vp3.c 102.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17 18 19 20 21 22
 *
 */

/**
 * @file vp3.c
 * On2 VP3 Video Decoder
23 24 25 26 27 28
 *
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 * For more information about the VP3 coding process, visit:
 *   http://multimedia.cx/
 *
 * Theora decoder by Alex Beregszaszi
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "common.h"
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"

#include "vp3data.h"

#define FRAGMENT_PIXELS 8

45
/*
46
 * Debugging Variables
47
 *
48 49 50
 * Define one or more of the following compile-time variables to 1 to obtain
 * elaborate information about certain aspects of the decoding process.
 *
51
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52 53 54 55 56 57 58 59 60 61 62 63
 * DEBUG_VP3: high-level decoding flow
 * DEBUG_INIT: initialization parameters
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
 * DEBUG_MODES: unpacking the coding modes for individual fragments
 * DEBUG_VECTORS: display the motion vectors
 * DEBUG_TOKEN: display exhaustive information about each DCT token
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
 * DEBUG_DC_PRED: display the process of reversing DC prediction
 * DEBUG_IDCT: show every detail of the IDCT process
 */

64 65
#define KEYFRAMES_ONLY 0

A
Alex Beregszaszi 已提交
66
#define DEBUG_VP3 0
67 68 69 70 71 72 73 74 75 76 77
#define DEBUG_INIT 0
#define DEBUG_DEQUANTIZERS 0
#define DEBUG_BLOCK_CODING 0
#define DEBUG_MODES 0
#define DEBUG_VECTORS 0
#define DEBUG_TOKEN 0
#define DEBUG_VLC 0
#define DEBUG_DC_PRED 0
#define DEBUG_IDCT 0

#if DEBUG_VP3
A
Alex Beregszaszi 已提交
78
#define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
79 80 81 82 83
#else
static inline void debug_vp3(const char *format, ...) { }
#endif

#if DEBUG_INIT
A
Alex Beregszaszi 已提交
84
#define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
85 86 87 88 89
#else
static inline void debug_init(const char *format, ...) { }
#endif

#if DEBUG_DEQUANTIZERS
A
Alex Beregszaszi 已提交
90
#define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
91
#else
92
static inline void debug_dequantizers(const char *format, ...) { }
93 94 95
#endif

#if DEBUG_BLOCK_CODING
A
Alex Beregszaszi 已提交
96
#define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
97
#else
98
static inline void debug_block_coding(const char *format, ...) { }
99 100 101
#endif

#if DEBUG_MODES
102
#define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
103
#else
104
static inline void debug_modes(const char *format, ...) { }
105 106 107
#endif

#if DEBUG_VECTORS
A
Alex Beregszaszi 已提交
108
#define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
109
#else
110
static inline void debug_vectors(const char *format, ...) { }
111 112
#endif

113
#if DEBUG_TOKEN
A
Alex Beregszaszi 已提交
114
#define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
115
#else
116
static inline void debug_token(const char *format, ...) { }
117 118 119
#endif

#if DEBUG_VLC
A
Alex Beregszaszi 已提交
120
#define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
121
#else
122
static inline void debug_vlc(const char *format, ...) { }
123 124 125
#endif

#if DEBUG_DC_PRED
A
Alex Beregszaszi 已提交
126
#define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
127
#else
128
static inline void debug_dc_pred(const char *format, ...) { }
129 130 131
#endif

#if DEBUG_IDCT
A
Alex Beregszaszi 已提交
132
#define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
133
#else
134
static inline void debug_idct(const char *format, ...) { }
135 136
#endif

137 138 139 140 141 142 143
typedef struct Coeff {
    struct Coeff *next;
    DCTELEM coeff;
    uint8_t index;
} Coeff;

//FIXME split things out into their own arrays
144
typedef struct Vp3Fragment {
145
    Coeff *next_coeff;
146 147 148 149
    /* address of first pixel taking into account which plane the fragment
     * lives on as well as the plane stride */
    int first_pixel;
    /* this is the macroblock that the fragment belongs to */
150 151 152 153 154
    uint16_t macroblock;
    uint8_t coding_method;
    uint8_t coeff_count;
    int8_t motion_x;
    int8_t motion_y;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
} Vp3Fragment;

#define SB_NOT_CODED        0
#define SB_PARTIALLY_CODED  1
#define SB_FULLY_CODED      2

#define MODE_INTER_NO_MV      0
#define MODE_INTRA            1
#define MODE_INTER_PLUS_MV    2
#define MODE_INTER_LAST_MV    3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN     5
#define MODE_GOLDEN_MV        6
#define MODE_INTER_FOURMV     7
#define CODING_MODE_COUNT     8

/* special internal mode */
#define MODE_COPY             8

/* There are 6 preset schemes, plus a free-form scheme */
static int ModeAlphabet[7][CODING_MODE_COUNT] =
{
    /* this is the custom scheme */
    { 0, 0, 0, 0, 0, 0, 0, 0 },

    /* scheme 1: Last motion vector dominates */
181
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
182
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
183
         MODE_INTRA,            MODE_USING_GOLDEN,
184 185 186
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 2 */
187
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
188
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
189
         MODE_INTRA,            MODE_USING_GOLDEN,
190 191 192
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 3 */
193
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
194
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
195
         MODE_INTRA,            MODE_USING_GOLDEN,
196 197 198
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 4 */
199
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
200
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
201
         MODE_INTRA,            MODE_USING_GOLDEN,
202 203 204
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 5: No motion vector dominates */
205
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
206
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
207
         MODE_INTRA,            MODE_USING_GOLDEN,
208 209 210
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 6 */
211
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
212
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
213
         MODE_INTER_PLUS_MV,    MODE_INTRA,
214 215 216 217 218 219 220 221
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

};

#define MIN_DEQUANT_VAL 2

typedef struct Vp3DecodeContext {
    AVCodecContext *avctx;
222
    int theora, theora_tables;
A
Alex Beregszaszi 已提交
223
    int version;
224 225 226 227 228 229
    int width, height;
    AVFrame golden_frame;
    AVFrame last_frame;
    AVFrame current_frame;
    int keyframe;
    DSPContext dsp;
230
    int flipped_image;
231 232 233 234 235 236 237

    int quality_index;
    int last_quality_index;

    int superblock_count;
    int superblock_width;
    int superblock_height;
238 239 240 241
    int y_superblock_width;
    int y_superblock_height;
    int c_superblock_width;
    int c_superblock_height;
242 243 244 245 246 247 248 249 250 251 252 253 254
    int u_superblock_start;
    int v_superblock_start;
    unsigned char *superblock_coding;

    int macroblock_count;
    int macroblock_width;
    int macroblock_height;

    int fragment_count;
    int fragment_width;
    int fragment_height;

    Vp3Fragment *all_fragments;
255 256
    Coeff *coeffs;
    Coeff *next_coeff;
257 258
    int u_fragment_start;
    int v_fragment_start;
259

M
Michael Niedermayer 已提交
260
    ScanTable scantable;
261

262 263
    /* tables */
    uint16_t coded_dc_scale_factor[64];
264
    uint32_t coded_ac_scale_factor[64];
265 266 267
    uint16_t coded_intra_y_dequant[64];
    uint16_t coded_intra_c_dequant[64];
    uint16_t coded_inter_dequant[64];
268 269 270 271 272 273 274 275 276 277 278 279 280

    /* this is a list of indices into the all_fragments array indicating
     * which of the fragments are coded */
    int *coded_fragment_list;
    int coded_fragment_list_index;
    int pixel_addresses_inited;

    VLC dc_vlc[16];
    VLC ac_vlc_1[16];
    VLC ac_vlc_2[16];
    VLC ac_vlc_3[16];
    VLC ac_vlc_4[16];

281 282 283 284 285
    VLC superblock_run_length_vlc;
    VLC fragment_run_length_vlc;
    VLC mode_code_vlc;
    VLC motion_vector_vlc;

286 287
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
     * index into them */
288
    DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]);        //<qmat[is_inter][plane]
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    /* This table contains superblock_count * 16 entries. Each set of 16
     * numbers corresponds to the fragment indices 0..15 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_fragments;

    /* This table contains superblock_count * 4 entries. Each set of 4
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_macroblocks;

