efx.c 76.0 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82 83
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
84
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
85 86
};

87 88
#define EFX_MAX_MTU (9 * 1024)

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100 101 102 103
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
104 105
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
106
 *
107
 * This is only used in MSI-X interrupt mode
108
 */
109 110
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
111 112
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
113 114 115 116 117 118 119

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
120 121 122
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123
 */
S
stephen hemminger 已提交
124
static unsigned int efx_monitor_interval = 1 * HZ;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157
 * The default (0) means to assign an interrupt to each core.
158 159 160 161 162
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

163 164
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
165 166
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

167
static unsigned irq_adapt_low_thresh = 8000;
168 169 170 171
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

172
static unsigned irq_adapt_high_thresh = 16000;
173 174 175 176
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

177 178 179 180 181 182 183
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

184 185 186 187 188
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
189

190 191 192
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
193
static void efx_remove_channels(struct efx_nic *efx);
194
static const struct efx_channel_type efx_default_channel_type;
195
static void efx_remove_port(struct efx_nic *efx);
196
static void efx_init_napi_channel(struct efx_channel *channel);
197
static void efx_fini_napi(struct efx_nic *efx);
198
static void efx_fini_napi_channel(struct efx_channel *channel);
199 200 201
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
202 203 204

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
205
		if ((efx->state == STATE_READY) ||	\
206
		    (efx->state == STATE_DISABLED))	\
207 208 209
			ASSERT_RTNL();			\
	} while (0)

210 211 212 213 214 215 216 217 218 219
static int efx_check_disabled(struct efx_nic *efx)
{
	if (efx->state == STATE_DISABLED) {
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

220 221 222 223 224 225 226 227 228 229 230 231 232
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
233
static int efx_process_channel(struct efx_channel *channel, int budget)
234
{
235
	int spent;
236

237
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
238
		return 0;
239

240
	spent = efx_nic_process_eventq(channel, budget);
241 242 243 244 245 246 247 248 249
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

		/* Deliver last RX packet. */
		if (channel->rx_pkt) {
			__efx_rx_packet(channel, channel->rx_pkt);
			channel->rx_pkt = NULL;
		}
250 251 252 253
		if (rx_queue->enabled) {
			efx_rx_strategy(channel);
			efx_fast_push_rx_descriptors(rx_queue);
		}
254 255
	}

256
	return spent;
257 258 259 260 261 262 263 264 265 266
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
267 268 269
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
270
	channel->work_pending = false;
271 272
	smp_wmb();

273
	efx_nic_eventq_read_ack(channel);
274 275 276 277 278 279 280 281 282 283 284
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
285
	struct efx_nic *efx = channel->efx;
286
	int spent;
287

288 289 290
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
291

292
	spent = efx_process_channel(channel, budget);
293

294
	if (spent < budget) {
295
		if (efx_channel_has_rx_queue(channel) &&
296 297 298 299
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
300 301
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
302
					efx->type->push_irq_moderation(channel);
303
				}
304 305
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
306 307 308
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
309
					efx->type->push_irq_moderation(channel);
310
				}
311 312 313 314 315
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

316 317
		efx_filter_rfs_expire(channel);

318
		/* There is no race here; although napi_disable() will
319
		 * only wait for napi_complete(), this isn't a problem
320 321 322
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
323
		napi_complete(napi);
324 325 326
		efx_channel_processed(channel);
	}

327
	return spent;
328 329 330 331 332 333 334 335
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
336 337
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
338 339 340 341 342
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

343
	BUG_ON(channel->channel >= efx->n_channels);
344
	BUG_ON(!channel->enabled);
345
	BUG_ON(!efx->loopback_selftest);
346 347

	/* Disable interrupts and wait for ISRs to complete */
348
	efx_nic_disable_interrupts(efx);
349
	if (efx->legacy_irq) {
350
		synchronize_irq(efx->legacy_irq);
351 352
		efx->legacy_irq_enabled = false;
	}
353
	if (channel->irq)
354 355 356 357 358 359
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
360
	efx_process_channel(channel, channel->eventq_mask + 1);
361 362 363 364 365 366

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
367 368
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
369
	efx_nic_enable_interrupts(efx);
370 371 372 373 374 375 376 377 378
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
379 380 381
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

382
	netif_dbg(efx, probe, efx->net_dev,
383
		  "chan %d create event queue\n", channel->channel);
384

385 386 387 388 389 390
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

391
	return efx_nic_probe_eventq(channel);
392 393 394
}

/* Prepare channel's event queue */
395
static void efx_init_eventq(struct efx_channel *channel)
396
{
397 398
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
399 400 401

	channel->eventq_read_ptr = 0;

