m25p80.c 28.0 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
D
David Brownell 已提交
33

34 35 36 37
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
38 39
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
40
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
41
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
42 43
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
44
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
45
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
46
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
47
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
48 49
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

50 51 52 53 54
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

55 56 57 58
/* Used for Macronix flashes only. */
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

59 60 61
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
62
/* meaning of other SR_* bits may differ between vendors */
63 64 65 66 67 68
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
69
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
70
#define	MAX_CMD_SIZE		5
71

72 73 74 75 76 77 78
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
79

80 81
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

82 83 84 85
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
86
	struct mutex		lock;
87
	struct mtd_info		mtd;
88
	unsigned		partitioned:1;
89 90
	u16			page_size;
	u16			addr_width;
91
	u8			erase_opcode;
92
	u8			*command;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

128 129 130 131 132 133 134 135 136 137 138
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
139 140 141 142 143 144 145 146 147

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

148
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
149 150
}

151 152 153 154 155 156 157 158 159
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
160

161 162 163 164 165 166 167 168 169 170
/*
 * Enable/disable 4-byte addressing mode.
 */
static inline int set_4byte(struct m25p *flash, int enable)
{
	u8	code = enable ? OPCODE_EN4B : OPCODE_EX4B;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}

171 172 173 174 175 176
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
177
	unsigned long deadline;
178 179
	int sr;

P
Peter Horton 已提交
180 181 182
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
183 184 185 186 187
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
188 189 190
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
191 192 193 194

	return 1;
}

C
Chen Gong 已提交
195 196 197 198 199
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
200
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
201
{
202
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
203 204
	      dev_name(&flash->spi->dev), __func__,
	      (long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
205 206 207 208 209 210 211 212 213

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
214
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
215 216 217 218 219

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
220

221 222 223 224 225 226
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
227
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
228 229 230 231 232 233 234
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

235 236 237 238 239 240 241 242
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
243
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
244
			dev_name(&flash->spi->dev), __func__,
245
			flash->mtd.erasesize / 1024, offset);
246 247 248 249 250 251 252 253 254

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
255
	flash->command[0] = flash->erase_opcode;
256
	m25p_addr2cmd(flash, offset, flash->command);
257

258
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
277
	uint32_t rem;
278

279
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
280 281
	      dev_name(&flash->spi->dev), __func__, "at",
	      (long long)instr->addr, (long long)instr->len);
282 283 284 285

	/* sanity checks */
	if (instr->addr + instr->len > flash->mtd.size)
		return -EINVAL;
286 287
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
288 289 290 291 292
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
293
	mutex_lock(&flash->lock);
294

295
	/* whole-chip erase? */
296 297 298 299 300 301
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
302 303 304 305 306 307 308

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
309 310 311 312 313 314 315 316 317 318
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
319 320 321
		}
	}

D
David Brownell 已提交
322
	mutex_unlock(&flash->lock);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
342
			dev_name(&flash->spi->dev), __func__, "from",
343 344 345 346 347 348 349 350 351
			(u32)from, len);

	/* sanity checks */
	if (!len)
		return 0;

	if (from + len > flash->mtd.size)
		return -EINVAL;

352 353 354
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

355 356 357 358
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
359
	t[0].tx_buf = flash->command;
360
	t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
361 362 363 364 365 366 367
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
D
Dan Carpenter 已提交
368
	*retlen = 0;
369

D
David Brownell 已提交
370
	mutex_lock(&flash->lock);
371 372 373 374

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
375
		mutex_unlock(&flash->lock);
376 377 378
		return 1;
	}

379 380 381 382
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
383 384 385

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
386
	m25p_addr2cmd(flash, from, flash->command);
387 388 389

	spi_sync(flash->spi, &m);

390
	*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
391

D
David Brownell 已提交
392
	mutex_unlock(&flash->lock);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
411
			dev_name(&flash->spi->dev), __func__, "to",
412 413
			(u32)to, len);

D
Dan Carpenter 已提交
414
	*retlen = 0;
415 416 417 418 419 420 421 422

	/* sanity checks */
	if (!len)
		return(0);

	if (to + len > flash->mtd.size)
		return -EINVAL;

423 424 425 426
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
427
	t[0].len = m25p_cmdsz(flash);
428 429 430 431 432
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
433
	mutex_lock(&flash->lock);
434 435

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
436 437
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
438
		return 1;
C
Chen Gong 已提交
439
	}
440 441 442 443 444

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
445
	m25p_addr2cmd(flash, to, flash->command);
446

447
	page_offset = to & (flash->page_size - 1);
448 449

	/* do all the bytes fit onto one page? */
450
	if (page_offset + len <= flash->page_size) {
451 452 453 454
		t[1].len = len;

		spi_sync(flash->spi, &m);

