m25p80.c 31.4 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
47
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
48
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
49 50
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

51 52 53 54 55
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

56 57 58 59
/* Used for Macronix flashes only. */
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

60 61 62
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

63 64 65
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
66
/* meaning of other SR_* bits may differ between vendors */
67 68 69 70 71 72
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
73
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
74
#define	MAX_CMD_SIZE		5
75

76 77
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

78 79 80 81
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
82
	struct mutex		lock;
83
	struct mtd_info		mtd;
84 85
	u16			page_size;
	u16			addr_width;
86
	u8			erase_opcode;
87
	u8			*command;
88
	bool			fast_read;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

124 125 126 127 128 129 130 131 132 133 134
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
135 136 137 138 139 140 141 142 143

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

144
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
145 146
}

147 148 149 150 151 152 153 154 155
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
156

157 158 159
/*
 * Enable/disable 4-byte addressing mode.
 */
160
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
161
{
162 163
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
164
	case 0xEF /* winbond */:
165 166 167 168 169 170 171 172
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
173 174
}

175 176 177 178 179 180
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
181
	unsigned long deadline;
182 183
	int sr;

P
Peter Horton 已提交
184 185 186
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
187 188 189 190 191
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
192 193 194
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
195 196 197 198

	return 1;
}

C
Chen Gong 已提交
199 200 201 202 203
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
204
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
205
{
206 207
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
208 209 210 211 212 213 214 215 216

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
217
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
218 219 220 221 222

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
223

224 225 226 227 228 229
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
230
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
231 232 233 234 235 236 237
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

238 239 240 241 242 243 244 245
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
246 247
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
248 249 250 251 252 253 254 255 256

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
257
	flash->command[0] = flash->erase_opcode;
258
	m25p_addr2cmd(flash, offset, flash->command);
259

260
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
279
	uint32_t rem;
280

281 282 283
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
284

285 286
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
287 288 289 290 291
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
292
	mutex_lock(&flash->lock);
293

294
	/* whole-chip erase? */
295 296 297 298 299 300
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
301 302 303 304 305 306 307

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
308 309 310 311 312 313 314 315 316 317
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
318 319 320
		}
	}

D
David Brownell 已提交
321
	mutex_unlock(&flash->lock);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
339
	uint8_t opcode;
340

341 342
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
343

344 345 346
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

347 348 349 350
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
351
	t[0].tx_buf = flash->command;
352
	t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
353 354 355 356 357 358
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
359
	mutex_lock(&flash->lock);
360 361 362 363

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
364
		mutex_unlock(&flash->lock);
365 366 367
		return 1;
	}

368 369 370 371
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
372 373

	/* Set up the write data buffer. */
374 375
	opcode = flash->fast_read ? OPCODE_FAST_READ : OPCODE_NORM_READ;
	flash->command[0] = opcode;
376
	m25p_addr2cmd(flash, from, flash->command);
377 378 379

	spi_sync(flash->spi, &m);

380 381
	*retlen = m.actual_length - m25p_cmdsz(flash) -
			(flash->fast_read ? 1 : 0);
382

D
David Brownell 已提交
383
	mutex_unlock(&flash->lock);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

401 402
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
403

404 405 406 407
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
408
	t[0].len = m25p_cmdsz(flash);
409 410 411 412 413
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
414
	mutex_lock(&flash->lock);
415 416

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
417 418
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
419
		return 1;
C
Chen Gong 已提交
420
	}
421 422 423 424 425

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
426
	m25p_addr2cmd(flash, to, flash->command);
427

428
	page_offset = to & (flash->page_size - 1);
429 430

	/* do all the bytes fit onto one page? */
431
	if (page_offset + len <= flash->page_size) {
432 433 434 435
		t[1].len = len;

		spi_sync(flash->spi, &m);

436
		*retlen = m.actual_length - m25p_cmdsz(flash);
437 438 439 440
	} else {
		u32 i;

		/* the size of data remaining on the first page */
441
		page_size = flash->page_size - page_offset;
442 443 444 445