402
	efx_nic_init_eventq(channel);
403 404
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

433 434
static void efx_fini_eventq(struct efx_channel *channel)
{
435 436
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
437

438
	efx_nic_fini_eventq(channel);
439 440 441 442
}

static void efx_remove_eventq(struct efx_channel *channel)
{
443 444
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
445

446
	efx_nic_remove_eventq(channel);
447 448 449 450 451 452 453 454
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

455
/* Allocate and initialise a channel structure. */
456 457 458 459 460 461 462 463
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

464 465 466
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
467

468 469 470
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
471

472 473 474 475 476 477
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
478

479 480 481 482
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
483

484 485 486 487 488 489 490 491 492 493 494 495 496
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
497

498 499 500 501 502 503 504 505
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
506

507 508 509
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
510
			tx_queue->channel = channel;
511 512
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
513 514 515
	}

	rx_queue = &channel->rx_queue;
516 517
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
518 519 520 521 522 523
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

524 525 526 527 528 529
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

530 531
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
532

533 534 535 536
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

537 538
	rc = efx_probe_eventq(channel);
	if (rc)
539
		goto fail;
540 541 542 543

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
544
			goto fail;
545 546 547 548 549
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
550
			goto fail;
551 552 553 554 555 556
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

557 558
fail:
	efx_remove_channel(channel);
559 560 561
	return rc;
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
580

581 582 583 584
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

585 586 587 588
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
589 590
}

591 592 593 594 595 596 597 598
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

599 600 601 602 603 604
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

622 623 624 625
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
626
static void efx_start_datapath(struct efx_nic *efx)
627 628 629 630 631
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

632 633 634 635 636 637
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
638
			      efx->type->rx_buffer_hash_size +
639
			      efx->type->rx_buffer_padding);
640 641
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
642

643 644 645 646 647 648 649 650 651 652
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

653 654
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
655 656
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
657 658 659 660

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

661
		efx_for_each_channel_rx_queue(rx_queue, channel) {
662
			efx_init_rx_queue(rx_queue);
663 664
			efx_nic_generate_fill_event(rx_queue);
		}
665 666 667 668 669

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}

670 671
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
672 673
}

674
static void efx_stop_datapath(struct efx_nic *efx)
675 676 677 678
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
679
	struct pci_dev *dev = efx->pci_dev;
680
	int rc;
681 682 683 684

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/* Only perform flush if dma is enabled */
	if (dev->is_busmaster) {
		rc = efx_nic_flush_queues(efx);

		if (rc && EFX_WORKAROUND_7803(efx)) {
			/* Schedule a reset to recover from the flush failure. The
			 * descriptor caches reference memory we're about to free,
			 * but falcon_reconfigure_mac_wrapper() won't reconnect
			 * the MACs because of the pending reset. */
			netif_err(efx, drv, efx->net_dev,
				  "Resetting to recover from flush failure\n");
			efx_schedule_reset(efx, RESET_TYPE_ALL);
		} else if (rc) {
			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
		} else {
			netif_dbg(efx, drv, efx->net_dev,
				  "successfully flushed all queues\n");
		}
703
	}
704

705
	efx_for_each_channel(channel, efx) {
706 707 708 709 710 711 712 713 714 715
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
716 717 718

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
719
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
720 721 722 723 724 725 726 727 728
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

729 730
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
731 732 733

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
734
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
735 736
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
737
	channel->type->post_remove(channel);
738 739
}

740 741 742 743 744 745 746 747 748 749 750 751 752
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
753
	unsigned i, next_buffer_table = 0;
754 755 756 757 758
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
781

782
	efx_device_detach_sync(efx);
783
	efx_stop_all(efx);
784
	efx_stop_interrupts(efx, true);
785

786
	/* Clone channels (where possible) */
787 788
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
789 790 791
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

810 811
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
812 813

	for (i = 0; i < efx->n_channels; i++) {
814 815 816 817 818 819 820
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
821
	}
822

823
out:
824 825 826 827 828 829 830 831 832
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
833

834
	efx_start_interrupts(efx, true);
835
	efx_start_all(efx);
836
	netif_device_attach(efx->net_dev);
837 838 839 840 841 842 843 844 845 846 847 848 849 850
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

851
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
852
{
853
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
854 855
}

856 857
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
858
	.post_remove		= efx_channel_dummy_op_void,
859 860 861 862 863 864 865 866 867 868
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

