m25p80.c 33.1 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
47
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
48
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
49
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
50 51
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

52 53 54 55 56 57
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

58 59 60 61 62
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

63
/* Used for Macronix and Winbond flashes. */
64 65 66
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

67 68 69
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

70 71 72
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
73
/* meaning of other SR_* bits may differ between vendors */
74 75 76 77 78 79
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
80
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
81
#define	MAX_CMD_SIZE		5
82

83 84
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

85 86 87 88
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
89
	struct mutex		lock;
90
	struct mtd_info		mtd;
91 92
	u16			page_size;
	u16			addr_width;
93
	u8			erase_opcode;
94 95
	u8			read_opcode;
	u8			program_opcode;
96
	u8			*command;
97
	bool			fast_read;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

133 134 135 136 137 138 139 140 141 142 143
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
144 145 146 147 148 149 150 151 152

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

153
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
154 155
}

156 157 158 159 160 161 162 163 164
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
165

166 167 168
/*
 * Enable/disable 4-byte addressing mode.
 */
169
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
170
{
171 172
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
173
	case CFI_MFR_ST: /* Micron, actually */
174
	case 0xEF /* winbond */:
175 176 177 178 179 180 181 182
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
183 184
}

185 186 187 188 189 190
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
191
	unsigned long deadline;
192 193
	int sr;

P
Peter Horton 已提交
194 195 196
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
197 198 199 200 201
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
202 203 204
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
205 206 207 208

	return 1;
}

C
Chen Gong 已提交
209 210 211 212 213
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
214
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
215
{
216 217
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
218 219 220 221 222 223 224 225 226

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
227
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
228 229 230 231 232

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
233

234 235 236 237 238 239
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
240
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
241 242 243 244 245 246 247
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

248 249 250 251 252 253 254 255
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
256 257
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
258 259 260 261 262 263 264 265 266

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
267
	flash->command[0] = flash->erase_opcode;
268
	m25p_addr2cmd(flash, offset, flash->command);
269

270
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
289
	uint32_t rem;
290

291 292 293
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
294

295 296
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
297 298 299 300 301
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
302
	mutex_lock(&flash->lock);
303

304
	/* whole-chip erase? */
305 306 307 308 309 310
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
311 312 313 314 315 316 317

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
318 319 320 321 322 323 324 325 326 327
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
328 329 330
		}
	}

D
David Brownell 已提交
331
	mutex_unlock(&flash->lock);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
349
	uint8_t opcode;
350

351 352
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
353

354 355 356
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

357 358 359 360
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
361
	t[0].tx_buf = flash->command;
362
	t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
363 364 365 366 367 368
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
369
	mutex_lock(&flash->lock);
370 371 372 373

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
374
		mutex_unlock(&flash->lock);
375 376 377
		return 1;
	}

378 379 380 381
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
382 383

	/* Set up the write data buffer. */
384
	opcode = flash->read_opcode;
385
	flash->command[0] = opcode;
386
	m25p_addr2cmd(flash, from, flash->command);
387 388 389

	spi_sync(flash->spi, &m);

390 391
	*retlen = m.actual_length - m25p_cmdsz(flash) -
			(flash->fast_read ? 1 : 0);
392

D
David Brownell 已提交
393
	mutex_unlock(&flash->lock);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

411 412
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
413

414 415 416 417
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
418
	t[0].len = m25p_cmdsz(flash);
419 420 421 422 423
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
424
	mutex_lock(&flash->lock);
425 426

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
427 428
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
429
		return 1;
C
Chen Gong 已提交
430
	}
431 432 433 434

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
435
	flash->command[0] = flash->program_opcode;
436
	m25p_addr2cmd(flash, to, flash->command);
437

438
	page_offset = to & (flash->page_size - 1);
439 440

	/* do all the bytes fit onto one page? */
441
	if (page_offset + len <= flash->page_size) {
442 443 444 445
		t[1].len = len;

		spi_sync(flash->spi, &m);

446
		*retlen = m.actual_length - m25p_cmdsz(flash);
447 448 449 450
	} else {
		u32 i;

		/* the size of data remaining on the first page */
451
		page_size = flash->page_size - page_offset;
452 453 454 455

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

456
		*retlen = m.actual_length - m25p_cmdsz(flash);
457

458
		/* write everything in flash->page_size chunks */
459 460
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
461 462
			if (page_size > flash->page_size)
				page_size = flash->page_size;
463 464

			/* write the next page to flash */
465
			m25p_addr2cmd(flash, to + i, flash->command);
466 467 468 469 470 471 472 473 474 475

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
476
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
477 478
		}
	}
479

D
David Brownell 已提交
480
	mutex_unlock(&flash->lock);
481 482 483 484

	return 0;
}

485 486 487 488 489 490 491 492 493
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