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

446
		*retlen = m.actual_length - m25p_cmdsz(flash);
447

448
		/* write everything in flash->page_size chunks */
449 450
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
451 452
			if (page_size > flash->page_size)
				page_size = flash->page_size;
453 454

			/* write the next page to flash */
455
			m25p_addr2cmd(flash, to + i, flash->command);
456 457 458 459 460 461 462 463 464 465

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
466
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
467 468
		}
	}
469

D
David Brownell 已提交
470
	mutex_unlock(&flash->lock);
471 472 473 474

	return 0;
}

475 476 477 478 479 480 481 482 483
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

484 485
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
486

487 488 489 490
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
491
	t[0].len = m25p_cmdsz(flash);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
510
		m25p_addr2cmd(flash, to, flash->command);
511 512 513 514 515 516 517

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
518
		*retlen += m.actual_length - m25p_cmdsz(flash);
519 520 521 522
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
523
	m25p_addr2cmd(flash, to, flash->command);
524 525

	/* Write out most of the data here. */
526
	cmd_sz = m25p_cmdsz(flash);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
550 551
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
552 553 554 555 556 557 558
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
559
		*retlen += m.actual_length - m25p_cmdsz(flash);
560 561 562 563 564 565 566
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

658 659 660 661 662 663 664
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
665 666 667 668 669
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
670
	u16             ext_id;
671 672 673 674

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
675
	unsigned	sector_size;
676 677
	u16		n_sectors;

678 679 680
	u16		page_size;
	u16		addr_width;

681 682
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
683
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
684
#define	SST_WRITE	0x04		/* use SST byte programming */
685 686
};

687 688 689 690 691 692
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
693
		.page_size = 256,					\
694 695
		.flags = (_flags),					\
	})
696

697 698 699 700 701 702 703 704
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})
705 706 707 708 709

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
710
static const struct spi_device_id m25p_ids[] = {
711
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
712 713
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
714

715
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
716
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
717
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
718

719 720 721
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
722
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
723

724 725
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

726 727
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
728
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
729
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
730
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
731
	{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
732
	{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
733

734 735 736
	/* Everspin */
	{ "mr25h256", CAT25_INFO(  32 * 1024, 1, 256, 2) },

737 738 739 740
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

741 742 743 744 745
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

746
	/* Macronix */
J
John Crispin 已提交
747
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
748
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
749
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
750
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
751 752 753 754
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
755
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
756
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
757
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
758

759
	/* Micron */
760
	{ "n25q064",  INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
761 762
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
763 764
	{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },

765 766 767
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
768 769
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
770 771
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
772 773
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
774 775 776 777
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
778 779 780 781 782
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
783 784
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
785 786

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
787 788 789 790
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
791
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
792 793 794 795
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
796 797

	/* ST Microelectronics -- newer production may have feature updates */
798 799 800 801 802 803 804 805 806
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
807
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
808

809 810 811 812 813 814 815 816 817 818
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

819 820 821 822
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

823
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
824 825
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
826

827 828 829 830
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
831

832
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
833 834 835 836 837 838
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
839
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
840
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
841
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
842
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
843
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
844
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
845
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
846
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
847 848 849 850 851 852 853

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
854
	{ },
855
};
856
MODULE_DEVICE_TABLE(spi, m25p_ids);
857

B
Bill Pemberton 已提交
858
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
859 860 861
{
	int			tmp;
	u8			code = OPCODE_RDID;
862
	u8			id[5];
863
	u32			jedec;
864
	u16                     ext_jedec;
865 866 867 868 869 870
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
871
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
872
	if (tmp < 0) {
873
		pr_debug("%s: error %d reading JEDEC ID\n",
874
				dev_name(&spi->dev), tmp);
875
		return ERR_PTR(tmp);
876 877 878 879 880 881 882
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

883 884
	ext_jedec = id[3] << 8 | id[4];

885 886
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
887
		if (info->jedec_id == jedec) {
888
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
889
				continue;
890
			return &m25p_ids[tmp];
891
		}
892
	}
893
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
894
	return ERR_PTR(-ENODEV);
895 896 897
}