869 870 871 872
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

873 874 875 876 877 878 879 880 881 882
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
883
void efx_link_status_changed(struct efx_nic *efx)
884
{
885 886
	struct efx_link_state *link_state = &efx->link_state;

887 888 889 890 891 892 893
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

894
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
895 896
		efx->n_link_state_changes++;

897
		if (link_state->up)
898 899 900 901 902 903
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
904
	if (link_state->up)
905 906 907 908 909
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
910
	else
911
		netif_info(efx, link, efx->net_dev, "link down\n");
912 913
}

B
Ben Hutchings 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

927
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

942 943
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
944 945 946 947 948 949 950 951
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
952
{
B
Ben Hutchings 已提交
953 954
	enum efx_phy_mode phy_mode;
	int rc;
955

B
Ben Hutchings 已提交
956
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
957

958
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
959 960
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
961

B
Ben Hutchings 已提交
962 963
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
964 965 966 967 968
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
969
	rc = efx->type->reconfigure_port(efx);
970

B
Ben Hutchings 已提交
971 972
	if (rc)
		efx->phy_mode = phy_mode;
973

B
Ben Hutchings 已提交
974
	return rc;
975 976 977 978
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
979
int efx_reconfigure_port(struct efx_nic *efx)
980
{
B
Ben Hutchings 已提交
981 982
	int rc;

983 984 985
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
986
	rc = __efx_reconfigure_port(efx);
987
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
988 989

	return rc;
990 991
}

992 993 994
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
995 996 997 998 999
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1000
	if (efx->port_enabled)
1001
		efx->type->reconfigure_mac(efx);
1002 1003 1004
	mutex_unlock(&efx->mac_lock);
}

1005 1006 1007 1008
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1009
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1010

1011 1012 1013
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1014 1015
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1016
	if (rc)
1017
		return rc;
1018

1019 1020
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1021 1022 1023 1024 1025 1026 1027 1028

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1029
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1030

1031 1032
	mutex_lock(&efx->mac_lock);

1033
	rc = efx->phy_op->init(efx);
1034
	if (rc)
1035
		goto fail1;
1036

1037
	efx->port_initialized = true;
1038

B
Ben Hutchings 已提交
1039 1040
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1041
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1042 1043 1044 1045 1046 1047

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1048
	mutex_unlock(&efx->mac_lock);
1049
	return 0;
1050

1051
fail2:
1052
	efx->phy_op->fini(efx);
1053 1054
fail1:
	mutex_unlock(&efx->mac_lock);
1055
	return rc;
1056 1057 1058 1059
}

static void efx_start_port(struct efx_nic *efx)
{
1060
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1061 1062 1063
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1064
	efx->port_enabled = true;
1065 1066 1067

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1068
	efx->type->reconfigure_mac(efx);
1069

1070 1071 1072
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1073
/* Prevent efx_mac_work() and efx_monitor() from working */
1074 1075
static void efx_stop_port(struct efx_nic *efx)
{
1076
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1077 1078

	mutex_lock(&efx->mac_lock);
1079
	efx->port_enabled = false;
1080 1081 1082
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1083 1084
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1085 1086 1087 1088
}

static void efx_fini_port(struct efx_nic *efx)
{
1089
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1090 1091 1092 1093

	if (!efx->port_initialized)
		return;

1094
	efx->phy_op->fini(efx);
1095
	efx->port_initialized = false;
1096

1097
	efx->link_state.up = false;
1098 1099 1100 1101 1102
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1103
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1104

1105
	efx->type->remove_port(efx);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1121
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1122 1123 1124

	rc = pci_enable_device(pci_dev);
	if (rc) {
1125 1126
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1138 1139
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1140 1141 1142
			if (rc == 0)
				break;
		}
1143 1144 1145
		dma_mask >>= 1;
	}
	if (rc) {
1146 1147
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1148 1149
		goto fail2;
	}
1150 1151
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1152
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1153
	if (rc) {
1154 1155
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1156 1157
		 * but just in case...
		 */
1158 1159
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1160 1161 1162
		goto fail2;
	}

1163 1164
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1165
	if (rc) {
1166 1167
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1168 1169 1170
		rc = -EIO;
		goto fail3;
	}
1171 1172
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1173
	if (!efx->membase) {
1174 1175 1176 1177
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1178 1179 1180
		rc = -ENOMEM;
		goto fail4;
	}
1181 1182 1183 1184
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1185 1186 1187 1188

	return 0;

 fail4:
1189
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1190
 fail3:
1191
	efx->membase_phys = 0;
1192 1193 1194 1195 1196 1197 1198 1199
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1200
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1201 1202 1203 1204 1205 1206 1207

