m25p80.c 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * MTD SPI driver for ST M25Pxx flash chips
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/interrupt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

#include <asm/semaphore.h>


/* NOTE: AT 25F and SST 25LF series are very similar,
 * but commands for sector erase and chip id differ...
 */

#define FLASH_PAGESIZE		256

/* Flash opcodes. */
#define	OPCODE_WREN		6	/* Write enable */
#define	OPCODE_RDSR		5	/* Read status register */
#define	OPCODE_READ		3	/* Read data bytes */
#define	OPCODE_PP		2	/* Page program */
#define	OPCODE_SE		0xd8	/* Sector erase */
#define	OPCODE_RES		0xab	/* Read Electronic Signature */
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
#define	MAX_READY_WAIT_COUNT	100000


#ifdef CONFIG_MTD_PARTITIONS
#define	mtd_has_partitions()	(1)
#else
#define	mtd_has_partitions()	(0)
#endif

/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
	struct semaphore	lock;
	struct mtd_info		mtd;
	unsigned		partitioned;
	u8			command[4];
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}


/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}


/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
	int count;
	int sr;

	/* one chip guarantees max 5 msec wait here after page writes,
	 * but potentially three seconds (!) after page erase.
	 */
	for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

		/* REVISIT sometimes sleeping would be best */
	}

	return 1;
}


/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s at 0x%08x\n", flash->spi->dev.bus_id,
			__FUNCTION__, offset);

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
	flash->command[0] = OPCODE_SE;
	flash->command[1] = offset >> 16;
	flash->command[2] = offset >> 8;
	flash->command[3] = offset;

	spi_write(flash->spi, flash->command, sizeof(flash->command));

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;

189
	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
			flash->spi->dev.bus_id, __FUNCTION__, "at",
			(u32)instr->addr, instr->len);

	/* sanity checks */
	if (instr->addr + instr->len > flash->mtd.size)
		return -EINVAL;
	if ((instr->addr % mtd->erasesize) != 0
			|| (instr->len % mtd->erasesize) != 0) {
		return -EINVAL;
	}

	addr = instr->addr;
	len = instr->len;

  	down(&flash->lock);

	/* now erase those sectors */
	while (len) {
		if (erase_sector(flash, addr)) {
			instr->state = MTD_ERASE_FAILED;
			up(&flash->lock);
			return -EIO;
		}

		addr += mtd->erasesize;
		len -= mtd->erasesize;
	}

  	up(&flash->lock);

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
			flash->spi->dev.bus_id, __FUNCTION__, "from",
			(u32)from, len);

	/* sanity checks */
	if (!len)
		return 0;

	if (from + len > flash->mtd.size)
		return -EINVAL;

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
	t[0].len = sizeof(flash->command);
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
	if (retlen)
		*retlen = 0;

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	down(&flash->lock);

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
		up(&flash->lock);
		return 1;
	}

	/* NOTE:  OPCODE_FAST_READ (if available) is faster... */

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
	flash->command[1] = from >> 16;
	flash->command[2] = from >> 8;
	flash->command[3] = from;

	spi_sync(flash->spi, &m);

	*retlen = m.actual_length - sizeof(flash->command);

  	up(&flash->lock);

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
			flash->spi->dev.bus_id, __FUNCTION__, "to",
			(u32)to, len);

	if (retlen)
		*retlen = 0;

	/* sanity checks */
	if (!len)
		return(0);

	if (to + len > flash->mtd.size)
		return -EINVAL;

316 317 318 319 320 321 322 323 324 325
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
	t[0].len = sizeof(flash->command);
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  	down(&flash->lock);

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
	flash->command[1] = to >> 16;
	flash->command[2] = to >> 8;
	flash->command[3] = to;

	/* what page do we start with? */
	page_offset = to % FLASH_PAGESIZE;

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= FLASH_PAGESIZE) {
		t[1].len = len;

		spi_sync(flash->spi, &m);

		*retlen = m.actual_length - sizeof(flash->command);
	} else {
		u32 i;

		/* the size of data remaining on the first page */
		page_size = FLASH_PAGESIZE - page_offset;

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

		*retlen = m.actual_length - sizeof(flash->command);

		/* write everything in PAGESIZE chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > FLASH_PAGESIZE)
				page_size = FLASH_PAGESIZE;

			/* write the next page to flash */
			flash->command[1] = (to + i) >> 16;
			flash->command[2] = (to + i) >> 8;
			flash->command[3] = (to + i);

