m25p80.c 25.3 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
22
#include <linux/mutex.h>
23
#include <linux/math64.h>
24
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
25

26 27
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
D
David Brownell 已提交
28

29 30 31 32
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
33 34
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
35
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
36
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
37 38
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
39
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
40
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
41
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
42
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
43 44
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

45 46 47 48 49
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

50 51 52
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
53
/* meaning of other SR_* bits may differ between vendors */
54 55 56 57 58 59
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
60
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
61
#define	MAX_CMD_SIZE		4
62

63 64 65 66 67 68 69
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
70 71 72 73 74

/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
75
	struct mutex		lock;
76
	struct mtd_info		mtd;
77
	unsigned		partitioned:1;
78 79
	u16			page_size;
	u16			addr_width;
80
	u8			erase_opcode;
81
	u8			*command;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

117 118 119 120 121 122 123 124 125 126 127
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
128 129 130 131 132 133 134 135 136

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

137
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
138 139
}

140 141 142 143 144 145 146 147 148
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
149 150 151 152 153 154 155

/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
156
	unsigned long deadline;
157 158
	int sr;

P
Peter Horton 已提交
159 160 161
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
162 163 164 165 166
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
167 168 169
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
170 171 172 173

	return 1;
}

C
Chen Gong 已提交
174 175 176 177 178
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
179
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
180
{
181
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
182 183
	      dev_name(&flash->spi->dev), __func__,
	      (long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
184 185 186 187 188 189 190 191 192

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
193
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
194 195 196 197 198

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
199

200 201 202 203 204 205 206 207 208 209 210 211 212
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

213 214 215 216 217 218 219 220
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
221
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
222
			dev_name(&flash->spi->dev), __func__,
223
			flash->mtd.erasesize / 1024, offset);
224 225 226 227 228 229 230 231 232

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
233
	flash->command[0] = flash->erase_opcode;
234
	m25p_addr2cmd(flash, offset, flash->command);
235

236
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
255
	uint32_t rem;
256

257
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
258 259
	      dev_name(&flash->spi->dev), __func__, "at",
	      (long long)instr->addr, (long long)instr->len);
260 261 262 263

	/* sanity checks */
	if (instr->addr + instr->len > flash->mtd.size)
		return -EINVAL;
264 265
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
266 267 268 269 270
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
271
	mutex_lock(&flash->lock);
272

273
	/* whole-chip erase? */
274 275 276 277 278 279
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
280 281 282 283 284 285 286

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
287 288 289 290 291 292 293 294 295 296
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
297 298 299
		}
	}

D
David Brownell 已提交
300
	mutex_unlock(&flash->lock);
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
320
			dev_name(&flash->spi->dev), __func__, "from",
321 322 323 324 325 326 327 328 329
			(u32)from, len);

	/* sanity checks */
	if (!len)
		return 0;

	if (from + len > flash->mtd.size)
		return -EINVAL;

330 331 332
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

333 334 335 336
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
337
	t[0].tx_buf = flash->command;
338
	t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
339 340 341 342 343 344 345 346 347 348
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
	if (retlen)
		*retlen = 0;

D
David Brownell 已提交
349
	mutex_lock(&flash->lock);
350 351 352 353

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
354
		mutex_unlock(&flash->lock);
355 356 357
		return 1;
	}

358 359 360 361
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
362 363 364

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
365
	m25p_addr2cmd(flash, from, flash->command);
366 367 368

	spi_sync(flash->spi, &m);

369
	*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
370

D
David Brownell 已提交
371
	mutex_unlock(&flash->lock);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
390
			dev_name(&flash->spi->dev), __func__, "to",
391 392 393 394 395 396 397 398 399 400 401 402
			(u32)to, len);

	if (retlen)
		*retlen = 0;

	/* sanity checks */
	if (!len)
		return(0);

	if (to + len > flash->mtd.size)
		return -EINVAL;

403 404 405 406
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
407
	t[0].len = m25p_cmdsz(flash);
408 409 410 411 412
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
413
	mutex_lock(&flash->lock);
414 415

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
416 417
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
418
		return 1;
C
Chen Gong 已提交
419
	}
420 421 422 423 424

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
425
	m25p_addr2cmd(flash, to, flash->command);
426