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1208
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1209
		efx->membase_phys = 0;
1210 1211 1212 1213 1214
	}

	pci_disable_device(efx->pci_dev);
}

1215
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1216
{
1217
	cpumask_var_t thread_mask;
1218
	unsigned int count;
1219
	int cpu;
1220

1221 1222 1223 1224 1225 1226 1227 1228
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1240 1241
	}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1253 1254 1255 1256 1257
	}

	return count;
}

1258 1259 1260 1261
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1262 1263
	unsigned int i;
	int rc;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1281 1282 1283
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1284
static int efx_probe_interrupts(struct efx_nic *efx)
1285
{
1286 1287
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1288 1289
	unsigned int extra_channels = 0;
	unsigned int i, j;
1290
	int rc;
1291

1292 1293 1294 1295
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1296
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1297
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1298
		unsigned int n_channels;
1299

1300
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1301 1302
		if (separate_tx_channels)
			n_channels *= 2;
1303
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1304
		n_channels = min(n_channels, max_channels);
1305

B
Ben Hutchings 已提交
1306
		for (i = 0; i < n_channels; i++)
1307
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1308
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1309
		if (rc > 0) {
1310 1311
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1312
				  " available (%d < %u).\n", rc, n_channels);
1313 1314
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1315 1316
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1317
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1318
					     n_channels);
1319 1320 1321
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1322
			efx->n_channels = n_channels;
1323 1324
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1325
			if (separate_tx_channels) {
1326 1327 1328 1329
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1330
			} else {
1331 1332
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1333
			}
1334 1335 1336 1337 1338
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1339
			for (i = 0; i < efx->n_channels; i++)
1340 1341
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1342 1343 1344
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1345 1346
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1347 1348 1349 1350 1351
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1352
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1353 1354
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1355 1356
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1357
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1358
		} else {
1359 1360
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1361 1362 1363 1364 1365 1366
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1367
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1368 1369
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1370 1371
		efx->legacy_irq = efx->pci_dev->irq;
	}
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1388
	/* RSS might be usable on VFs even if it is disabled on the PF */
1389
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1390 1391
			   efx->n_rx_channels : efx_vf_size(efx));

1392
	return 0;
1393 1394
}

1395
/* Enable interrupts, then probe and start the event queues */
1396
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1397 1398 1399
{
	struct efx_channel *channel;

1400 1401
	BUG_ON(efx->state == STATE_DISABLED);

1402 1403 1404 1405 1406
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1407 1408
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1409 1410 1411 1412 1413 1414
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1415
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1416 1417 1418
{
	struct efx_channel *channel;

1419 1420 1421
	if (efx->state == STATE_DISABLED)
		return;

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1435 1436
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1437 1438 1439
	}
}

1440 1441 1442 1443 1444
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1445
	efx_for_each_channel(channel, efx)
1446 1447 1448 1449 1450 1451 1452 1453
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1454
static void efx_set_channels(struct efx_nic *efx)
1455
{
1456 1457 1458
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1459
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1460
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1461

1462 1463
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1464 1465 1466
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1467 1468 1469 1470 1471
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1472 1473 1474 1475
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1476 1477 1478 1479
}

static int efx_probe_nic(struct efx_nic *efx)
{
1480
	size_t i;
1481 1482
	int rc;

1483
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1484 1485

	/* Carry out hardware-type specific initialisation */
1486
	rc = efx->type->probe(efx);
1487 1488 1489
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1490
	/* Determine the number of channels and queues by trying to hook
1491
	 * in MSI-X interrupts. */
1492 1493 1494
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1495

1496 1497
	efx->type->dimension_resources(efx);

1498 1499
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1500
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1501
		efx->rx_indir_table[i] =
1502
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1503

1504
	efx_set_channels(efx);
1505 1506
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1507 1508

	/* Initialise the interrupt moderation settings */
1509 1510
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1511 1512

	return 0;
1513 1514 1515 1516

fail:
	efx->type->remove(efx);
	return rc;
1517 1518 1519 1520
}

static void efx_remove_nic(struct efx_nic *efx)
{
1521
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1522 1523

	efx_remove_interrupts(efx);
1524
	efx->type->remove(efx);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1539
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1540 1541 1542 1543 1544
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1545
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1546 1547 1548
		goto fail2;
	}

1549 1550 1551 1552 1553
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1554
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1555

B
Ben Hutchings 已提交
1556 1557 1558 1559
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1560
		goto fail3;
B
Ben Hutchings 已提交
1561 1562
	}

