
389
	flash->command[0] = opcode;
390
	m25p_addr2cmd(flash, from, flash->command);
391 392 393

	spi_sync(flash->spi, &m);

394 395
	*retlen = m.actual_length - m25p_cmdsz(flash) -
			(flash->fast_read ? 1 : 0);
396

D
David Brownell 已提交
397
	mutex_unlock(&flash->lock);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

415 416
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
417

418 419 420 421
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
422
	t[0].len = m25p_cmdsz(flash);
423 424 425 426 427
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
428
	mutex_lock(&flash->lock);
429 430

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
431 432
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
433
		return 1;
C
Chen Gong 已提交
434
	}
435 436 437 438

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
439
	flash->command[0] = flash->program_opcode;
440
	m25p_addr2cmd(flash, to, flash->command);
441

442
	page_offset = to & (flash->page_size - 1);
443 444

	/* do all the bytes fit onto one page? */
445
	if (page_offset + len <= flash->page_size) {
446 447 448 449
		t[1].len = len;

		spi_sync(flash->spi, &m);

450
		*retlen = m.actual_length - m25p_cmdsz(flash);
451 452 453 454
	} else {
		u32 i;

		/* the size of data remaining on the first page */
455
		page_size = flash->page_size - page_offset;
456 457 458 459

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

460
		*retlen = m.actual_length - m25p_cmdsz(flash);
461

462
		/* write everything in flash->page_size chunks */
463 464
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
465 466
			if (page_size > flash->page_size)
				page_size = flash->page_size;
467 468

			/* write the next page to flash */
469
			m25p_addr2cmd(flash, to + i, flash->command);
470 471 472 473 474 475 476 477 478 479

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
480
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
481 482
		}
	}
483

D
David Brownell 已提交
484
	mutex_unlock(&flash->lock);
485 486 487 488

	return 0;
}

489 490 491 492 493 494 495 496 497
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

498 499
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
500

501 502 503 504
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
505
	t[0].len = m25p_cmdsz(flash);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
524
		m25p_addr2cmd(flash, to, flash->command);
525 526 527 528 529 530 531

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
532
		*retlen += m.actual_length - m25p_cmdsz(flash);
533 534 535 536
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
537
	m25p_addr2cmd(flash, to, flash->command);
538 539

	/* Write out most of the data here. */
540
	cmd_sz = m25p_cmdsz(flash);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
564 565
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
566 567 568 569 570 571 572
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
573
		*retlen += m.actual_length - m25p_cmdsz(flash);
574 575 576 577 578 579 580
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

672 673 674 675 676 677 678
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
679 680 681 682 683
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
684
	u16             ext_id;
685 686 687 688

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
689
	unsigned	sector_size;
690 691
	u16		n_sectors;

692 693 694
	u16		page_size;
	u16		addr_width;

695 696
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
697
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
698
#define	SST_WRITE	0x04		/* use SST byte programming */
699
#define	M25P_NO_FR	0x08		/* Can't do fastread */
700
#define	SECT_4K_PMC	0x10		/* OPCODE_BE_4K_PMC works uniformly */
701 702
};

703 704 705 706 707 708
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
709
		.page_size = 256,					\
710 711
		.flags = (_flags),					\
	})
712

713
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
714 715 716 717 718
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
719
		.flags = (_flags),					\
720
	})
721 722 723 724 725

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
726
static const struct spi_device_id m25p_ids[] = {
727
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
728 729
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
730

731
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
732
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
733
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
734

735 736 737
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
738
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
739

740 741
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

742 743
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
744
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
745
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
746
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
747
	{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
748
	{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
749

750 751 752
	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

753
	/* Everspin */
754
	{ "mr25h256", CAT25_INFO(  32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
755
	{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
756

757 758 759 760
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

761 762 763 764 765
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

766
	/* Macronix */
J
John Crispin 已提交
767
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
768
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
769
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
770
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
771 772 773 774
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
775
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
776
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
777
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
778

779
	/* Micron */
780
	{ "n25q064",  INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
781 782
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
783
	{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
784
	{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
785

786 787 788 789 790
	/* PMC */
	{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
	{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
	{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024,  64, SECT_4K) },

791 792 793
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
794 795
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
796 797
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
798 799
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
800 801 802 803
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
804 805 806 807 808
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
809 810
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
811 812

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
813 814 815 816
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
817
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
818 819 820 821
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
822 823

	/* ST Microelectronics -- newer production may have feature updates */
824 825 826 827 828 829 830 831 832
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
833
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
834

835 836 837 838 839 840 841 842 843 844
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

845 846 847 848
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

849
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
850 851
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
852

853 854 855 856
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
857

858
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
859 860 861 862 863 864
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
865
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
866
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
867
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
868
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
869
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
870
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
871
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
872
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
873
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
874 875

	/* Catalyst / On Semiconductor -- non-JEDEC */
876 877 878 879 880
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
881
	{ },
882
};
883
MODULE_DEVICE_TABLE(spi, m25p_ids);
884

B
Bill Pemberton 已提交
885
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
886 887 888
{
	int			tmp;
	u8			code = OPCODE_RDID;
889
	u8			id[5];
890
	u32			jedec;
891
	u16                     ext_jedec;
892 893 894 895 896 897
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
898
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
899
	if (tmp < 0) {
900
		pr_debug("%s: error %d reading JEDEC ID\n",
901
				dev_name(&spi->dev), tmp);
902
		return ERR_PTR(tmp);
903 904 905 906 907 908 909
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

910 911
	ext_jedec = id[3] << 8 | id[4];