427
	page_offset = to & (flash->page_size - 1);
428 429

	/* do all the bytes fit onto one page? */
430
	if (page_offset + len <= flash->page_size) {
431 432 433 434
		t[1].len = len;

		spi_sync(flash->spi, &m);

435
		*retlen = m.actual_length - m25p_cmdsz(flash);
436 437 438 439
	} else {
		u32 i;

		/* the size of data remaining on the first page */
440
		page_size = flash->page_size - page_offset;
441 442 443 444

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

445
		*retlen = m.actual_length - m25p_cmdsz(flash);
446

447
		/* write everything in flash->page_size chunks */
448 449
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
450 451
			if (page_size > flash->page_size)
				page_size = flash->page_size;
452 453

			/* write the next page to flash */
454
			m25p_addr2cmd(flash, to + i, flash->command);
455 456 457 458 459 460 461 462 463 464

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
David Brownell 已提交
465
			if (retlen)
466
				*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
467 468
		}
	}
469

D
David Brownell 已提交
470
	mutex_unlock(&flash->lock);
471 472 473 474

	return 0;
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

	if (retlen)
		*retlen = 0;

	/* sanity checks */
	if (!len)
		return 0;

	if (to + len > flash->mtd.size)
		return -EINVAL;

	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
498
	t[0].len = m25p_cmdsz(flash);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
517
		m25p_addr2cmd(flash, to, flash->command);
518 519 520 521 522 523 524

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
525
		*retlen += m.actual_length - m25p_cmdsz(flash);
526 527 528 529
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
530
	m25p_addr2cmd(flash, to, flash->command);
531 532

	/* Write out most of the data here. */
533
	cmd_sz = m25p_cmdsz(flash);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
557 558
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
559 560 561 562 563 564 565
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
566
		*retlen += m.actual_length - m25p_cmdsz(flash);
567 568 569 570 571 572 573
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
574 575 576 577 578 579 580 581

/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
582 583 584 585 586
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
587
	u16             ext_id;
588 589 590 591

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
592
	unsigned	sector_size;
593 594
	u16		n_sectors;

595 596 597
	u16		page_size;
	u16		addr_width;

598 599
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
600
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
601 602
};

603 604 605 606 607 608
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
609 610
		.page_size = 256,					\
		.addr_width = 3,					\
611 612
		.flags = (_flags),					\
	})
613

614 615 616 617 618 619 620 621 622
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})

623 624 625 626
/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
627
static const struct spi_device_id m25p_ids[] = {
628
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
629 630
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
631

632 633
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
634

635 636 637 638
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
639

640
	/* Macronix */
641 642 643 644
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
645

646 647 648
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
649 650 651 652 653 654 655 656 657
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
658 659

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
660 661 662 663 664 665 666 667
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
668 669

	/* ST Microelectronics -- newer production may have feature updates */
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
686

687
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
688 689 690 691 692 693 694
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
695 696 697 698 699 700 701

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
702
	{ },
703
};
704
MODULE_DEVICE_TABLE(spi, m25p_ids);
705

706
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
707 708 709
{
	int			tmp;
	u8			code = OPCODE_RDID;
710
	u8			id[5];
711
	u32			jedec;
712
	u16                     ext_jedec;
713 714 715 716 717 718
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
719
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
720 721
	if (tmp < 0) {
		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
722
			dev_name(&spi->dev), tmp);
723 724 725 726 727 728 729 730
		return NULL;
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

731 732 733 734 735 736 737 738
	/*
	 * Some chips (like Numonyx M25P80) have JEDEC and non-JEDEC variants,
	 * which depend on technology process. Officially RDID command doesn't
	 * exist for non-JEDEC chips, but for compatibility they return ID 0.
	 */
	if (jedec == 0)
		return NULL;

739 740
	ext_jedec = id[3] << 8 | id[4];

741 742
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
743
		if (info->jedec_id == jedec) {
744
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
745
				continue;
746
			return &m25p_ids[tmp];
747
		}
748 749 750 751 752
	}
	return NULL;
}


753 754 755 756 757 758 759
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
760
	const struct spi_device_id	*id = spi_get_device_id(spi);
761 762 763 764 765 766
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;

	/* Platform data helps sort out which chip type we have, as
767 768 769
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
770 771
	 */
	data = spi->dev.platform_data;
772
	if (data && data->type) {
773 774
		const struct spi_device_id *plat_id;

775
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
776 777
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
778 779
				continue;
			break;
780
		}
781