1563 1564 1565 1566
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1567 1568
	return 0;

B
Ben Hutchings 已提交
1569
 fail4:
1570
	efx_remove_filters(efx);
1571 1572 1573 1574 1575 1576 1577 1578
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1579 1580 1581 1582 1583 1584
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1585
 */
1586 1587 1588
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1589
	BUG_ON(efx->state == STATE_DISABLED);
1590 1591 1592

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1593
	if (efx->port_enabled || !netif_running(efx->net_dev))
1594 1595 1596
		return;

	efx_start_port(efx);
1597
	efx_start_datapath(efx);
1598

1599 1600 1601 1602
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1603 1604
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1605 1606 1607 1608 1609 1610
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1611

1612
	efx->type->start_stats(efx);
1613 1614 1615 1616 1617 1618 1619
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1620
	/* Make sure the hardware monitor and event self-test are stopped */
1621
	cancel_delayed_work_sync(&efx->monitor_work);
1622
	efx_selftest_async_cancel(efx);
1623
	/* Stop scheduled port reconfigurations */
1624
	cancel_work_sync(&efx->mac_work);
1625 1626
}

1627 1628 1629 1630 1631
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1632 1633 1634 1635 1636 1637 1638 1639
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1640
	efx->type->stop_stats(efx);
1641 1642
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1643
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1644 1645
	efx_flush_all(efx);

1646 1647 1648 1649 1650 1651
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1652 1653 1654
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1655 1656 1657 1658
}

static void efx_remove_all(struct efx_nic *efx)
{
1659
	efx_remove_channels(efx);
1660
	efx_remove_filters(efx);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1671
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1672
{
1673 1674
	if (usecs == 0)
		return 0;
1675
	if (usecs * 1000 < quantum_ns)
1676
		return 1; /* never round down to 0 */
1677
	return usecs * 1000 / quantum_ns;
1678 1679
}

1680
/* Set interrupt moderation parameters */
1681 1682 1683
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1684
{
1685
	struct efx_channel *channel;
1686 1687 1688 1689 1690
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1691 1692 1693

	EFX_ASSERT_RESET_SERIALISED(efx);

1694
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1695 1696
		return -EINVAL;

1697 1698 1699
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1700 1701 1702 1703 1704 1705 1706
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1707
	efx->irq_rx_adaptive = rx_adaptive;
1708
	efx->irq_rx_moderation = rx_ticks;
1709
	efx_for_each_channel(channel, efx) {
1710
		if (efx_channel_has_rx_queue(channel))
1711
			channel->irq_moderation = rx_ticks;
1712
		else if (efx_channel_has_tx_queues(channel))
1713 1714
			channel->irq_moderation = tx_ticks;
	}
1715 1716

	return 0;
1717 1718
}

1719 1720 1721
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1722 1723 1724 1725
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1726
	*rx_adaptive = efx->irq_rx_adaptive;
1727 1728 1729
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1730 1731 1732 1733 1734 1735 1736 1737

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1738
		*tx_usecs = DIV_ROUND_UP(
1739
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1740 1741
			efx->timer_quantum_ns,
			1000);
1742 1743
}

1744 1745 1746 1747 1748 1749
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1750
/* Run periodically off the general workqueue */
1751 1752 1753 1754 1755
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1756 1757 1758
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1759
	BUG_ON(efx->type->monitor == NULL);
1760 1761 1762

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1763 1764 1765 1766 1767 1768
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1785
	struct efx_nic *efx = netdev_priv(net_dev);
1786
	struct mii_ioctl_data *data = if_mii(ifr);
1787

1788 1789 1790
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1791 1792 1793 1794 1795 1796
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1797 1798 1799 1800 1801 1802 1803 1804
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1805 1806 1807 1808 1809 1810 1811 1812 1813
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1814
static void efx_init_napi(struct efx_nic *efx)
1815 1816 1817
{
	struct efx_channel *channel;

1818 1819
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1820 1821 1822 1823 1824 1825 1826
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1827 1828 1829 1830 1831 1832
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1833 1834
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1851
	struct efx_nic *efx = netdev_priv(net_dev);
1852 1853
	struct efx_channel *channel;

1854
	efx_for_each_channel(channel, efx)
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1869
	struct efx_nic *efx = netdev_priv(net_dev);
1870 1871
	int rc;

1872 1873
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1874

1875 1876 1877
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1878 1879
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1880 1881
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1882