898 899 900 901 902
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
903
static int m25p_probe(struct spi_device *spi)
904
{
905
	const struct spi_device_id	*id = spi_get_device_id(spi);
906 907 908 909
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
910
	struct mtd_part_parser_data	ppdata;
911
	struct device_node __maybe_unused *np = spi->dev.of_node;
912

913
#ifdef CONFIG_MTD_OF_PARTS
914
	if (!of_device_is_available(np))
915 916 917
		return -ENODEV;
#endif

918
	/* Platform data helps sort out which chip type we have, as
919 920 921
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
922 923
	 */
	data = spi->dev.platform_data;
924
	if (data && data->type) {
925
		const struct spi_device_id *plat_id;
926

927
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
928 929
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
930 931
				continue;
			break;
932 933
		}

934
		if (i < ARRAY_SIZE(m25p_ids) - 1)
935 936 937
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
938
	}
939

940 941 942 943 944 945
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
946 947
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
948 949 950 951 952 953 954 955 956 957 958 959 960 961
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
962

963
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
964 965
	if (!flash)
		return -ENOMEM;
966 967
	flash->command = kmalloc(MAX_CMD_SIZE + (flash->fast_read ? 1 : 0),
					GFP_KERNEL);
968 969 970 971
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
972 973

	flash->spi = spi;
D
David Brownell 已提交
974
	mutex_init(&flash->lock);
975
	spi_set_drvdata(spi, flash);
976

977
	/*
978
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
979
	 * up with the software protection bits set
980 981
	 */

982 983 984
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
985 986 987 988
		write_enable(flash);
		write_sr(flash, 0);
	}

989
	if (data && data->name)
990 991
		flash->mtd.name = data->name;
	else
992
		flash->mtd.name = dev_name(&spi->dev);
993 994

	flash->mtd.type = MTD_NORFLASH;
995
	flash->mtd.writesize = 1;
996 997
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
998 999
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1000

1001 1002 1003 1004 1005 1006
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1007
	/* sst flash chips use AAI word program */
1008
	if (info->flags & SST_WRITE)
1009
		flash->mtd._write = sst_write;
1010
	else
1011
		flash->mtd._write = m25p80_write;
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1022 1023 1024
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1025
	ppdata.of_node = spi->dev.of_node;
1026
	flash->mtd.dev.parent = &spi->dev;
1027
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1028
	flash->mtd.writebufsize = flash->page_size;
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	flash->fast_read = false;
#ifdef CONFIG_OF
	if (np && of_property_read_bool(np, "m25p,fast-read"))
		flash->fast_read = true;
#endif

#ifdef CONFIG_M25PXX_USE_FAST_READ
	flash->fast_read = true;
#endif

1040 1041 1042 1043 1044 1045
	if (info->addr_width)
		flash->addr_width = info->addr_width;
	else {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		if (flash->mtd.size > 0x1000000) {
			flash->addr_width = 4;
1046
			set_4byte(flash, info->jedec_id, 1);
1047 1048 1049
		} else
			flash->addr_width = 3;
	}
1050

1051
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1052
			(long long)flash->mtd.size >> 10);
1053

1054
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1055
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1056
		flash->mtd.name,
1057
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1058 1059 1060 1061 1062
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1063
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1064
				".erasesize = 0x%.8x (%uKiB), "
1065
				".numblocks = %d }\n",
1066
				i, (long long)flash->mtd.eraseregions[i].offset,
1067 1068 1069 1070 1071 1072 1073 1074
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1075 1076 1077
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1078 1079 1080
}


B
Bill Pemberton 已提交
1081
static int m25p_remove(struct spi_device *spi)
1082
{
1083
	struct m25p	*flash = spi_get_drvdata(spi);
1084 1085 1086
	int		status;

	/* Clean up MTD stuff. */
1087
	status = mtd_device_unregister(&flash->mtd);
1088 1089
	if (status == 0) {
		kfree(flash->command);
1090
		kfree(flash);
1091
	}
1092 1093 1094 1095 1096 1097 1098 1099 1100
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1101
	.id_table	= m25p_ids,
1102
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1103
	.remove	= m25p_remove,
1104 1105 1106 1107 1108

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1109 1110
};

1111
module_spi_driver(m25p80_driver);
1112 1113 1114 1115

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");