m25p80.c 18.0 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
22 23
#include <linux/mutex.h>

24 25
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
D
David Brownell 已提交
26

27 28 29 30 31 32 33
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>


#define FLASH_PAGESIZE		256

/* Flash opcodes. */
34 35
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
36
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
37 38
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
39 40 41
#define	OPCODE_BE_4K 		0x20	/* Erase 4KiB block */
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
42 43 44 45 46
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
47
/* meaning of other SR_* bits may differ between vendors */
48 49 50 51 52 53 54
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
#define	MAX_READY_WAIT_COUNT	100000
55
#define	CMD_SIZE		4
56

57 58 59 60 61 62 63
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
64 65 66 67 68 69 70 71 72 73 74

#ifdef CONFIG_MTD_PARTITIONS
#define	mtd_has_partitions()	(1)
#else
#define	mtd_has_partitions()	(0)
#endif

/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
75
	struct mutex		lock;
76
	struct mtd_info		mtd;
77 78
	unsigned		partitioned:1;
	u8			erase_opcode;
79
	u8			command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}


/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}


/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
	int count;
	int sr;

	/* one chip guarantees max 5 msec wait here after page writes,
	 * but potentially three seconds (!) after page erase.
	 */
	for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

		/* REVISIT sometimes sleeping would be best */
	}

	return 1;
}


/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
161
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
162
			flash->spi->dev.bus_id, __func__,
163
			flash->mtd.erasesize / 1024, offset);
164 165 166 167 168 169 170 171 172

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
173
	flash->command[0] = flash->erase_opcode;
174 175 176 177
	flash->command[1] = offset >> 16;
	flash->command[2] = offset >> 8;
	flash->command[3] = offset;

178
	spi_write(flash->spi, flash->command, CMD_SIZE);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;

198
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
199
			flash->spi->dev.bus_id, __func__, "at",
200 201 202 203 204 205 206 207 208 209 210 211 212
			(u32)instr->addr, instr->len);

	/* sanity checks */
	if (instr->addr + instr->len > flash->mtd.size)
		return -EINVAL;
	if ((instr->addr % mtd->erasesize) != 0
			|| (instr->len % mtd->erasesize) != 0) {
		return -EINVAL;
	}

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
213
	mutex_lock(&flash->lock);
214

215 216 217 218
	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K
	 */

219 220 221 222
	/* now erase those sectors */
	while (len) {
		if (erase_sector(flash, addr)) {
			instr->state = MTD_ERASE_FAILED;
D
David Brownell 已提交
223
			mutex_unlock(&flash->lock);
224 225 226 227 228 229 230
			return -EIO;
		}

		addr += mtd->erasesize;
		len -= mtd->erasesize;
	}

D
David Brownell 已提交
231
	mutex_unlock(&flash->lock);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
251
			flash->spi->dev.bus_id, __func__, "from",
252 253 254 255 256 257 258 259 260
			(u32)from, len);

	/* sanity checks */
	if (!len)
		return 0;

	if (from + len > flash->mtd.size)
		return -EINVAL;

261 262 263
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

264 265 266 267
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
268
	t[0].tx_buf = flash->command;
269
	t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
270 271 272 273 274 275 276 277 278 279
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
	if (retlen)
		*retlen = 0;

D
David Brownell 已提交
280
	mutex_lock(&flash->lock);
281 282 283 284

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
285
		mutex_unlock(&flash->lock);
286 287 288
		return 1;
	}

289 290 291 292
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
293 294 295 296 297 298 299 300 301

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
	flash->command[1] = from >> 16;
	flash->command[2] = from >> 8;
	flash->command[3] = from;

	spi_sync(flash->spi, &m);

302
	*retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
303

D
David Brownell 已提交
304
	mutex_unlock(&flash->lock);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
323
			flash->spi->dev.bus_id, __func__, "to",
324 325 326 327 328 329 330 331 332 333 334 335
			(u32)to, len);

	if (retlen)
		*retlen = 0;

	/* sanity checks */
	if (!len)
		return(0);

	if (to + len > flash->mtd.size)
		return -EINVAL;