1883 1884 1885 1886
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1887
	efx_start_all(efx);
1888
	efx_selftest_async_start(efx);
1889 1890 1891 1892 1893 1894 1895 1896 1897
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1898
	struct efx_nic *efx = netdev_priv(net_dev);
1899

1900 1901
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1902

1903 1904
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1905 1906 1907 1908

	return 0;
}

1909
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1910 1911
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1912
{
1913
	struct efx_nic *efx = netdev_priv(net_dev);
1914 1915
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1916
	spin_lock_bh(&efx->stats_lock);
1917

1918
	efx->type->update_stats(efx);
1919 1920 1921 1922 1923

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1924
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1942 1943
	spin_unlock_bh(&efx->stats_lock);

1944 1945 1946 1947 1948 1949
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1950
	struct efx_nic *efx = netdev_priv(net_dev);
1951

1952 1953 1954
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1955

1956
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1957 1958 1959 1960 1961 1962
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1963
	struct efx_nic *efx = netdev_priv(net_dev);
1964
	int rc;
1965

1966 1967 1968
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1969 1970 1971
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

1972
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1973

1974 1975 1976
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
1977
	mutex_lock(&efx->mac_lock);
1978
	net_dev->mtu = new_mtu;
1979
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1980 1981
	mutex_unlock(&efx->mac_lock);

1982
	efx_start_all(efx);
1983
	netif_device_attach(efx->net_dev);
1984
	return 0;
1985 1986 1987 1988
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1989
	struct efx_nic *efx = netdev_priv(net_dev);
1990 1991 1992 1993
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
1994 1995 1996
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1997
		return -EADDRNOTAVAIL;
1998 1999 2000
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2001
	efx_sriov_mac_address_changed(efx);
2002 2003

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2004
	mutex_lock(&efx->mac_lock);
2005
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2006
	mutex_unlock(&efx->mac_lock);
2007 2008 2009 2010

	return 0;
}

2011
/* Context: netif_addr_lock held, BHs disabled. */
2012
static void efx_set_rx_mode(struct net_device *net_dev)
2013
{
2014
	struct efx_nic *efx = netdev_priv(net_dev);
2015
	struct netdev_hw_addr *ha;
2016 2017 2018 2019
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

2020
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2021 2022

	/* Build multicast hash table */
2023
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2024 2025 2026
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
2027 2028
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2029
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2030
			__set_bit_le(bit, mc_hash);
2031 2032
		}

2033 2034 2035 2036
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2037
		__set_bit_le(0xff, mc_hash);
2038
	}
2039

2040 2041 2042
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2043 2044
}

2045
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2056 2057 2058
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2059
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2060 2061 2062 2063 2064 2065
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2066
	.ndo_set_rx_mode	= efx_set_rx_mode,
2067
	.ndo_set_features	= efx_set_features,
2068 2069 2070 2071 2072 2073
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2074 2075 2076
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2077
	.ndo_setup_tc		= efx_setup_tc,
2078 2079 2080
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2081 2082
};

2083 2084 2085 2086 2087 2088 2089
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2090 2091 2092
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2093
	struct net_device *net_dev = ptr;
2094

2095 2096 2097
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2098 2099 2100 2101 2102 2103 2104 2105

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2106 2107 2108 2109 2110 2111 2112 2113
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2114 2115 2116
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2117
	struct efx_channel *channel;
2118 2119 2120 2121
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2122
	net_dev->netdev_ops = &efx_netdev_ops;
2123
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2124
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2125

2126
	rtnl_lock();
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2141 2142 2143
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2144
	efx_update_name(efx);
2145

2146 2147 2148
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2149 2150 2151 2152
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2153 2154
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2155 2156
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2157 2158
	}

2159
	rtnl_unlock();
2160

B
Ben Hutchings 已提交
2161 2162
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2163 2164
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2165 2166 2167
		goto fail_registered;
	}

2168
	return 0;
B
Ben Hutchings 已提交
2169

2170 2171 2172
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2173
fail_locked:
2174
	efx->state = STATE_UNINIT;
2175
	rtnl_unlock();
2176
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2177
	return rc;
2178 2179 2180 2181
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2182
	struct efx_channel *channel;
2183 2184 2185 2186 2187
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2188
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2189 2190 2191 2192

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2193 2194 2195 2196
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2197

2198 2199
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2200 2201 2202 2203 2204

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2205 2206 2207 2208 2209 2210 2211 2212
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2213 2214
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2215
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2216 2217 2218
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2219
	efx_stop_all(efx);
2220
	efx_stop_interrupts(efx, false);
2221 2222

	mutex_lock(&efx->mac_lock);
2223 2224
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2225
	efx->type->fini(efx);
2226 2227
}