    /* This table contains macroblock_count * 6 entries. Each set of 6
     * numbers corresponds to the fragment indices 0..5 which comprise
     * the macroblock (4 Y fragments and 2 C fragments). */
    int *macroblock_fragments;
306
    /* This is an array that indicates how a particular macroblock
307
     * is coded. */
308
    unsigned char *macroblock_coding;
309

310 311 312 313 314
    int first_coded_y_fragment;
    int first_coded_c_fragment;
    int last_coded_y_fragment;
    int last_coded_c_fragment;

M
Michael Niedermayer 已提交
315
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
M
Michael Niedermayer 已提交
316
    uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
317

318 319 320 321 322 323 324 325 326
    /* Huffman decode */
    int hti;
    unsigned int hbits;
    int entries;
    int huff_code_size;
    uint16_t huffman_table[80][32][2];

    uint32_t filter_limit_values[64];
    int bounding_values_array[256];
327 328
} Vp3DecodeContext;

329
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
A
Alex Beregszaszi 已提交
330

331 332 333 334 335 336 337 338
/************************************************************************
 * VP3 specific functions
 ************************************************************************/

/*
 * This function sets up all of the various blocks mappings:
 * superblocks <-> fragments, macroblocks <-> fragments,
 * superblocks <-> macroblocks
339 340
 *
 * Returns 0 is successful; returns 1 if *anything* went wrong.
341
 */
342
static int init_block_mapping(Vp3DecodeContext *s)
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
{
    int i, j;
    signed int hilbert_walk_y[16];
    signed int hilbert_walk_c[16];
    signed int hilbert_walk_mb[4];

    int current_fragment = 0;
    int current_width = 0;
    int current_height = 0;
    int right_edge = 0;
    int bottom_edge = 0;
    int superblock_row_inc = 0;
    int *hilbert = NULL;
    int mapping_index = 0;

    int current_macroblock;
    int c_fragment;

    signed char travel_width[16] = {
362
         1,  1,  0, -1,
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
         0,  0,  1,  0,
         1,  0,  1,  0,
         0, -1,  0,  1
    };

    signed char travel_height[16] = {
         0,  0,  1,  0,
         1,  1,  0, -1,
         0,  1,  0, -1,
        -1,  0, -1,  0
    };

    signed char travel_width_mb[4] = {
         1,  0,  1,  0
    };

    signed char travel_height_mb[4] = {
         0,  1,  0, -1
    };

    debug_vp3("  vp3: initialize block mapping tables\n");

    /* figure out hilbert pattern per these frame dimensions */
    hilbert_walk_y[0]  = 1;
    hilbert_walk_y[1]  = 1;
    hilbert_walk_y[2]  = s->fragment_width;
    hilbert_walk_y[3]  = -1;
    hilbert_walk_y[4]  = s->fragment_width;
    hilbert_walk_y[5]  = s->fragment_width;
    hilbert_walk_y[6]  = 1;
    hilbert_walk_y[7]  = -s->fragment_width;
    hilbert_walk_y[8]  = 1;
    hilbert_walk_y[9]  = s->fragment_width;
    hilbert_walk_y[10]  = 1;
    hilbert_walk_y[11] = -s->fragment_width;
    hilbert_walk_y[12] = -s->fragment_width;
    hilbert_walk_y[13] = -1;
    hilbert_walk_y[14] = -s->fragment_width;
    hilbert_walk_y[15] = 1;

    hilbert_walk_c[0]  = 1;
    hilbert_walk_c[1]  = 1;
    hilbert_walk_c[2]  = s->fragment_width / 2;
    hilbert_walk_c[3]  = -1;
    hilbert_walk_c[4]  = s->fragment_width / 2;
    hilbert_walk_c[5]  = s->fragment_width / 2;
    hilbert_walk_c[6]  = 1;
    hilbert_walk_c[7]  = -s->fragment_width / 2;
    hilbert_walk_c[8]  = 1;
    hilbert_walk_c[9]  = s->fragment_width / 2;
    hilbert_walk_c[10]  = 1;
    hilbert_walk_c[11] = -s->fragment_width / 2;
    hilbert_walk_c[12] = -s->fragment_width / 2;
    hilbert_walk_c[13] = -1;
    hilbert_walk_c[14] = -s->fragment_width / 2;
    hilbert_walk_c[15] = 1;

    hilbert_walk_mb[0] = 1;
    hilbert_walk_mb[1] = s->macroblock_width;
    hilbert_walk_mb[2] = 1;
    hilbert_walk_mb[3] = -s->macroblock_width;

    /* iterate through each superblock (all planes) and map the fragments */
    for (i = 0; i < s->superblock_count; i++) {
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
            i, s->u_superblock_start, s->v_superblock_start);

        /* time to re-assign the limits? */
        if (i == 0) {

            /* start of Y superblocks */
            right_edge = s->fragment_width;
            bottom_edge = s->fragment_height;
436
            current_width = -1;
437
            current_height = 0;
438
            superblock_row_inc = 3 * s->fragment_width -
439
                (s->y_superblock_width * 4 - s->fragment_width);
440 441 442 443 444 445 446 447 448 449
            hilbert = hilbert_walk_y;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = -1;

        } else if (i == s->u_superblock_start) {

            /* start of U superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
450
            current_width = -1;
451
            current_height = 0;
452
            superblock_row_inc = 3 * (s->fragment_width / 2) -
453
                (s->c_superblock_width * 4 - s->fragment_width / 2);
454 455 456 457 458 459 460 461 462 463
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->u_fragment_start - 1;

        } else if (i == s->v_superblock_start) {

            /* start of V superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
464
            current_width = -1;
465
            current_height = 0;
466
            superblock_row_inc = 3 * (s->fragment_width / 2) -
467
                (s->c_superblock_width * 4 - s->fragment_width / 2);
468 469 470 471 472 473 474
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->v_fragment_start - 1;

        }

475
        if (current_width >= right_edge - 1) {
476
            /* reset width and move to next superblock row */
477
            current_width = -1;
478 479 480 481 482 483 484 485 486
            current_height += 4;

            /* fragment is now at the start of a new superblock row */
            current_fragment += superblock_row_inc;
        }

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {
            current_fragment += hilbert[j];
487
            current_width += travel_width[j];
488 489 490
            current_height += travel_height[j];

            /* check if the fragment is in bounds */
491
            if ((current_width < right_edge) &&
492 493
                (current_height < bottom_edge)) {
                s->superblock_fragments[mapping_index] = current_fragment;
494
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
495 496
                    s->superblock_fragments[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
497 498
            } else {
                s->superblock_fragments[mapping_index] = -1;
499
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
500 501
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
502 503 504 505 506 507 508 509 510 511
            }

            mapping_index++;
        }
    }

    /* initialize the superblock <-> macroblock mapping; iterate through
     * all of the Y plane superblocks to build this mapping */
    right_edge = s->macroblock_width;
    bottom_edge = s->macroblock_height;
512
    current_width = -1;
513
    current_height = 0;
514 515
    superblock_row_inc = s->macroblock_width -
        (s->y_superblock_width * 2 - s->macroblock_width);;
516 517 518 519 520
    hilbert = hilbert_walk_mb;
    mapping_index = 0;
    current_macroblock = -1;
    for (i = 0; i < s->u_superblock_start; i++) {

521
        if (current_width >= right_edge - 1) {
522
            /* reset width and move to next superblock row */
523
            current_width = -1;
524 525 526 527 528 529 530 531 532
            current_height += 2;

            /* macroblock is now at the start of a new superblock row */
            current_macroblock += superblock_row_inc;
        }

        /* iterate through each potential macroblock in the superblock */
        for (j = 0; j < 4; j++) {
            current_macroblock += hilbert_walk_mb[j];
533
            current_width += travel_width_mb[j];
534 535 536
            current_height += travel_height_mb[j];