336 337 338 339
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
340
	t[0].len = CMD_SIZE;
341 342 343 344 345
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
346
	mutex_lock(&flash->lock);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
	flash->command[1] = to >> 16;
	flash->command[2] = to >> 8;
	flash->command[3] = to;

	/* what page do we start with? */
	page_offset = to % FLASH_PAGESIZE;

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= FLASH_PAGESIZE) {
		t[1].len = len;

		spi_sync(flash->spi, &m);

369
		*retlen = m.actual_length - CMD_SIZE;
370 371 372 373 374 375 376 377 378
	} else {
		u32 i;

		/* the size of data remaining on the first page */
		page_size = FLASH_PAGESIZE - page_offset;

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

379
		*retlen = m.actual_length - CMD_SIZE;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

		/* write everything in PAGESIZE chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > FLASH_PAGESIZE)
				page_size = FLASH_PAGESIZE;

			/* write the next page to flash */
			flash->command[1] = (to + i) >> 16;
			flash->command[2] = (to + i) >> 8;
			flash->command[3] = (to + i);

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
David Brownell 已提交
401
			if (retlen)
402
				*retlen += m.actual_length - CMD_SIZE;
D
David Brownell 已提交
403 404
		}
	}
405

D
David Brownell 已提交
406
	mutex_unlock(&flash->lock);
407 408 409 410 411 412 413 414 415 416 417 418 419

	return 0;
}


/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
	char		*name;
420 421 422 423 424 425 426 427 428 429

	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
430
	unsigned	sector_size;
431 432 433 434
	u16		n_sectors;

	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
435 436
};

437 438 439 440 441

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
442
static struct flash_info __devinitdata m25p_data [] = {
443 444 445 446 447 448

	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  0x1f6601, 32 * 1024, 4, SECT_4K, },
	{ "at25fs040",  0x1f6604, 64 * 1024, 8, SECT_4K, },

	{ "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, },
449
	{ "at25df641",  0x1f4800, 64 * 1024, 128, SECT_4K, },
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

	{ "at26f004",   0x1f0400, 64 * 1024, 8, SECT_4K, },
	{ "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, },
	{ "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, },
	{ "at26df321",  0x1f4701, 64 * 1024, 64, SECT_4K, },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
	{ "s25sl004a", 0x010212, 64 * 1024, 8, },
	{ "s25sl008a", 0x010213, 64 * 1024, 16, },
	{ "s25sl016a", 0x010214, 64 * 1024, 32, },
	{ "s25sl032a", 0x010215, 64 * 1024, 64, },
	{ "s25sl064a", 0x010216, 64 * 1024, 128, },

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, },
	{ "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, },
	{ "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, },
	{ "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, },

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  0x202010,  32 * 1024, 2, },
	{ "m25p10",  0x202011,  32 * 1024, 4, },
	{ "m25p20",  0x202012,  64 * 1024, 4, },
	{ "m25p40",  0x202013,  64 * 1024, 8, },
	{ "m25p80",         0,  64 * 1024, 16, },
	{ "m25p16",  0x202015,  64 * 1024, 32, },
	{ "m25p32",  0x202016,  64 * 1024, 64, },
	{ "m25p64",  0x202017,  64 * 1024, 128, },
	{ "m25p128", 0x202018, 256 * 1024, 64, },

	{ "m45pe80", 0x204014,  64 * 1024, 16, },
	{ "m45pe16", 0x204015,  64 * 1024, 32, },

	{ "m25pe80", 0x208014,  64 * 1024, 16, },
	{ "m25pe16", 0x208015,  64 * 1024, 32, SECT_4K, },

488
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
489 490 491 492 493 494 495
	{ "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, },
	{ "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, },
	{ "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, },
	{ "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, },
	{ "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, },
	{ "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, },
	{ "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, },
496 497
};

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
{
	int			tmp;
	u8			code = OPCODE_RDID;
	u8			id[3];
	u32			jedec;
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
	tmp = spi_write_then_read(spi, &code, 1, id, 3);
	if (tmp < 0) {
		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
			spi->dev.bus_id, tmp);
		return NULL;
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

	for (tmp = 0, info = m25p_data;
			tmp < ARRAY_SIZE(m25p_data);
			tmp++, info++) {
		if (info->jedec_id == jedec)
			return info;
	}
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
	return NULL;
}