455
		*retlen = m.actual_length - m25p_cmdsz(flash);
456 457 458 459
	} else {
		u32 i;

		/* the size of data remaining on the first page */
460
		page_size = flash->page_size - page_offset;
461 462 463 464

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

465
		*retlen = m.actual_length - m25p_cmdsz(flash);
466

467
		/* write everything in flash->page_size chunks */
468 469
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
470 471
			if (page_size > flash->page_size)
				page_size = flash->page_size;
472 473

			/* write the next page to flash */
474
			m25p_addr2cmd(flash, to + i, flash->command);
475 476 477 478 479 480 481 482 483 484

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
485
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
486 487
		}
	}
488

D
David Brownell 已提交
489
	mutex_unlock(&flash->lock);
490 491 492 493

	return 0;
}

494 495 496 497 498 499 500 501 502
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

503 504 505 506
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
			dev_name(&flash->spi->dev), __func__, "to",
			(u32)to, len);

D
Dan Carpenter 已提交
507
	*retlen = 0;
508 509 510 511 512 513 514 515 516 517 518 519

	/* sanity checks */
	if (!len)
		return 0;

	if (to + len > flash->mtd.size)
		return -EINVAL;

	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
520
	t[0].len = m25p_cmdsz(flash);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
539
		m25p_addr2cmd(flash, to, flash->command);
540 541 542 543 544 545 546

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
547
		*retlen += m.actual_length - m25p_cmdsz(flash);
548 549 550 551
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
552
	m25p_addr2cmd(flash, to, flash->command);
553 554

	/* Write out most of the data here. */
555
	cmd_sz = m25p_cmdsz(flash);
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
579 580
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
581 582 583 584 585 586 587
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
588
		*retlen += m.actual_length - m25p_cmdsz(flash);
589 590 591 592 593 594 595
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
596 597 598 599 600 601 602 603

/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
604 605 606 607 608
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
609
	u16             ext_id;
610 611 612 613

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
614
	unsigned	sector_size;
615 616
	u16		n_sectors;

617 618 619
	u16		page_size;
	u16		addr_width;

620 621
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
622
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
623 624
};

625 626 627 628 629 630
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
631
		.page_size = 256,					\
632 633
		.flags = (_flags),					\
	})
634

635 636 637 638 639 640 641 642
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})
643 644 645 646 647

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
648
static const struct spi_device_id m25p_ids[] = {
649
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
650 651
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
652

653 654
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
655

656 657 658
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
659
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
660

661 662
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
663 664 665
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },

666 667 668 669 670
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

671
	/* Macronix */
672
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
673
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
674
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
675 676 677 678
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
679
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
680
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
681

682 683 684
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
685 686 687 688
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
689
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SECT_4K) },
690 691 692 693 694
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
695 696
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
697 698

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
699 700 701 702 703 704 705 706
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
707 708

	/* ST Microelectronics -- newer production may have feature updates */
709 710 711 712 713 714 715 716 717 718
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

719 720 721 722 723 724 725 726 727 728
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

729 730 731 732 733 734
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
735

736 737 738 739
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
740

741
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
742 743 744 745 746 747
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
748
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
749
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
750
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
751 752 753 754 755 756 757

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
758
	{ },
759
};
760
MODULE_DEVICE_TABLE(spi, m25p_ids);
761

762
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
763 764 765
{
	int			tmp;
	u8			code = OPCODE_RDID;
766
	u8			id[5];
767
	u32			jedec;
768
	u16                     ext_jedec;
769 770 771 772 773 774
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
775
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
776 777
	if (tmp < 0) {
		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
778
			dev_name(&spi->dev), tmp);
779
		return ERR_PTR(tmp);
780 781 782 783 784 785 786
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

787 788
	ext_jedec = id[3] << 8 | id[4];

789 790
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
791
		if (info->jedec_id == jedec) {
792
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
793
				continue;
794
			return &m25p_ids[tmp];
795
		}
796
	}
797
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
798
	return ERR_PTR(-ENODEV);
799 800 801
}


802 803 804 805 806 807 808
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
809
	const struct spi_device_id	*id = spi_get_device_id(spi);
810 811 812 813 814 815
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;

	/* Platform data helps sort out which chip type we have, as
816 817 818
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
819 820
	 */
	data = spi->dev.platform_data;
821
	if (data && data->type) {
822
		const struct spi_device_id *plat_id;
823

824
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
825 826
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
827 828
				continue;
			break;
829 830
		}

831
		if (i < ARRAY_SIZE(m25p_ids) - 1)
832 833 834
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
835
	}
836