            /* check if the macroblock is in bounds */
537
            if ((current_width < right_edge) &&
538 539
                (current_height < bottom_edge)) {
                s->superblock_macroblocks[mapping_index] = current_macroblock;
540 541 542
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
                    s->superblock_macroblocks[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
543 544
            } else {
                s->superblock_macroblocks[mapping_index] = -1;
545 546 547
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
            }

            mapping_index++;
        }
    }

    /* initialize the macroblock <-> fragment mapping */
    current_fragment = 0;
    current_macroblock = 0;
    mapping_index = 0;
    for (i = 0; i < s->fragment_height; i += 2) {

        for (j = 0; j < s->fragment_width; j += 2) {

            debug_init("    macroblock %d contains fragments: ", current_macroblock);
            s->all_fragments[current_fragment].macroblock = current_macroblock;
            s->macroblock_fragments[mapping_index++] = current_fragment;
            debug_init("%d ", current_fragment);

            if (j + 1 < s->fragment_width) {
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
                debug_init("%d ", current_fragment + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if (i + 1 < s->fragment_height) {
575
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
576
                    current_macroblock;
577
                s->macroblock_fragments[mapping_index++] =
578 579 580 581 582 583
                    current_fragment + s->fragment_width;
                debug_init("%d ", current_fragment + s->fragment_width);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
584
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
585
                    current_macroblock;
586
                s->macroblock_fragments[mapping_index++] =
587 588 589 590 591 592
                    current_fragment + s->fragment_width + 1;
                debug_init("%d ", current_fragment + s->fragment_width + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            /* C planes */
593
            c_fragment = s->u_fragment_start +
594
                (i * s->fragment_width / 4) + (j / 2);
595
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
596 597 598
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

599
            c_fragment = s->v_fragment_start +
600
                (i * s->fragment_width / 4) + (j / 2);
601
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
602 603 604 605 606 607 608
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            debug_init("\n");

            if (j + 2 <= s->fragment_width)
                current_fragment += 2;
609
            else
610 611 612 613 614 615
                current_fragment++;
            current_macroblock++;
        }

        current_fragment += s->fragment_width;
    }
616 617

    return 0;  /* successful path out */
618 619 620 621 622 623 624 625 626 627 628 629 630
}

/*
 * This function wipes out all of the fragment data.
 */
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i;

    /* zero out all of the fragment information */
    s->coded_fragment_list_index = 0;
    for (i = 0; i < s->fragment_count; i++) {
        s->all_fragments[i].coeff_count = 0;
631 632 633
        s->all_fragments[i].motion_x = 127;
        s->all_fragments[i].motion_y = 127;
        s->all_fragments[i].next_coeff= NULL;
634 635 636
        s->coeffs[i].index=
        s->coeffs[i].coeff=0;
        s->coeffs[i].next= NULL;
637 638 639 640
    }
}

/*
641
 * This function sets up the dequantization tables used for a particular
642 643 644 645 646
 * frame.
 */
static void init_dequantizer(Vp3DecodeContext *s)
{

647
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
648
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
649 650 651 652
    int i, j;

    debug_vp3("  vp3: initializing dequantization tables\n");

653
    /*
654 655 656 657 658 659 660
     * Scale dequantizers:
     *
     *   quantizer * sf
     *   --------------
     *        100
     *
     * where sf = dc_scale_factor for DC quantizer
661
     *         or ac_scale_factor for AC quantizer
662 663 664
     *
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
     */
665
#define SCALER 4
666 667

    /* scale DC quantizers */
668 669 670 671
    s->qmat[0][0][0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
    if (s->qmat[0][0][0] < MIN_DEQUANT_VAL * 2)
        s->qmat[0][0][0] = MIN_DEQUANT_VAL * 2;
    s->qmat[0][0][0] *= SCALER;
672

673 674 675 676
    s->qmat[0][1][0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
    if (s->qmat[0][1][0] < MIN_DEQUANT_VAL * 2)
        s->qmat[0][1][0] = MIN_DEQUANT_VAL * 2;
    s->qmat[0][1][0] *= SCALER;
677

678 679 680 681
    s->qmat[1][0][0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
    if (s->qmat[1][0][0] < MIN_DEQUANT_VAL * 4)
        s->qmat[1][0][0] = MIN_DEQUANT_VAL * 4;
    s->qmat[1][0][0] *= SCALER;
682 683 684 685

    /* scale AC quantizers, zigzag at the same time in preparation for
     * the dequantization phase */
    for (i = 1; i < 64; i++) {
M
Michael Niedermayer 已提交
686 687
        int k= s->scantable.scantable[i];
        j = s->scantable.permutated[i];
688

689 690 691 692
        s->qmat[0][0][j] = s->coded_intra_y_dequant[k] * ac_scale_factor / 100;
        if (s->qmat[0][0][j] < MIN_DEQUANT_VAL)
            s->qmat[0][0][j] = MIN_DEQUANT_VAL;
        s->qmat[0][0][j] *= SCALER;
693

694 695 696 697
        s->qmat[0][1][j] = s->coded_intra_c_dequant[k] * ac_scale_factor / 100;
        if (s->qmat[0][1][j] < MIN_DEQUANT_VAL)
            s->qmat[0][1][j] = MIN_DEQUANT_VAL;
        s->qmat[0][1][j] *= SCALER;
698

699 700 701 702
        s->qmat[1][0][j] = s->coded_inter_dequant[k] * ac_scale_factor / 100;
        if (s->qmat[1][0][j] < MIN_DEQUANT_VAL * 2)
            s->qmat[1][0][j] = MIN_DEQUANT_VAL * 2;
        s->qmat[1][0][j] *= SCALER;
703
    }
704

705 706 707 708 709
    memcpy(s->qmat[0][2], s->qmat[0][1], sizeof(s->qmat[0][0]));
    memcpy(s->qmat[1][1], s->qmat[1][0], sizeof(s->qmat[0][0]));
    memcpy(s->qmat[1][2], s->qmat[1][0], sizeof(s->qmat[0][0]));

    memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune
710 711 712 713 714

    /* print debug information as requested */
    debug_dequantizers("intra Y dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
715
        debug_dequantizers(" %4d,", s->qmat[0][0][j]);
716 717 718 719 720 721 722 723
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("intra C dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
724
        debug_dequantizers(" %4d,", s->qmat[0][1][j]);
725 726 727 728 729 730 731 732
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("interframe dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
733
        debug_dequantizers(" %4d,", s->qmat[1][0][j]);
734 735 736 737 738 739
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * This function initializes the loop filter boundary limits if the frame's
 * quality index is different from the previous frame's.
 */
static void init_loop_filter(Vp3DecodeContext *s)
{
    int *bounding_values= s->bounding_values_array+127;
    int filter_limit;
    int x;

    filter_limit = s->filter_limit_values[s->quality_index];

    /* set up the bounding values */
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
    for (x = 0; x < filter_limit; x++) {
        bounding_values[-x - filter_limit] = -filter_limit + x;
        bounding_values[-x] = -x;
        bounding_values[x] = x;
        bounding_values[x + filter_limit] = filter_limit - x;
    }
}

762
/*
763
 * This function unpacks all of the superblock/macroblock/fragment coding
764 765
 * information from the bitstream.
 */
766
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
767 768 769 770 771 772
{
    int bit = 0;
    int current_superblock = 0;
    int current_run = 0;
    int decode_fully_flags = 0;
    int decode_partial_blocks = 0;
773
    int first_c_fragment_seen;
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

    int i, j;
    int current_fragment;

    debug_vp3("  vp3: unpacking superblock coding\n");

    if (s->keyframe) {

        debug_vp3("    keyframe-- all superblocks are fully coded\n");
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);

    } else {

        /* unpack the list of partially-coded superblocks */
        bit = get_bits(gb, 1);
789
        /* toggle the bit because as soon as the first run length is
790 791 792
         * fetched the bit will be toggled again */
        bit ^= 1;
        while (current_superblock < s->superblock_count) {
793
            if (current_run-- == 0) {
794
                bit ^= 1;
795
                current_run = get_vlc2(gb,
796 797
                    s->superblock_run_length_vlc.table, 6, 2);
                if (current_run == 33)
798
                    current_run += get_bits(gb, 12);
799 800 801 802 803 804 805
                debug_block_coding("      setting superblocks %d..%d to %s\n",
                    current_superblock,
                    current_superblock + current_run - 1,
                    (bit) ? "partially coded" : "not coded");

                /* if any of the superblocks are not partially coded, flag
                 * a boolean to decode the list of fully-coded superblocks */
806
                if (bit == 0) {
807
                    decode_fully_flags = 1;
808
                } else {
809

810 811 812 813
                    /* make a note of the fact that there are partially coded
                     * superblocks */
                    decode_partial_blocks = 1;
                }
814
            }
815
            s->superblock_coding[current_superblock++] = bit;
816 817 818 819 820 821 822 823 824
        }