533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;

	/* Platform data helps sort out which chip type we have, as
546 547 548
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
549 550
	 */
	data = spi->dev.platform_data;
551 552 553 554 555 556 557
	if (data && data->type) {
		for (i = 0, info = m25p_data;
				i < ARRAY_SIZE(m25p_data);
				i++, info++) {
			if (strcmp(data->type, info->name) == 0)
				break;
		}
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		/* unrecognized chip? */
		if (i == ARRAY_SIZE(m25p_data)) {
			DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
					spi->dev.bus_id, data->type);
			info = NULL;

		/* recognized; is that chip really what's there? */
		} else if (info->jedec_id) {
			struct flash_info	*chip = jedec_probe(spi);

			if (!chip || chip != info) {
				dev_warn(&spi->dev, "found %s, expected %s\n",
						chip ? chip->name : "UNKNOWN",
						info->name);
				info = NULL;
			}
		}
	} else
		info = jedec_probe(spi);

	if (!info)
580 581
		return -ENODEV;

582
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
583 584 585 586
	if (!flash)
		return -ENOMEM;

	flash->spi = spi;
D
David Brownell 已提交
587
	mutex_init(&flash->lock);
588 589
	dev_set_drvdata(&spi->dev, flash);

590
	if (data && data->name)
591 592 593 594 595
		flash->mtd.name = data->name;
	else
		flash->mtd.name = spi->dev.bus_id;

	flash->mtd.type = MTD_NORFLASH;
596
	flash->mtd.writesize = 1;
597 598 599 600 601 602
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
	flash->mtd.erase = m25p80_erase;
	flash->mtd.read = m25p80_read;
	flash->mtd.write = m25p80_write;

603 604 605 606 607 608 609 610 611
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

612 613 614 615
	dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name,
			flash->mtd.size / 1024);

	DEBUG(MTD_DEBUG_LEVEL2,
616 617
		"mtd .name = %s, .size = 0x%.8x (%uMiB) "
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
618 619 620 621 622 623 624 625 626
		flash->mtd.name,
		flash->mtd.size, flash->mtd.size / (1024*1024),
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
			DEBUG(MTD_DEBUG_LEVEL2,
				"mtd.eraseregions[%d] = { .offset = 0x%.8x, "
627
				".erasesize = 0x%.8x (%uKiB), "
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
				".numblocks = %d }\n",
				i, flash->mtd.eraseregions[i].offset,
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
	if (mtd_has_partitions()) {
		struct mtd_partition	*parts = NULL;
		int			nr_parts = 0;

#ifdef CONFIG_MTD_CMDLINE_PARTS
		static const char *part_probes[] = { "cmdlinepart", NULL, };

		nr_parts = parse_mtd_partitions(&flash->mtd,
				part_probes, &parts, 0);
#endif

		if (nr_parts <= 0 && data && data->parts) {
			parts = data->parts;
			nr_parts = data->nr_parts;
		}

		if (nr_parts > 0) {
655
			for (i = 0; i < nr_parts; i++) {
656 657
				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
					"{.name = %s, .offset = 0x%.8x, "
658
						".size = 0x%.8x (%uKiB) }\n",
659 660 661 662
					i, parts[i].name,
					parts[i].offset,
					parts[i].size,
					parts[i].size / 1024);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
			}
			flash->partitioned = 1;
			return add_mtd_partitions(&flash->mtd, parts, nr_parts);
		}
	} else if (data->nr_parts)
		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
				data->nr_parts, data->name);

	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
	if (mtd_has_partitions() && flash->partitioned)
		status = del_mtd_partitions(&flash->mtd);
	else
		status = del_mtd_device(&flash->mtd);
	if (status == 0)
		kfree(flash);
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.bus	= &spi_bus_type,
		.owner	= THIS_MODULE,
	},
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
699 700 701 702 703

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
};


static int m25p80_init(void)
{
	return spi_register_driver(&m25p80_driver);
}


static void m25p80_exit(void)
{
	spi_unregister_driver(&m25p80_driver);
}


module_init(m25p80_init);
module_exit(m25p80_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");