B
Ben Hutchings 已提交
2228 2229 2230 2231 2232
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2233
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2234 2235 2236
{
	int rc;

B
Ben Hutchings 已提交
2237
	EFX_ASSERT_RESET_SERIALISED(efx);
2238

2239
	rc = efx->type->init(efx);
2240
	if (rc) {
2241
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2242
		goto fail;
2243 2244
	}

2245 2246 2247
	if (!ok)
		goto fail;

2248
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2249 2250 2251 2252
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2253 2254
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2255 2256
	}

2257
	efx->type->reconfigure_mac(efx);
2258

2259
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2260
	efx_restore_filters(efx);
2261
	efx_sriov_reset(efx);
2262 2263 2264 2265 2266 2267 2268 2269 2270

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2271 2272 2273

	mutex_unlock(&efx->mac_lock);

2274 2275 2276
	return rc;
}

2277 2278
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2279
 *
2280
 * Caller must hold the rtnl_lock.
2281
 */
2282
int efx_reset(struct efx_nic *efx, enum reset_type method)
2283
{
2284 2285
	int rc, rc2;
	bool disabled;
2286

2287 2288
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2289

2290
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2291
	efx_reset_down(efx, method);
2292

2293
	rc = efx->type->reset(efx, method);
2294
	if (rc) {
2295
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2296
		goto out;
2297 2298
	}

2299 2300 2301 2302
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2303 2304 2305 2306 2307 2308 2309

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2310
out:
2311
	/* Leave device stopped if necessary */
2312 2313 2314 2315 2316 2317
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2318 2319
	}

2320
	if (disabled) {
2321
		dev_close(efx->net_dev);
2322
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2323 2324
		efx->state = STATE_DISABLED;
	} else {
2325
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2326
		netif_device_attach(efx->net_dev);
2327
	}
2328 2329 2330 2331 2332 2333 2334 2335
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2336
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2337
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2338

2339
	if (!pending)
2340 2341
		return;

2342
	rtnl_lock();
2343 2344 2345 2346 2347 2348 2349 2350

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
		(void)efx_reset(efx, fls(pending) - 1);

2351
	rtnl_unlock();
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2364 2365
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2366 2367
		break;
	default:
2368
		method = efx->type->map_reset_reason(type);
2369 2370 2371
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2372 2373
		break;
	}
2374

2375
	set_bit(method, &efx->reset_pending);
2376 2377 2378 2379 2380 2381 2382
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2383

2384 2385 2386 2387
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2388
	queue_work(reset_workqueue, &efx->reset_work);
2389 2390 2391 2392 2393 2394 2395 2396 2397
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2398
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2399 2400
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2401
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2402 2403
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2404
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2405
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2406
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2407
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2408
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2409 2410 2411 2412 2413
	{0}			/* end of list */
};

/**************************************************************************
 *
2414
 * Dummy PHY/MAC operations
2415
 *
2416
 * Can be used for some unimplemented operations
2417 2418 2419 2420 2421 2422 2423 2424 2425
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2426 2427

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2428 2429 2430
{
	return false;
}
2431

2432
static const struct efx_phy_operations efx_dummy_phy_operations = {
2433
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2434
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2435
	.poll		 = efx_port_dummy_op_poll,
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2448
static int efx_init_struct(struct efx_nic *efx,
2449 2450
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2451
	int i;
2452 2453 2454

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2455 2456 2457
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2458 2459
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2460
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2461
	efx->pci_dev = pci_dev;
2462
	efx->msg_enable = debug;
2463
	efx->state = STATE_UNINIT;
2464 2465 2466 2467 2468 2469
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2470
	efx->mdio.dev = net_dev;
2471
	INIT_WORK(&efx->mac_work, efx_mac_work);
2472
	init_waitqueue_head(&efx->flush_wq);
2473 2474

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2475 2476 2477
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2478 2479 2480 2481 2482 2483 2484 2485
	}

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2486 2487 2488 2489
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2490
	if (!efx->workqueue)
2491
		goto fail;
2492

2493
	return 0;
2494 2495 2496 2497

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2498 2499 2500 2501
}

static void efx_fini_struct(struct efx_nic *efx)
{
2502 2503 2504 2505 2506
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2524 2525 2526 2527 2528 2529
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

2530 2531 2532 2533
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2534
	efx_stop_interrupts(efx, false);
2535
	efx_nic_fini_interrupt(efx);
2536
	efx_fini_port(efx);
2537
	efx->type->fini(efx);
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
2556
	efx_stop_interrupts(efx, false);
2557 2558
	rtnl_unlock();