        /* unpack the list of fully coded superblocks if any of the blocks were
         * not marked as partially coded in the previous step */
        if (decode_fully_flags) {

            current_superblock = 0;
            current_run = 0;
            bit = get_bits(gb, 1);
825
            /* toggle the bit because as soon as the first run length is
826 827 828 829 830 831 832
             * fetched the bit will be toggled again */
            bit ^= 1;
            while (current_superblock < s->superblock_count) {

                /* skip any superblocks already marked as partially coded */
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {

833
                    if (current_run-- == 0) {
834
                        bit ^= 1;
835
                        current_run = get_vlc2(gb,
836 837
                            s->superblock_run_length_vlc.table, 6, 2);
                        if (current_run == 33)
838
                            current_run += get_bits(gb, 12);
839 840 841 842 843
                    }

                    debug_block_coding("      setting superblock %d to %s\n",
                        current_superblock,
                        (bit) ? "fully coded" : "not coded");
844
                    s->superblock_coding[current_superblock] = 2*bit;
845 846 847 848 849 850 851 852 853 854 855
                }
                current_superblock++;
            }
        }

        /* if there were partial blocks, initialize bitstream for
         * unpacking fragment codings */
        if (decode_partial_blocks) {

            current_run = 0;
            bit = get_bits(gb, 1);
856
            /* toggle the bit because as soon as the first run length is
857 858 859 860 861 862 863 864
             * fetched the bit will be toggled again */
            bit ^= 1;
        }
    }

    /* figure out which fragments are coded; iterate through each
     * superblock (all planes) */
    s->coded_fragment_list_index = 0;
865
    s->next_coeff= s->coeffs + s->fragment_count;
866 867
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
868
    first_c_fragment_seen = 0;
869
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
870 871 872 873 874 875 876
    for (i = 0; i < s->superblock_count; i++) {

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {

            /* if the fragment is in bounds, check its coding status */
            current_fragment = s->superblock_fragments[i * 16 + j];
877
            if (current_fragment >= s->fragment_count) {
878
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
879 880 881
                    current_fragment, s->fragment_count);
                return 1;
            }
882 883 884 885
            if (current_fragment != -1) {
                if (s->superblock_coding[i] == SB_NOT_CODED) {

                    /* copy all the fragments from the prior frame */
886
                    s->all_fragments[current_fragment].coding_method =
887 888 889 890 891 892
                        MODE_COPY;

                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {

                    /* fragment may or may not be coded; this is the case
                     * that cares about the fragment coding runs */
893
                    if (current_run-- == 0) {
894
                        bit ^= 1;
895
                        current_run = get_vlc2(gb,
896
                            s->fragment_run_length_vlc.table, 5, 2);
897 898 899
                    }

                    if (bit) {
900
                        /* default mode; actual mode will be decoded in
901
                         * the next phase */
902
                        s->all_fragments[current_fragment].coding_method =
903
                            MODE_INTER_NO_MV;
904
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
905
                        s->coded_fragment_list[s->coded_fragment_list_index] =
906
                            current_fragment;
907
                        if ((current_fragment >= s->u_fragment_start) &&
908 909
                            (s->last_coded_y_fragment == -1) &&
                            (!first_c_fragment_seen)) {
910 911
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
912
                            first_c_fragment_seen = 1;
913 914
                        }
                        s->coded_fragment_list_index++;
915
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
916 917 918 919 920 921 922 923 924 925 926 927 928 929
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
                            i, current_fragment);
                    } else {
                        /* not coded; copy this fragment from the prior frame */
                        s->all_fragments[current_fragment].coding_method =
                            MODE_COPY;
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
                            i, current_fragment);
                    }

                } else {

                    /* fragments are fully coded in this superblock; actual
                     * coding will be determined in next step */
930
                    s->all_fragments[current_fragment].coding_method =
931
                        MODE_INTER_NO_MV;
932
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
933
                    s->coded_fragment_list[s->coded_fragment_list_index] =
934
                        current_fragment;
935
                    if ((current_fragment >= s->u_fragment_start) &&
936 937
                        (s->last_coded_y_fragment == -1) &&
                        (!first_c_fragment_seen)) {
938 939
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
940
                        first_c_fragment_seen = 1;
941 942
                    }
                    s->coded_fragment_list_index++;
943
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
944 945 946 947 948 949
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
                        i, current_fragment);
                }
            }
        }
    }
950

951 952
    if (!first_c_fragment_seen)
        /* only Y fragments coded in this frame */
953
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
954
    else
955
        /* end the list of coded C fragments */
956
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
957

958 959 960 961 962 963
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
        s->coded_fragment_list_index,
        s->first_coded_y_fragment,
        s->last_coded_y_fragment,
        s->first_coded_c_fragment,
        s->last_coded_c_fragment);
964 965

    return 0;
966 967 968 969 970 971
}

/*
 * This function unpacks all the coding mode data for individual macroblocks
 * from the bitstream.
 */
972
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
{
    int i, j, k;
    int scheme;
    int current_macroblock;
    int current_fragment;
    int coding_mode;

    debug_vp3("  vp3: unpacking encoding modes\n");

    if (s->keyframe) {
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");

        for (i = 0; i < s->fragment_count; i++)
            s->all_fragments[i].coding_method = MODE_INTRA;

    } else {

        /* fetch the mode coding scheme for this frame */
        scheme = get_bits(gb, 3);
        debug_modes("    using mode alphabet %d\n", scheme);

        /* is it a custom coding scheme? */
        if (scheme == 0) {
            debug_modes("    custom mode alphabet ahead:\n");
            for (i = 0; i < 8; i++)
998
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
999 1000 1001
        }

        for (i = 0; i < 8; i++)
1002
            debug_modes("      mode[%d][%d] = %d\n", scheme, i,
1003 1004 1005 1006 1007 1008 1009 1010 1011
                ModeAlphabet[scheme][i]);

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1012
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1013
                    continue;
1014
                if (current_macroblock >= s->macroblock_count) {
1015
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1016 1017 1018
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1019 1020 1021 1022 1023

                /* mode 7 means get 3 bits for each coding mode */
                if (scheme == 7)
                    coding_mode = get_bits(gb, 3);
                else
1024 1025
                    coding_mode = ModeAlphabet[scheme]
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
1026

1027
                s->macroblock_coding[current_macroblock] = coding_mode;
1028
                for (k = 0; k < 6; k++) {
1029
                    current_fragment =
1030
                        s->macroblock_fragments[current_macroblock * 6 + k];
1031 1032 1033
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1034
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1035 1036 1037
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1038
                    if (s->all_fragments[current_fragment].coding_method !=
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
                        MODE_COPY)
                        s->all_fragments[current_fragment].coding_method =
                            coding_mode;
                }

                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
            }
        }
    }
1049 1050

    return 0;
1051 1052
}

1053 1054 1055 1056
/*
 * This function unpacks all the motion vectors for the individual
 * macroblocks from the bitstream.
 */
1057
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
{
    int i, j, k;
    int coding_mode;
    int motion_x[6];
    int motion_y[6];
    int last_motion_x = 0;
    int last_motion_y = 0;
    int prior_last_motion_x = 0;
    int prior_last_motion_y = 0;
    int current_macroblock;
    int current_fragment;

    debug_vp3("  vp3: unpacking motion vectors\n");
    if (s->keyframe) {

        debug_vp3("    keyframe-- there are no motion vectors\n");

    } else {

        memset(motion_x, 0, 6 * sizeof(int));
        memset(motion_y, 0, 6 * sizeof(int));

        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
        coding_mode = get_bits(gb, 1);
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
            (coding_mode == 0) ? "VLC" : "fixed-length");

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1092
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1093
                    continue;
1094
                if (current_macroblock >= s->macroblock_count) {
1095
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1096 1097 1098
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1099 1100

                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1101
                if (current_fragment >= s->fragment_count) {
1102
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1103 1104 1105
                        current_fragment, s->fragment_count);
                    return 1;
                }
1106
                switch (s->macroblock_coding[current_macroblock]) {
1107 1108 1109 1110 1111

                case MODE_INTER_PLUS_MV:
                case MODE_GOLDEN_MV:
                    /* all 6 fragments use the same motion vector */
                    if (coding_mode == 0) {
1112 1113
                        motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
                        motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1114
                    } else {
1115 1116
                        motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
                        motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1117
                    }
1118