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
David Brownell 已提交
381 382 383
			if (retlen)
				*retlen += m.actual_length
					- sizeof(flash->command);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	        }
 	}

	up(&flash->lock);

	return 0;
}


/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
	char		*name;
	u8		id;
	u16		jedec_id;
	unsigned	sector_size;
	unsigned	n_sectors;
};

static struct flash_info __devinitdata m25p_data [] = {
	/* REVISIT: fill in JEDEC ids, for parts that have them */
409 410 411 412
	{ "m25p05", 0x05, 0x2010, 32 * 1024, 2 },
	{ "m25p10", 0x10, 0x2011, 32 * 1024, 4 },
	{ "m25p20", 0x11, 0x2012, 64 * 1024, 4 },
	{ "m25p40", 0x12, 0x2013, 64 * 1024, 8 },
413
	{ "m25p80", 0x13, 0x0000, 64 * 1024, 16 },
414 415
	{ "m25p16", 0x14, 0x2015, 64 * 1024, 32 },
	{ "m25p32", 0x15, 0x2016, 64 * 1024, 64 },
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	{ "m25p64", 0x16, 0x2017, 64 * 1024, 128 },
};

/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;

	/* Platform data helps sort out which chip type we have, as
	 * well as how this board partitions it.
	 */
	data = spi->dev.platform_data;
	if (!data || !data->type) {
		/* FIXME some chips can identify themselves with RES
		 * or JEDEC get-id commands.  Try them ...
		 */
		DEBUG(MTD_DEBUG_LEVEL1, "%s: no chip id\n",
440
				spi->dev.bus_id);
441 442 443 444 445 446 447 448 449
		return -ENODEV;
	}

	for (i = 0, info = m25p_data; i < ARRAY_SIZE(m25p_data); i++, info++) {
		if (strcmp(data->type, info->name) == 0)
			break;
	}
	if (i == ARRAY_SIZE(m25p_data)) {
		DEBUG(MTD_DEBUG_LEVEL1, "%s: unrecognized id %s\n",
450
				spi->dev.bus_id, data->type);
451 452 453
		return -ENODEV;
	}

454
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
455 456 457 458 459 460 461 462 463 464 465 466 467
	if (!flash)
		return -ENOMEM;

	flash->spi = spi;
	init_MUTEX(&flash->lock);
	dev_set_drvdata(&spi->dev, flash);

	if (data->name)
		flash->mtd.name = data->name;
	else
		flash->mtd.name = spi->dev.bus_id;

	flash->mtd.type = MTD_NORFLASH;
468
	flash->mtd.writesize = 1;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
	flash->mtd.erasesize = info->sector_size;
	flash->mtd.erase = m25p80_erase;
	flash->mtd.read = m25p80_read;
	flash->mtd.write = m25p80_write;

	dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name,
			flash->mtd.size / 1024);

	DEBUG(MTD_DEBUG_LEVEL2,
		"mtd .name = %s, .size = 0x%.8x (%uM) "
			".erasesize = 0x%.8x (%uK) .numeraseregions = %d\n",
		flash->mtd.name,
		flash->mtd.size, flash->mtd.size / (1024*1024),
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
			DEBUG(MTD_DEBUG_LEVEL2,
				"mtd.eraseregions[%d] = { .offset = 0x%.8x, "
				".erasesize = 0x%.8x (%uK), "
				".numblocks = %d }\n",
				i, flash->mtd.eraseregions[i].offset,
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
	if (mtd_has_partitions()) {
		struct mtd_partition	*parts = NULL;
		int			nr_parts = 0;

#ifdef CONFIG_MTD_CMDLINE_PARTS
		static const char *part_probes[] = { "cmdlinepart", NULL, };

		nr_parts = parse_mtd_partitions(&flash->mtd,
				part_probes, &parts, 0);
#endif

		if (nr_parts <= 0 && data && data->parts) {
			parts = data->parts;
			nr_parts = data->nr_parts;
		}

		if (nr_parts > 0) {
			for (i = 0; i < data->nr_parts; i++) {
				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
					"{.name = %s, .offset = 0x%.8x, "
						".size = 0x%.8x (%uK) }\n",
					i, data->parts[i].name,
					data->parts[i].offset,
					data->parts[i].size,
					data->parts[i].size / 1024);
			}
			flash->partitioned = 1;
			return add_mtd_partitions(&flash->mtd, parts, nr_parts);
		}
	} else if (data->nr_parts)
		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
				data->nr_parts, data->name);

	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
	if (mtd_has_partitions() && flash->partitioned)
		status = del_mtd_partitions(&flash->mtd);
	else
		status = del_mtd_device(&flash->mtd);
	if (status == 0)
		kfree(flash);
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.bus	= &spi_bus_type,
		.owner	= THIS_MODULE,
	},
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
};


static int m25p80_init(void)
{
	return spi_register_driver(&m25p80_driver);
}


static void m25p80_exit(void)
{
	spi_unregister_driver(&m25p80_driver);
}


module_init(m25p80_init);
module_exit(m25p80_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");