837 838 839 840 841 842
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
843 844
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
845 846 847 848 849 850 851 852 853 854 855 856 857 858
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
859

860
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
861 862
	if (!flash)
		return -ENOMEM;
863
	flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
864 865 866 867
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
868 869

	flash->spi = spi;
D
David Brownell 已提交
870
	mutex_init(&flash->lock);
871 872
	dev_set_drvdata(&spi->dev, flash);

873
	/*
874
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
875
	 * up with the software protection bits set
876 877
	 */

878 879 880
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
881 882 883 884
		write_enable(flash);
		write_sr(flash, 0);
	}

885
	if (data && data->name)
886 887
		flash->mtd.name = data->name;
	else
888
		flash->mtd.name = dev_name(&spi->dev);
889 890

	flash->mtd.type = MTD_NORFLASH;
891
	flash->mtd.writesize = 1;
892 893 894 895
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
	flash->mtd.erase = m25p80_erase;
	flash->mtd.read = m25p80_read;
896 897

	/* sst flash chips use AAI word program */
898
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
899 900 901
		flash->mtd.write = sst_write;
	else
		flash->mtd.write = m25p80_write;
902

903 904 905 906 907 908 909 910 911
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

912 913 914
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

915
	flash->mtd.dev.parent = &spi->dev;
916
	flash->page_size = info->page_size;
917 918 919 920 921 922 923 924 925 926 927

	if (info->addr_width)
		flash->addr_width = info->addr_width;
	else {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		if (flash->mtd.size > 0x1000000) {
			flash->addr_width = 4;
			set_4byte(flash, 1);
		} else
			flash->addr_width = 3;
	}
928

929
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
930
			(long long)flash->mtd.size >> 10);
931 932

	DEBUG(MTD_DEBUG_LEVEL2,
933
		"mtd .name = %s, .size = 0x%llx (%lldMiB) "
934
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
935
		flash->mtd.name,
936
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
937 938 939 940 941 942
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
			DEBUG(MTD_DEBUG_LEVEL2,
943
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
944
				".erasesize = 0x%.8x (%uKiB), "
945
				".numblocks = %d }\n",
946
				i, (long long)flash->mtd.eraseregions[i].offset,
947 948 949 950 951 952 953 954 955 956 957 958
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
	if (mtd_has_partitions()) {
		struct mtd_partition	*parts = NULL;
		int			nr_parts = 0;

959 960 961
		if (mtd_has_cmdlinepart()) {
			static const char *part_probes[]
					= { "cmdlinepart", NULL, };
962

963 964 965
			nr_parts = parse_mtd_partitions(&flash->mtd,
					part_probes, &parts, 0);
		}
966 967 968 969 970 971

		if (nr_parts <= 0 && data && data->parts) {
			parts = data->parts;
			nr_parts = data->nr_parts;
		}

A
Andres Salomon 已提交
972
#ifdef CONFIG_MTD_OF_PARTS
973 974 975 976 977 978
		if (nr_parts <= 0 && spi->dev.of_node) {
			nr_parts = of_mtd_parse_partitions(&spi->dev,
					spi->dev.of_node, &parts);
		}
#endif

979
		if (nr_parts > 0) {
980
			for (i = 0; i < nr_parts; i++) {
981
				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
982 983
					"{.name = %s, .offset = 0x%llx, "
						".size = 0x%llx (%lldKiB) }\n",
984
					i, parts[i].name,
985 986 987
					(long long)parts[i].offset,
					(long long)parts[i].size,
					(long long)(parts[i].size >> 10));
988 989 990 991
			}
			flash->partitioned = 1;
			return add_mtd_partitions(&flash->mtd, parts, nr_parts);
		}
992
	} else if (data && data->nr_parts)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
				data->nr_parts, data->name);

	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
	if (mtd_has_partitions() && flash->partitioned)
		status = del_mtd_partitions(&flash->mtd);
	else
		status = del_mtd_device(&flash->mtd);
1010 1011
	if (status == 0) {
		kfree(flash->command);
1012
		kfree(flash);
1013
	}
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.bus	= &spi_bus_type,
		.owner	= THIS_MODULE,
	},
1024
	.id_table	= m25p_ids,
1025 1026
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
1027 1028 1029 1030 1031

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1032 1033 1034
};


1035
static int __init m25p80_init(void)
1036 1037 1038 1039 1040
{
	return spi_register_driver(&m25p80_driver);
}


1041
static void __exit m25p80_exit(void)
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
{
	spi_unregister_driver(&m25p80_driver);
}


module_init(m25p80_init);
module_exit(m25p80_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");