1119 1120 1121 1122 1123 1124
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1125
                    if (s->macroblock_coding[current_macroblock] ==
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
                        MODE_INTER_PLUS_MV) {
                        prior_last_motion_x = last_motion_x;
                        prior_last_motion_y = last_motion_y;
                        last_motion_x = motion_x[0];
                        last_motion_y = motion_y[0];
                    }
                    break;

                case MODE_INTER_FOURMV:
                    /* fetch 4 vectors from the bitstream, one for each
                     * Y fragment, then average for the C fragment vectors */
                    motion_x[4] = motion_y[4] = 0;
                    for (k = 0; k < 4; k++) {
                        if (coding_mode == 0) {
1140 1141
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1142
                        } else {
1143 1144
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1145 1146 1147 1148 1149
                        }
                        motion_x[4] += motion_x[k];
                        motion_y[4] += motion_y[k];
                    }

M
Michael Niedermayer 已提交
1150 1151 1152 1153
                    motion_x[5]=
                    motion_x[4]= RSHIFT(motion_x[4], 2);
                    motion_y[5]=
                    motion_y[4]= RSHIFT(motion_y[4], 2);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

                    /* vector maintenance; vector[3] is treated as the
                     * last vector in this case */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[3];
                    last_motion_y = motion_y[3];
                    break;

                case MODE_INTER_LAST_MV:
                    /* all 6 fragments use the last motion vector */
                    motion_x[0] = last_motion_x;
                    motion_y[0] = last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* no vector maintenance (last vector remains the
                     * last vector) */
                    break;

                case MODE_INTER_PRIOR_LAST:
                    /* all 6 fragments use the motion vector prior to the
                     * last motion vector */
                    motion_x[0] = prior_last_motion_x;
                    motion_y[0] = prior_last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[0];
                    last_motion_y = motion_y[0];
                    break;
1192 1193 1194 1195 1196 1197 1198 1199

                default:
                    /* covers intra, inter without MV, golden without MV */
                    memset(motion_x, 0, 6 * sizeof(int));
                    memset(motion_y, 0, 6 * sizeof(int));

                    /* no vector maintenance */
                    break;
1200 1201 1202 1203 1204
                }

                /* assign the motion vectors to the correct fragments */
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
                    current_fragment,
1205
                    s->macroblock_coding[current_macroblock]);
1206
                for (k = 0; k < 6; k++) {
1207
                    current_fragment =
1208
                        s->macroblock_fragments[current_macroblock * 6 + k];
1209 1210 1211
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1212
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1213 1214 1215
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1216
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1217
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1218 1219
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
                        k, current_fragment, motion_x[k], motion_y[k]);
1220 1221 1222 1223
                }
            }
        }
    }
1224 1225

    return 0;
1226 1227
}

1228
/*
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 * data. This function unpacks all the VLCs for either the Y plane or both
 * C planes, and is called for DC coefficients or different AC coefficient
 * levels (since different coefficient types require different VLC tables.
 *
 * This function returns a residual eob run. E.g, if a particular token gave
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 * left in the current fragment range, 3 would be returned so that it could
 * be passed into the next call to this same function.
 */
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                        VLC *table, int coeff_index,
                        int first_fragment, int last_fragment,
                        int eob_run)
{
    int i;
    int token;
1247 1248
    int zero_run = 0;
    DCTELEM coeff = 0;
1249
    Vp3Fragment *fragment;
M
Michael Niedermayer 已提交
1250
    uint8_t *perm= s->scantable.permutated;
1251
    int bits_to_get;
1252

1253
    if ((first_fragment >= s->fragment_count) ||
1254 1255
        (last_fragment >= s->fragment_count)) {

1256
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1257
            first_fragment, last_fragment);
1258
        return 0;
1259 1260
    }

1261
    for (i = first_fragment; i <= last_fragment; i++) {
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

        fragment = &s->all_fragments[s->coded_fragment_list[i]];
        if (fragment->coeff_count > coeff_index)
            continue;

        if (!eob_run) {
            /* decode a VLC into a token */
            token = get_vlc2(gb, table->table, 5, 3);
            debug_vlc(" token = %2d, ", token);
            /* use the token to get a zero run, a coefficient, and an eob run */
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
            if (token <= 6) {
                eob_run = eob_run_base[token];
                if (eob_run_get_bits[token])
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
                coeff = zero_run = 0;
            } else {
                bits_to_get = coeff_get_bits[token];
                if (!bits_to_get)
                    coeff = coeff_tables[token][0];
                else
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];

                zero_run = zero_run_base[token];
                if (zero_run_get_bits[token])
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
            }
1288 1289 1290 1291
        }

        if (!eob_run) {
            fragment->coeff_count += zero_run;
1292 1293 1294 1295 1296 1297 1298
            if (fragment->coeff_count < 64){
                fragment->next_coeff->coeff= coeff;
                fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
                fragment->next_coeff->next= s->next_coeff;
                s->next_coeff->next=NULL;
                fragment->next_coeff= s->next_coeff++;
            }
1299
            debug_vlc(" fragment %d coeff = %d\n",
1300
                s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
1301
        } else {
1302
            fragment->coeff_count |= 128;
1303
            debug_vlc(" fragment %d eob with %d coefficients\n",
1304
                s->coded_fragment_list[i], fragment->coeff_count&127);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
            eob_run--;
        }
    }

    return eob_run;
}

/*
 * This function unpacks all of the DCT coefficient data from the
 * bitstream.
 */
1316
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
{
    int i;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    int residual_eob_run = 0;

    /* fetch the DC table indices */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    /* unpack the Y plane DC coefficients */
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
        dc_y_table);
1332
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1333
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1334 1335 1336 1337 1338

    /* unpack the C plane DC coefficients */
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
        dc_c_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1339
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1340

1341
    /* fetch the AC table indices */
1342 1343 1344
    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

1345
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1346 1347 1348 1349
    for (i = 1; i <= 5; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1350
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1351
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1352 1353 1354

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1355
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1356
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1357 1358
    }

1359
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1360 1361 1362 1363
    for (i = 6; i <= 14; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1364
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1365
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1366 1367 1368

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1369
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1370
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1371 1372
    }

1373
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1374 1375 1376 1377
    for (i = 15; i <= 27; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1378
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1379
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1380 1381 1382

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1383
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1384
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1385 1386
    }

1387
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1388 1389 1390 1391
    for (i = 28; i <= 63; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1392
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1393
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1394 1395 1396

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1397
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1398
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1399
    }
1400 1401

    return 0;
1402 1403 1404 1405
}

/*
 * This function reverses the DC prediction for each coded fragment in
1406
 * the frame. Much of this function is adapted directly from the original
1407 1408 1409 1410 1411
 * VP3 source code.
 */
#define COMPATIBLE_FRAME(x) \
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1412
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1413 1414 1415 1416 1417
static inline int iabs (int x) { return ((x < 0) ? -x : x); }

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
1418
                                  int fragment_height)
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
{

#define PUL 8
#define PU 4
#define PUR 2
#define PL 1

    int x, y;
    int i = first_fragment;

    /*
     * Fragment prediction groups:
     *
     * 32222222226
     * 10000000004
     * 10000000004
     * 10000000004
     * 10000000004
     *
1438
     * Note: Groups 5 and 7 do not exist as it would mean that the
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
     */
    int predictor_group;
    short predicted_dc;

    /* validity flags for the left, up-left, up, and up-right fragments */
    int fl, ful, fu, fur;

    /* DC values for the left, up-left, up, and up-right fragments */
    int vl, vul, vu, vur;

    /* indices for the left, up-left, up, and up-right fragments */
    int l, ul, u, ur;

1453
    /*
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
     * The 6 fields mean:
     *   0: up-left multiplier
     *   1: up multiplier
     *   2: up-right multiplier
     *   3: left multiplier
     *   4: mask
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
     */
    int predictor_transform[16][6] = {
        {  0,  0,  0,  0,   0,  0 },
        {  0,  0,  0,  1,   0,  0 },        // PL
        {  0,  0,  1,  0,   0,  0 },        // PUR
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PU
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
        {  1,  0,  0,  0,   0,  0 },        // PUL
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
    };