494 495
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
496

497 498 499 500
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
501
	t[0].len = m25p_cmdsz(flash);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
520
		m25p_addr2cmd(flash, to, flash->command);
521 522 523 524 525 526 527

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
528
		*retlen += m.actual_length - m25p_cmdsz(flash);
529 530 531 532
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
533
	m25p_addr2cmd(flash, to, flash->command);
534 535

	/* Write out most of the data here. */
536
	cmd_sz = m25p_cmdsz(flash);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
560 561
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
562 563 564 565 566 567 568
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
569
		*retlen += m.actual_length - m25p_cmdsz(flash);
570 571 572 573 574 575 576
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

668 669 670 671 672 673 674
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
675 676 677 678 679
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
680
	u16             ext_id;
681 682 683 684

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
685
	unsigned	sector_size;
686 687
	u16		n_sectors;

688 689 690
	u16		page_size;
	u16		addr_width;

691 692
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
693
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
694
#define	SST_WRITE	0x04		/* use SST byte programming */
695
#define	M25P_NO_FR	0x08		/* Can't do fastread */
696
#define	SECT_4K_PMC	0x10		/* OPCODE_BE_4K_PMC works uniformly */
697 698
};

699 700 701 702 703 704
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
705
		.page_size = 256,					\
706 707
		.flags = (_flags),					\
	})
708

709
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
710 711 712 713 714
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
715
		.flags = (_flags),					\
716
	})
717 718 719 720 721

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
722
static const struct spi_device_id m25p_ids[] = {
723
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
724 725
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
726

727
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
728
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
729
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
730

731 732 733
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
734
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
735

736 737
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

738 739
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
740
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
741
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
742
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
743
	{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
744
	{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
745

746
	/* Everspin */
747
	{ "mr25h256", CAT25_INFO(  32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
748
	{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
749

750 751 752 753
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

754 755 756 757 758
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

759
	/* Macronix */
J
John Crispin 已提交
760
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
761
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
762
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
763
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
764 765 766 767
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
768
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
769
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
770
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
771

772
	/* Micron */
773
	{ "n25q064",  INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
774 775
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
776 777
	{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },

778 779 780 781 782
	/* PMC */
	{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
	{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
	{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024,  64, SECT_4K) },

783 784 785
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
786 787
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
788 789
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
790 791
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
792 793 794 795
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
796 797 798 799 800
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
801 802
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
803 804

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
805 806 807 808
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
809
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
810 811 812 813
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
814 815

	/* ST Microelectronics -- newer production may have feature updates */
816 817 818 819 820 821 822 823 824
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
825
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
826

827 828 829 830 831 832 833 834 835 836
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

837 838 839 840
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

841
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
842 843
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
844

845 846 847 848
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
849

850
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
851 852 853 854 855 856
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
857
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
858
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
859
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
860
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
861
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
862
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
863
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
864
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
865
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
866 867

	/* Catalyst / On Semiconductor -- non-JEDEC */
868 869 870 871 872
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
873
	{ },
874
};
875
MODULE_DEVICE_TABLE(spi, m25p_ids);
876

B
Bill Pemberton 已提交
877
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
878 879 880
{
	int			tmp;
	u8			code = OPCODE_RDID;
881
	u8			id[5];
882
	u32			jedec;
883
	u16                     ext_jedec;
884 885 886 887 888 889
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
890
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
891
	if (tmp < 0) {
892
		pr_debug("%s: error %d reading JEDEC ID\n",
893
				dev_name(&spi->dev), tmp);
894
		return ERR_PTR(tmp);
895 896 897 898 899 900 901
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

902 903
	ext_jedec = id[3] << 8 | id[4];

904 905
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
906
		if (info->jedec_id == jedec) {
907
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
908
				continue;
909
			return &m25p_ids[tmp];
910
		}
911
	}
912
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
913
	return ERR_PTR(-ENODEV);
914 915 916
}


917 918 919 920 921
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
922
static int m25p_probe(struct spi_device *spi)
923
{
924
	const struct spi_device_id	*id = spi_get_device_id(spi);
925 926 927 928
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
929
	struct mtd_part_parser_data	ppdata;
930
	struct device_node __maybe_unused *np = spi->dev.of_node;
931

932
#ifdef CONFIG_MTD_OF_PARTS
933
	if (!of_device_is_available(np))
934 935 936
		return -ENODEV;
#endif

937
	/* Platform data helps sort out which chip type we have, as
938 939 940
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
941
	 */
942
	data = dev_get_platdata(&spi->dev);
943
	if (data && data->type) {
944
		const struct spi_device_id *plat_id;
945