2559
	efx_sriov_fini(efx);
2560 2561
	efx_unregister_netdev(efx);

2562 2563
	efx_mtd_remove(efx);

2564 2565 2566
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2567
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2568 2569

	efx_fini_struct(efx);
2570
	pci_set_drvdata(pci_dev, NULL);
2571 2572 2573
	free_netdev(efx->net_dev);
};

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2637
	efx_init_napi(efx);
2638

2639
	rc = efx->type->init(efx);
2640
	if (rc) {
2641 2642
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2643
		goto fail3;
2644 2645 2646 2647
	}

	rc = efx_init_port(efx);
	if (rc) {
2648 2649
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2650
		goto fail4;
2651 2652
	}

2653
	rc = efx_nic_init_interrupt(efx);
2654
	if (rc)
2655
		goto fail5;
2656
	efx_start_interrupts(efx, false);
2657 2658 2659

	return 0;

2660
 fail5:
2661 2662
	efx_fini_port(efx);
 fail4:
2663
	efx->type->fini(efx);
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2674
 * theoretically).  It sets up PCI mappings, resets the NIC,
2675 2676 2677 2678 2679
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2680
static int efx_pci_probe(struct pci_dev *pci_dev,
2681
			 const struct pci_device_id *entry)
2682 2683 2684
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2685
	int rc;
2686 2687

	/* Allocate and initialise a struct net_device and struct efx_nic */
2688 2689
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2690 2691
	if (!net_dev)
		return -ENOMEM;
2692 2693 2694
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2695
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2696
			      NETIF_F_RXCSUM);
2697
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2698
		net_dev->features |= NETIF_F_TSO6;
2699 2700
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2701 2702 2703 2704
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2705
	pci_set_drvdata(pci_dev, efx);
2706
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2707
	rc = efx_init_struct(efx, pci_dev, net_dev);
2708 2709 2710
	if (rc)
		goto fail1;

2711
	netif_info(efx, probe, efx->net_dev,
2712
		   "Solarflare NIC detected\n");
2713

2714 2715
	efx_print_product_vpd(efx);

2716 2717 2718 2719 2720
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2721 2722 2723
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2724 2725 2726

	rc = efx_register_netdev(efx);
	if (rc)
2727
		goto fail4;
2728

2729 2730 2731 2732 2733
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2734
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2735

2736
	/* Try to create MTDs, but allow this to fail */
2737
	rtnl_lock();
2738
	rc = efx_mtd_probe(efx);
2739
	rtnl_unlock();
2740 2741 2742 2743
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2744 2745 2746
	return 0;

 fail4:
2747
	efx_pci_remove_main(efx);
2748 2749 2750 2751 2752
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2753
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2754
	WARN_ON(rc > 0);
2755
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2756 2757 2758 2759
	free_netdev(net_dev);
	return rc;
}

2760 2761 2762 2763
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2764 2765
	rtnl_lock();

2766 2767
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2768

2769
		efx_device_detach_sync(efx);
2770

2771 2772 2773
		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);
	}
2774

2775 2776
	rtnl_unlock();

2777 2778 2779 2780 2781 2782 2783
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2784 2785
	rtnl_lock();

2786 2787
	if (efx->state != STATE_DISABLED) {
		efx_start_interrupts(efx, false);
2788

2789 2790 2791
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2792

2793
		efx_start_all(efx);
2794

2795
		netif_device_attach(efx->net_dev);
2796

2797
		efx->state = STATE_READY;
2798

2799 2800
		efx->type->resume_wol(efx);
	}
2801

2802 2803
	rtnl_unlock();

2804 2805 2806
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2817
	efx->reset_pending = 0;
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2859
static const struct dev_pm_ops efx_pm_ops = {
2860 2861 2862 2863 2864 2865 2866 2867
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2868
static struct pci_driver efx_pci_driver = {
2869
	.name		= KBUILD_MODNAME,
2870 2871 2872
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2873
	.driver.pm	= &efx_pm_ops,
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2896 2897 2898 2899
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

2900 2901 2902 2903 2904
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2905 2906 2907 2908 2909 2910 2911 2912

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2913 2914
	destroy_workqueue(reset_workqueue);
 err_reset:
2915 2916
	efx_fini_sriov();
 err_sriov:
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2927
	destroy_workqueue(reset_workqueue);
2928
	efx_fini_sriov();
2929 2930 2931 2932 2933 2934 2935
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2936 2937
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2938 2939 2940
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);