    /* This table shows which types of blocks can use other blocks for
     * prediction. For example, INTRA is the only mode in this table to
     * have a frame number of 0. That means INTRA blocks can only predict
1484
     * from other INTRA blocks. There are 2 golden frame coding types;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
     * blocks encoding in these modes can only predict from other blocks
     * that were encoded with these 1 of these 2 modes. */
    unsigned char compatible_frame[8] = {
        1,    /* MODE_INTER_NO_MV */
        0,    /* MODE_INTRA */
        1,    /* MODE_INTER_PLUS_MV */
        1,    /* MODE_INTER_LAST_MV */
        1,    /* MODE_INTER_PRIOR_MV */
        2,    /* MODE_USING_GOLDEN */
        2,    /* MODE_GOLDEN_MV */
        1     /* MODE_INTER_FOUR_MV */
    };
    int current_frame_type;

    /* there is a last DC predictor for each of the 3 frame types */
    short last_dc[3];

    int transform = 0;

    debug_vp3("  vp3: reversing DC prediction\n");

    vul = vu = vur = vl = 0;
    last_dc[0] = last_dc[1] = last_dc[2] = 0;

    /* for each fragment row... */
    for (y = 0; y < fragment_height; y++) {

        /* for each fragment in a row... */
        for (x = 0; x < fragment_width; x++, i++) {

            /* reverse prediction if this block was coded */
            if (s->all_fragments[i].coding_method != MODE_COPY) {

1518
                current_frame_type =
1519 1520 1521 1522
                    compatible_frame[s->all_fragments[i].coding_method];
                predictor_group = (x == 0) + ((y == 0) << 1) +
                    ((x + 1 == fragment_width) << 2);
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
1523
                    i, predictor_group, DC_COEFF(i));
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

                switch (predictor_group) {

                case 0:
                    /* main body of fragments; consider all 4 possible
                     * fragments for prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1538 1539 1540 1541
                    vul = DC_COEFF(ul);
                    vu = DC_COEFF(u);
                    vur = DC_COEFF(ur);
                    vl = DC_COEFF(l);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);

                    break;

                case 1:
                    /* left column of fragments, not including top corner;
                     * only consider up and up-right fragments */

                    /* calculate the indices of the predicting fragments */
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;

                    /* fetch the DC values for the predicting fragments */
1563 1564
                    vu = DC_COEFF(u);
                    vur = DC_COEFF(ur);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

                    /* figure out which fragments are valid */
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);

                    /* decide which predictor transform to use */
                    transform = (fu*PU) | (fur*PUR);

                    break;

                case 2:
                case 6:
                    /* top row of fragments, not including top-left frag;
                     * only consider the left fragment for prediction */

                    /* calculate the indices of the predicting fragments */
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1584
                    vl = DC_COEFF(l);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

                    /* figure out which fragments are valid */
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL);

                    break;

                case 3:
                    /* top-left fragment */

                    /* nothing to predict from in this case */
                    transform = 0;

                    break;

                case 4:
                    /* right column of fragments, not including top corner;
                     * consider up-left, up, and left fragments for
                     * prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1613 1614 1615
                    vul = DC_COEFF(ul);
                    vu = DC_COEFF(u);
                    vl = DC_COEFF(l);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);

                    break;

                }

                debug_dc_pred("transform = %d, ", transform);

                if (transform == 0) {

                    /* if there were no fragments to predict from, use last
                     * DC saved */
1635
                    predicted_dc = last_dc[current_frame_type];
1636
                    debug_dc_pred("from last DC (%d) = %d\n",
1637
                        current_frame_type, DC_COEFF(i));
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

                } else {

                    /* apply the appropriate predictor transform */
                    predicted_dc =
                        (predictor_transform[transform][0] * vul) +
                        (predictor_transform[transform][1] * vu) +
                        (predictor_transform[transform][2] * vur) +
                        (predictor_transform[transform][3] * vl);

                    /* if there is a shift value in the transform, add
                     * the sign bit before the shift */
                    if (predictor_transform[transform][5] != 0) {
1651
                        predicted_dc += ((predicted_dc >> 15) &
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
                            predictor_transform[transform][4]);
                        predicted_dc >>= predictor_transform[transform][5];
                    }

                    /* check for outranging on the [ul u l] and
                     * [ul u ur l] predictors */
                    if ((transform == 13) || (transform == 15)) {
                        if (iabs(predicted_dc - vu) > 128)
                            predicted_dc = vu;
                        else if (iabs(predicted_dc - vl) > 128)
                            predicted_dc = vl;
                        else if (iabs(predicted_dc - vul) > 128)
                            predicted_dc = vul;
                    }

1667
                    debug_dc_pred("from pred DC = %d\n",
1668
                    DC_COEFF(i));
1669 1670
                }

1671 1672 1673 1674 1675 1676 1677 1678
                /* at long last, apply the predictor */
                if(s->coeffs[i].index){
                    *s->next_coeff= s->coeffs[i];
                    s->coeffs[i].index=0;
                    s->coeffs[i].coeff=0;
                    s->coeffs[i].next= s->next_coeff++;
                }
                s->coeffs[i].coeff += predicted_dc;
1679
                /* save the DC */
1680 1681 1682 1683 1684 1685 1686
                last_dc[current_frame_type] = DC_COEFF(i);
                if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
                    s->all_fragments[i].coeff_count= 129;
//                    s->all_fragments[i].next_coeff= s->next_coeff;
                    s->coeffs[i].next= s->next_coeff;
                    (s->next_coeff++)->next=NULL;
                }
1687 1688 1689 1690 1691
            }
        }
    }
}

1692 1693 1694 1695 1696 1697

static void horizontal_filter(unsigned char *first_pixel, int stride,
    int *bounding_values);
static void vertical_filter(unsigned char *first_pixel, int stride,
    int *bounding_values);

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
/*
 * Perform the final rendering for a particular slice of data.
 * The slice number ranges from 0..(macroblock_height - 1).
 */
static void render_slice(Vp3DecodeContext *s, int slice)
{
    int x, y;
    int m, n;
    int i;  /* indicates current fragment */
    int16_t *dequantizer;
1708
    DECLARE_ALIGNED_16(DCTELEM, block[64]);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
    unsigned char *output_plane;
    unsigned char *last_plane;
    unsigned char *golden_plane;
    int stride;
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
    int upper_motion_limit, lower_motion_limit;
    int motion_halfpel_index;
    uint8_t *motion_source;
    int plane;
    int plane_width;
    int plane_height;
    int slice_height;
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1722
    int fragment_width;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    if (slice >= s->macroblock_height)
        return;

    for (plane = 0; plane < 3; plane++) {

        /* set up plane-specific parameters */
        if (plane == 0) {
            output_plane = s->current_frame.data[0];
            last_plane = s->last_frame.data[0];
            golden_plane = s->golden_frame.data[0];
            stride = s->current_frame.linesize[0];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[0];
            lower_motion_limit = s->height * s->current_frame.linesize[0] + s->width - 8;
            y = slice * FRAGMENT_PIXELS * 2;
            plane_width = s->width;
            plane_height = s->height;
            slice_height = y + FRAGMENT_PIXELS * 2;
            i = s->macroblock_fragments[current_macroblock_entry + 0];
        } else if (plane == 1) {
            output_plane = s->current_frame.data[1];
            last_plane = s->last_frame.data[1];
            golden_plane = s->golden_frame.data[1];
            stride = s->current_frame.linesize[1];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[1];
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[1] + (s->width / 2) - 8;
            y = slice * FRAGMENT_PIXELS;
            plane_width = s->width / 2;
            plane_height = s->height / 2;
            slice_height = y + FRAGMENT_PIXELS;
            i = s->macroblock_fragments[current_macroblock_entry + 4];
        } else {
            output_plane = s->current_frame.data[2];
            last_plane = s->last_frame.data[2];
            golden_plane = s->golden_frame.data[2];
            stride = s->current_frame.linesize[2];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[2];
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[2] + (s->width / 2) - 8;
            y = slice * FRAGMENT_PIXELS;
            plane_width = s->width / 2;
            plane_height = s->height / 2;
            slice_height = y + FRAGMENT_PIXELS;
            i = s->macroblock_fragments[current_macroblock_entry + 5];
        }
1770
        fragment_width = plane_width / FRAGMENT_PIXELS;
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
        if(ABS(stride) > 2048)
            return; //various tables are fixed size