946
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
947 948
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
949 950
				continue;
			break;
951 952
		}

953
		if (i < ARRAY_SIZE(m25p_ids) - 1)
954 955 956
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
957
	}
958

959 960 961 962 963 964
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
965 966
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
967 968 969 970 971 972 973 974 975 976 977 978 979 980
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
981

982
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
983 984
	if (!flash)
		return -ENOMEM;
985 986
	flash->command = kmalloc(MAX_CMD_SIZE + (flash->fast_read ? 1 : 0),
					GFP_KERNEL);
987 988 989 990
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
991 992

	flash->spi = spi;
D
David Brownell 已提交
993
	mutex_init(&flash->lock);
994
	spi_set_drvdata(spi, flash);
995

996
	/*
997
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
998
	 * up with the software protection bits set
999 1000
	 */

1001 1002 1003
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
1004 1005 1006 1007
		write_enable(flash);
		write_sr(flash, 0);
	}

1008
	if (data && data->name)
1009 1010
		flash->mtd.name = data->name;
	else
1011
		flash->mtd.name = dev_name(&spi->dev);
1012 1013

	flash->mtd.type = MTD_NORFLASH;
1014
	flash->mtd.writesize = 1;
1015 1016
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
1017 1018
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1019

1020 1021 1022 1023 1024 1025
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1026
	/* sst flash chips use AAI word program */
1027
	if (info->flags & SST_WRITE)
1028
		flash->mtd._write = sst_write;
1029
	else
1030
		flash->mtd._write = m25p80_write;
1031

1032 1033 1034 1035
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
1036 1037 1038
	} else if (info->flags & SECT_4K_PMC) {
		flash->erase_opcode = OPCODE_BE_4K_PMC;
		flash->mtd.erasesize = 4096;
1039 1040 1041 1042 1043
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1044 1045 1046
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1047
	ppdata.of_node = spi->dev.of_node;
1048
	flash->mtd.dev.parent = &spi->dev;
1049
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1050
	flash->mtd.writebufsize = flash->page_size;
1051

1052 1053 1054 1055 1056 1057 1058
	flash->fast_read = false;
	if (np && of_property_read_bool(np, "m25p,fast-read"))
		flash->fast_read = true;

#ifdef CONFIG_M25PXX_USE_FAST_READ
	flash->fast_read = true;
#endif
1059 1060
	if (info->flags & M25P_NO_FR)
		flash->fast_read = false;
1061

1062 1063 1064 1065 1066 1067 1068 1069
	/* Default commands */
	if (flash->fast_read)
		flash->read_opcode = OPCODE_FAST_READ;
	else
		flash->read_opcode = OPCODE_NORM_READ;

	flash->program_opcode = OPCODE_PP;

1070 1071
	if (info->addr_width)
		flash->addr_width = info->addr_width;
1072
	else if (flash->mtd.size > 0x1000000) {
1073
		/* enable 4-byte addressing if the device exceeds 16MiB */
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
		flash->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
			flash->read_opcode = flash->fast_read ?
				OPCODE_FAST_READ_4B :
				OPCODE_NORM_READ_4B;
			flash->program_opcode = OPCODE_PP_4B;
			/* No small sector erase for 4-byte command set */
			flash->erase_opcode = OPCODE_SE_4B;
			flash->mtd.erasesize = info->sector_size;
1084
		} else
1085 1086 1087
			set_4byte(flash, info->jedec_id, 1);
	} else {
		flash->addr_width = 3;
1088
	}
1089

1090
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1091
			(long long)flash->mtd.size >> 10);
1092

1093
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1094
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1095
		flash->mtd.name,
1096
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1097 1098 1099 1100 1101
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1102
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1103
				".erasesize = 0x%.8x (%uKiB), "
1104
				".numblocks = %d }\n",
1105
				i, (long long)flash->mtd.eraseregions[i].offset,
1106 1107 1108 1109 1110 1111 1112 1113
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1114 1115 1116
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1117 1118 1119
}


B
Bill Pemberton 已提交
1120
static int m25p_remove(struct spi_device *spi)
1121
{
1122
	struct m25p	*flash = spi_get_drvdata(spi);
1123 1124 1125
	int		status;

	/* Clean up MTD stuff. */
1126
	status = mtd_device_unregister(&flash->mtd);
1127 1128
	if (status == 0) {
		kfree(flash->command);
1129
		kfree(flash);
1130
	}
1131 1132 1133 1134 1135 1136 1137 1138 1139
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1140
	.id_table	= m25p_ids,
1141
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1142
	.remove	= m25p_remove,
1143 1144 1145 1146 1147

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1148 1149
};

1150
module_spi_driver(m25p80_driver);
1151 1152 1153 1154

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");