912 913
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
914
		if (info->jedec_id == jedec) {
915
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
916
				continue;
917
			return &m25p_ids[tmp];
918
		}
919
	}
920
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
921
	return ERR_PTR(-ENODEV);
922 923 924
}


925 926 927 928 929
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
930
static int m25p_probe(struct spi_device *spi)
931
{
932
	const struct spi_device_id	*id = spi_get_device_id(spi);
933 934 935 936
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
937
	struct mtd_part_parser_data	ppdata;
938
	struct device_node __maybe_unused *np = spi->dev.of_node;
939

940
#ifdef CONFIG_MTD_OF_PARTS
941
	if (!of_device_is_available(np))
942 943 944
		return -ENODEV;
#endif

945
	/* Platform data helps sort out which chip type we have, as
946 947 948
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
949
	 */
950
	data = dev_get_platdata(&spi->dev);
951
	if (data && data->type) {
952
		const struct spi_device_id *plat_id;
953

954
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
955 956
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
957 958
				continue;
			break;
959 960
		}

961
		if (i < ARRAY_SIZE(m25p_ids) - 1)
962 963 964
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
965
	}
966

967 968 969 970 971 972
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
973 974
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
975 976 977 978 979 980 981 982 983 984 985 986 987 988
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
989

B
Brian Norris 已提交
990
	flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
991 992
	if (!flash)
		return -ENOMEM;
B
Brian Norris 已提交
993 994 995

	flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL);
	if (!flash->command)
996
		return -ENOMEM;
997 998

	flash->spi = spi;
D
David Brownell 已提交
999
	mutex_init(&flash->lock);
1000
	spi_set_drvdata(spi, flash);
1001

1002
	/*
1003
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
1004
	 * up with the software protection bits set
1005 1006
	 */

1007 1008 1009
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
1010 1011 1012 1013
		write_enable(flash);
		write_sr(flash, 0);
	}

1014
	if (data && data->name)
1015 1016
		flash->mtd.name = data->name;
	else
1017
		flash->mtd.name = dev_name(&spi->dev);
1018 1019

	flash->mtd.type = MTD_NORFLASH;
1020
	flash->mtd.writesize = 1;
1021 1022
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
1023 1024
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1025

1026 1027 1028 1029 1030 1031
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1032
	/* sst flash chips use AAI word program */
1033
	if (info->flags & SST_WRITE)
1034
		flash->mtd._write = sst_write;
1035
	else
1036
		flash->mtd._write = m25p80_write;
1037

1038 1039 1040 1041
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
1042 1043 1044
	} else if (info->flags & SECT_4K_PMC) {
		flash->erase_opcode = OPCODE_BE_4K_PMC;
		flash->mtd.erasesize = 4096;
1045 1046 1047 1048 1049
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1050 1051 1052
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1053
	ppdata.of_node = spi->dev.of_node;
1054
	flash->mtd.dev.parent = &spi->dev;
1055
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1056
	flash->mtd.writebufsize = flash->page_size;
1057

1058 1059 1060 1061 1062 1063 1064
	flash->fast_read = false;
	if (np && of_property_read_bool(np, "m25p,fast-read"))
		flash->fast_read = true;

#ifdef CONFIG_M25PXX_USE_FAST_READ
	flash->fast_read = true;
#endif
1065 1066
	if (info->flags & M25P_NO_FR)
		flash->fast_read = false;
1067

1068 1069 1070 1071 1072 1073 1074 1075
	/* Default commands */
	if (flash->fast_read)
		flash->read_opcode = OPCODE_FAST_READ;
	else
		flash->read_opcode = OPCODE_NORM_READ;

	flash->program_opcode = OPCODE_PP;

1076 1077
	if (info->addr_width)
		flash->addr_width = info->addr_width;
1078
	else if (flash->mtd.size > 0x1000000) {
1079
		/* enable 4-byte addressing if the device exceeds 16MiB */
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		flash->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
			flash->read_opcode = flash->fast_read ?
				OPCODE_FAST_READ_4B :
				OPCODE_NORM_READ_4B;
			flash->program_opcode = OPCODE_PP_4B;
			/* No small sector erase for 4-byte command set */
			flash->erase_opcode = OPCODE_SE_4B;
			flash->mtd.erasesize = info->sector_size;
1090
		} else
1091 1092 1093
			set_4byte(flash, info->jedec_id, 1);
	} else {
		flash->addr_width = 3;
1094
	}
1095

1096
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1097
			(long long)flash->mtd.size >> 10);
1098

1099
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1100
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1101
		flash->mtd.name,
1102
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1103 1104 1105 1106 1107
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1108
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1109
				".erasesize = 0x%.8x (%uKiB), "
1110
				".numblocks = %d }\n",
1111
				i, (long long)flash->mtd.eraseregions[i].offset,
1112 1113 1114 1115 1116 1117 1118 1119
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1120 1121 1122
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1123 1124 1125
}


B
Bill Pemberton 已提交
1126
static int m25p_remove(struct spi_device *spi)
1127
{
1128
	struct m25p	*flash = spi_get_drvdata(spi);
1129 1130

	/* Clean up MTD stuff. */
B
Brian Norris 已提交
1131 1132
	mtd_device_unregister(&flash->mtd);

1133 1134 1135 1136 1137 1138 1139 1140 1141
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1142
	.id_table	= m25p_ids,
1143
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1144
	.remove	= m25p_remove,
1145 1146 1147 1148 1149

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1150 1151
};

1152
module_spi_driver(m25p80_driver);
1153 1154 1155 1156

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");