        /* for each fragment row in the slice (both of them)... */
        for (; y < slice_height; y += 8) {

            /* for each fragment in a row... */
            for (x = 0; x < plane_width; x += 8, i++) {

                if ((i < 0) || (i >= s->fragment_count)) {
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
                    return;
                }

                /* transform if this block was coded */
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {

                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
                        motion_source= golden_plane;
1793
                    else
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
                        motion_source= last_plane;

                    motion_source += s->all_fragments[i].first_pixel;
                    motion_halfpel_index = 0;

                    /* sort out the motion vector if this fragment is coded
                     * using a motion vector method */
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
                        int src_x, src_y;
                        motion_x = s->all_fragments[i].motion_x;
                        motion_y = s->all_fragments[i].motion_y;
                        if(plane){
                            motion_x= (motion_x>>1) | (motion_x&1);
                            motion_y= (motion_y>>1) | (motion_y&1);
                        }

                        src_x= (motion_x>>1) + x;
                        src_y= (motion_y>>1) + y;
                        if ((motion_x == 127) || (motion_y == 127))
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);

                        motion_halfpel_index = motion_x & 0x01;
                        motion_source += (motion_x >> 1);

                        motion_halfpel_index |= (motion_y & 0x01) << 1;
                        motion_source += ((motion_y >> 1) * stride);

                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
                            uint8_t *temp= s->edge_emu_buffer;
                            if(stride<0) temp -= 9*stride;
                            else temp += 9*stride;

                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
                            motion_source= temp;
                        }
                    }
1831

1832 1833 1834 1835

                    /* first, take care of copying a block from either the
                     * previous or the golden frame */
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1836 1837 1838
                        /* Note, it is possible to implement all MC cases with
                           put_no_rnd_pixels_l2 which would look more like the
                           VP3 source but this would be slower as
1839 1840 1841 1842 1843 1844 1845 1846 1847
                           put_no_rnd_pixels_tab is better optimzed */
                        if(motion_halfpel_index != 3){
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
                                output_plane + s->all_fragments[i].first_pixel,
                                motion_source, stride, 8);
                        }else{
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
                            s->dsp.put_no_rnd_pixels_l2[1](
                                output_plane + s->all_fragments[i].first_pixel,
1848 1849
                                motion_source - d,
                                motion_source + stride + 1 + d,
1850 1851
                                stride, 8);
                        }
1852
                        dequantizer = s->qmat[1][plane];
1853
                    }else{
1854
                        dequantizer = s->qmat[0][plane];
1855 1856 1857
                    }

                    /* dequantize the DCT coefficients */
1858 1859
                    debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
                        i, s->all_fragments[i].coding_method,
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
                        DC_COEFF(i), dequantizer[0]);

                    if(s->avctx->idct_algo==FF_IDCT_VP3){
                        Coeff *coeff= s->coeffs + i;
                        memset(block, 0, sizeof(block));
                        while(coeff->next){
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
                            coeff= coeff->next;
                        }
                    }else{
                        Coeff *coeff= s->coeffs + i;
                        memset(block, 0, sizeof(block));
                        while(coeff->next){
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
                            coeff= coeff->next;
                        }
                    }

                    /* invert DCT and place (or add) in final output */
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
                            block[0] += 128<<3;
                        s->dsp.idct_put(
                            output_plane + s->all_fragments[i].first_pixel,
                            stride,
                            block);
                    } else {
                        s->dsp.idct_add(
                            output_plane + s->all_fragments[i].first_pixel,
                            stride,
                            block);
                    }

                    debug_idct("block after idct_%s():\n",
                        (s->all_fragments[i].coding_method == MODE_INTRA)?
                        "put" : "add");
                    for (m = 0; m < 8; m++) {
                        for (n = 0; n < 8; n++) {
1899
                            debug_idct(" %3d", *(output_plane +
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
                                s->all_fragments[i].first_pixel + (m * stride + n)));
                        }
                        debug_idct("\n");
                    }
                    debug_idct("\n");

                } else {

                    /* copy directly from the previous frame */
                    s->dsp.put_pixels_tab[1][0](
                        output_plane + s->all_fragments[i].first_pixel,
                        last_plane + s->all_fragments[i].first_pixel,
                        stride, 8);

                }
1915
#if 0
1916 1917 1918 1919 1920 1921 1922
                /* perform the left edge filter if:
                 *   - the fragment is not on the left column
                 *   - the fragment is coded in this frame
                 *   - the fragment is not coded in this frame but the left
                 *     fragment is coded in this frame (this is done instead
                 *     of a right edge filter when rendering the left fragment
                 *     since this fragment is not available yet) */
1923
                if ((x > 0) &&
1924 1925 1926
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1927
                    horizontal_filter(
1928 1929
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
                        -stride, bounding_values);
1930 1931
                }

1932 1933 1934 1935 1936 1937 1938
                /* perform the top edge filter if:
                 *   - the fragment is not on the top row
                 *   - the fragment is coded in this frame
                 *   - the fragment is not coded in this frame but the above
                 *     fragment is coded in this frame (this is done instead
                 *     of a bottom edge filter when rendering the above
                 *     fragment since this fragment is not available yet) */
1939
                if ((y > 0) &&
1940 1941 1942
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1943
                    vertical_filter(
1944 1945
                        output_plane + s->all_fragments[i].first_pixel - stride,
                        -stride, bounding_values);
1946
                }
1947
#endif
1948 1949 1950 1951 1952 1953 1954
            }
        }
    }

     /* this looks like a good place for slice dispatch... */
     /* algorithm:
      *   if (slice == s->macroblock_height - 1)
1955 1956 1957
      *     dispatch (both last slice & 2nd-to-last slice);
      *   else if (slice > 0)
      *     dispatch (slice - 1);
1958 1959 1960 1961 1962
      */

    emms_c();
}

1963 1964 1965
static void horizontal_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
1966
    unsigned char *end;
1967 1968
    int filter_value;

1969
    for (end= first_pixel + 8*stride; first_pixel < end; first_pixel += stride) {
1970
        filter_value =
1971 1972
            (first_pixel[-2] - first_pixel[ 1])
         +3*(first_pixel[ 0] - first_pixel[-1]);
1973
        filter_value = bounding_values[(filter_value + 4) >> 3];
1974 1975
        first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
        first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
1976 1977 1978 1979 1980 1981
    }
}

static void vertical_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
1982
    unsigned char *end;
1983
    int filter_value;
1984
    const int nstride= -stride;
1985

1986
    for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
1987
        filter_value =
1988 1989
            (first_pixel[2 * nstride] - first_pixel[ stride])
         +3*(first_pixel[0          ] - first_pixel[nstride]);
1990
        filter_value = bounding_values[(filter_value + 4) >> 3];
1991
        first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
1992
        first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    }
}

static void apply_loop_filter(Vp3DecodeContext *s)
{
    int x, y, plane;
    int width, height;
    int fragment;
    int stride;
    unsigned char *plane_data;
2003
    int *bounding_values= s->bounding_values_array+127;
2004

2005
#if 0
2006
    int bounding_values_array[256];
2007 2008 2009 2010 2011 2012 2013
    int filter_limit;

    /* find the right loop limit value */
    for (x = 63; x >= 0; x--) {
        if (vp31_ac_scale_factor[x] >= s->quality_index)
            break;
    }
2014
    filter_limit = vp31_filter_limit_values[s->quality_index];
2015 2016

    /* set up the bounding values */
2017
    memset(bounding_values_array, 0, 256 * sizeof(int));
2018 2019 2020 2021 2022 2023
    for (x = 0; x < filter_limit; x++) {
        bounding_values[-x - filter_limit] = -filter_limit + x;
        bounding_values[-x] = -x;
        bounding_values[x] = x;
        bounding_values[x + filter_limit] = filter_limit - x;
    }
2024
#endif
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

    for (plane = 0; plane < 3; plane++) {

        if (plane == 0) {
            /* Y plane parameters */
            fragment = 0;
            width = s->fragment_width;
            height = s->fragment_height;
            stride = s->current_frame.linesize[0];
            plane_data = s->current_frame.data[0];
        } else if (plane == 1) {
            /* U plane parameters */
            fragment = s->u_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[1];
            plane_data = s->current_frame.data[1];
        } else {
            /* V plane parameters */
            fragment = s->v_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[2];
            plane_data = s->current_frame.data[2];
        }

        for (y = 0; y < height; y++) {
2052

2053
            for (x = 0; x < width; x++) {
M
Michael Niedermayer 已提交
2054
START_TIMER
2055 2056 2057 2058
                /* do not perform left edge filter for left columns frags */
                if ((x > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    horizontal_filter(
2059
                        plane_data + s->all_fragments[fragment].first_pixel - 7*stride,
2060 2061 2062 2063 2064 2065 2066
                        stride, bounding_values);
                }