782 783 784 785
		if (plat_id)
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
786
	}
787

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
		if (!jid) {
			dev_info(&spi->dev, "non-JEDEC variant of %s\n",
				 id->name);
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
811

812
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
813 814
	if (!flash)
		return -ENOMEM;
815
	flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
816 817 818 819
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
820 821

	flash->spi = spi;
D
David Brownell 已提交
822
	mutex_init(&flash->lock);
823 824
	dev_set_drvdata(&spi->dev, flash);

825
	/*
826 827
	 * Atmel and SST serial flash tend to power
	 * up with the software protection bits set
828 829
	 */

830 831
	if (info->jedec_id >> 16 == 0x1f ||
	    info->jedec_id >> 16 == 0xbf) {
832 833 834 835
		write_enable(flash);
		write_sr(flash, 0);
	}

836
	if (data && data->name)
837 838
		flash->mtd.name = data->name;
	else
839
		flash->mtd.name = dev_name(&spi->dev);
840 841

	flash->mtd.type = MTD_NORFLASH;
842
	flash->mtd.writesize = 1;
843 844 845 846
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
	flash->mtd.erase = m25p80_erase;
	flash->mtd.read = m25p80_read;
847 848 849 850 851 852

	/* sst flash chips use AAI word program */
	if (info->jedec_id >> 16 == 0xbf)
		flash->mtd.write = sst_write;
	else
		flash->mtd.write = m25p80_write;
853

854 855 856 857 858 859 860 861 862
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

863 864 865
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

866
	flash->mtd.dev.parent = &spi->dev;
867 868
	flash->page_size = info->page_size;
	flash->addr_width = info->addr_width;
869

870
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
871
			(long long)flash->mtd.size >> 10);
872 873

	DEBUG(MTD_DEBUG_LEVEL2,
874
		"mtd .name = %s, .size = 0x%llx (%lldMiB) "
875
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
876
		flash->mtd.name,
877
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
878 879 880 881 882 883
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
			DEBUG(MTD_DEBUG_LEVEL2,
884
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
885
				".erasesize = 0x%.8x (%uKiB), "
886
				".numblocks = %d }\n",
887
				i, (long long)flash->mtd.eraseregions[i].offset,
888 889 890 891 892 893 894 895 896 897 898 899
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
	if (mtd_has_partitions()) {
		struct mtd_partition	*parts = NULL;
		int			nr_parts = 0;

900 901 902
		if (mtd_has_cmdlinepart()) {
			static const char *part_probes[]
					= { "cmdlinepart", NULL, };
903

904 905 906
			nr_parts = parse_mtd_partitions(&flash->mtd,
					part_probes, &parts, 0);
		}
907 908 909 910 911 912 913

		if (nr_parts <= 0 && data && data->parts) {
			parts = data->parts;
			nr_parts = data->nr_parts;
		}

		if (nr_parts > 0) {
914
			for (i = 0; i < nr_parts; i++) {
915
				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
916 917
					"{.name = %s, .offset = 0x%llx, "
						".size = 0x%llx (%lldKiB) }\n",
918
					i, parts[i].name,
919 920 921
					(long long)parts[i].offset,
					(long long)parts[i].size,
					(long long)(parts[i].size >> 10));
922 923 924 925
			}
			flash->partitioned = 1;
			return add_mtd_partitions(&flash->mtd, parts, nr_parts);
		}
926
	} else if (data && data->nr_parts)
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
				data->nr_parts, data->name);

	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
	if (mtd_has_partitions() && flash->partitioned)
		status = del_mtd_partitions(&flash->mtd);
	else
		status = del_mtd_device(&flash->mtd);
944 945
	if (status == 0) {
		kfree(flash->command);
946
		kfree(flash);
947
	}
948 949 950 951 952 953 954 955 956 957
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.bus	= &spi_bus_type,
		.owner	= THIS_MODULE,
	},
958
	.id_table	= m25p_ids,
959 960
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
961 962 963 964 965

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
966 967 968
};


969
static int __init m25p80_init(void)
970 971 972 973 974
{
	return spi_register_driver(&m25p80_driver);
}


975
static void __exit m25p80_exit(void)
976 977 978 979 980 981 982 983 984 985 986
{
	spi_unregister_driver(&m25p80_driver);
}


module_init(m25p80_init);
module_exit(m25p80_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");