                /* do not perform top edge filter for top row fragments */
                if ((y > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    vertical_filter(
2067
                        plane_data + s->all_fragments[fragment].first_pixel + stride,
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
                        stride, bounding_values);
                }

                /* do not perform right edge filter for right column
                 * fragments or if right fragment neighbor is also coded
                 * in this frame (it will be filtered in next iteration) */
                if ((x < width - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
                    horizontal_filter(
2078
                        plane_data + s->all_fragments[fragment + 1].first_pixel - 7*stride,
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
                        stride, bounding_values);
                }

                /* do not perform bottom edge filter for bottom row
                 * fragments or if bottom fragment neighbor is also coded
                 * in this frame (it will be filtered in the next row) */
                if ((y < height - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
                    vertical_filter(
2089
                        plane_data + s->all_fragments[fragment + width].first_pixel + stride,
2090 2091 2092 2093
                        stride, bounding_values);
                }

                fragment++;
M
Michael Niedermayer 已提交
2094
STOP_TIMER("loop filter")
2095 2096 2097
            }
        }
    }
2098 2099
}

2100
/*
2101 2102 2103 2104
 * This function computes the first pixel addresses for each fragment.
 * This function needs to be invoked after the first frame is allocated
 * so that it has access to the plane strides.
 */
2105
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
2106 2107 2108 2109 2110 2111 2112 2113 2114
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = s->fragment_height; y > 0; y--) {
        for (x = 0; x < s->fragment_width; x++) {
2115
            s->all_fragments[i++].first_pixel =
2116 2117 2118
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
2119
            debug_init("  fragment %d, first pixel @ %d\n",
2120 2121 2122 2123 2124 2125 2126 2127
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2128
            s->all_fragments[i++].first_pixel =
2129 2130 2131
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
2132
            debug_init("  fragment %d, first pixel @ %d\n",
2133 2134 2135 2136 2137 2138 2139 2140
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2141
            s->all_fragments[i++].first_pixel =
2142 2143 2144
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
2145
            debug_init("  fragment %d, first pixel @ %d\n",
2146 2147 2148 2149 2150
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2151
/* FIXME: this should be merged with the above! */
2152
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s)
2153 2154 2155 2156 2157 2158 2159 2160 2161
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = 1; y <= s->fragment_height; y++) {
        for (x = 0; x < s->fragment_width; x++) {
2162
            s->all_fragments[i++].first_pixel =
2163 2164 2165
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
2166
            debug_init("  fragment %d, first pixel @ %d\n",
2167 2168 2169 2170 2171 2172 2173 2174
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2175
            s->all_fragments[i++].first_pixel =
2176 2177 2178
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
2179
            debug_init("  fragment %d, first pixel @ %d\n",
2180 2181 2182 2183 2184 2185 2186 2187
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2188
            s->all_fragments[i++].first_pixel =
2189 2190 2191
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
2192
            debug_init("  fragment %d, first pixel @ %d\n",
2193 2194 2195 2196 2197
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2198 2199 2200 2201 2202 2203 2204
/*
 * This is the ffmpeg/libavcodec API init function.
 */
static int vp3_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i;
2205 2206 2207 2208
    int c_width;
    int c_height;
    int y_superblock_count;
    int c_superblock_count;
2209

A
Alex Beregszaszi 已提交
2210
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
2211
        s->version = 0;
A
Alex Beregszaszi 已提交
2212
    else
2213
        s->version = 1;
A
Alex Beregszaszi 已提交
2214

2215
    s->avctx = avctx;
2216 2217
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
2218 2219
    avctx->pix_fmt = PIX_FMT_YUV420P;
    avctx->has_b_frames = 0;
2220 2221
    if(avctx->idct_algo==FF_IDCT_AUTO)
        avctx->idct_algo=FF_IDCT_VP3;
2222
    dsputil_init(&s->dsp, avctx);
2223

M
Michael Niedermayer 已提交
2224
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
2225 2226 2227 2228 2229

    /* initialize to an impossible value which will force a recalculation
     * in the first frame decode */
    s->quality_index = -1;

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
    s->y_superblock_width = (s->width + 31) / 32;
    s->y_superblock_height = (s->height + 31) / 32;
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;

    /* work out the dimensions for the C planes */
    c_width = s->width / 2;
    c_height = s->height / 2;
    s->c_superblock_width = (c_width + 31) / 32;
    s->c_superblock_height = (c_height + 31) / 32;
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;

    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
    s->u_superblock_start = y_superblock_count;
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
    s->superblock_coding = av_malloc(s->superblock_count);

    s->macroblock_width = (s->width + 15) / 16;
    s->macroblock_height = (s->height + 15) / 16;
    s->macroblock_count = s->macroblock_width * s->macroblock_height;

    s->fragment_width = s->width / FRAGMENT_PIXELS;
    s->fragment_height = s->height / FRAGMENT_PIXELS;

    /* fragment count covers all 8x8 blocks for all 3 planes */
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
    s->u_fragment_start = s->fragment_width * s->fragment_height;
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;

2258 2259 2260 2261 2262 2263
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
    debug_init("  C plane: %d x %d\n", c_width, c_height);
    debug_init("  Y superblocks: %d x %d, %d total\n",
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
    debug_init("  C superblocks: %d x %d, %d total\n",
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
2264
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n",
2265
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
    debug_init("  macroblocks: %d x %d, %d total\n",
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
        s->fragment_count,
        s->fragment_width,
        s->fragment_height,
        s->u_fragment_start,
        s->v_fragment_start);

    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2276
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
2277 2278 2279
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
    s->pixel_addresses_inited = 0;

2280 2281
    if (!s->theora_tables)
    {
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
        for (i = 0; i < 64; i++)
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
        for (i = 0; i < 64; i++)
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
        for (i = 0; i < 64; i++)
            s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
        for (i = 0; i < 64; i++)
            s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
        for (i = 0; i < 64; i++)
            s->coded_inter_dequant[i] = vp31_inter_dequant[i];
        for (i = 0; i < 64; i++)
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
2294

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
        /* init VLC tables */
        for (i = 0; i < 16; i++) {

            /* DC histograms */
            init_vlc(&s->dc_vlc[i], 5, 32,
                &dc_bias[i][0][1], 4, 2,
                &dc_bias[i][0][0], 4, 2, 0);

            /* group 1 AC histograms */
            init_vlc(&s->ac_vlc_1[i], 5, 32,
                &ac_bias_0[i][0][1], 4, 2,
                &ac_bias_0[i][0][0], 4, 2, 0);

            /* group 2 AC histograms */
            init_vlc(&s->ac_vlc_2[i], 5, 32,
                &ac_bias_1[i][0][1], 4, 2,
                &ac_bias_1[i][0][0], 4, 2, 0);

            /* group 3 AC histograms */
            init_vlc(&s->ac_vlc_3[i], 5, 32,
                &ac_bias_2[i][0][1], 4, 2,
                &ac_bias_2[i][0][0], 4, 2, 0);

            /* group 4 AC histograms */
            init_vlc(&s->ac_vlc_4[i], 5, 32,
                &ac_bias_3[i][0][1], 4, 2,
                &ac_bias_3[i][0][0], 4, 2, 0);
        }
    } else {
        for (i = 0; i < 16; i++) {

            /* DC histograms */
            init_vlc(&s->dc_vlc[i], 5, 32,
                &s->huffman_table[i][0][1], 4, 2,
                &s->huffman_table[i][0][0], 4, 2, 0);

            /* group 1 AC histograms */
            init_vlc(&s->ac_vlc_1[i], 5, 32,
                &s->huffman_table[i+16][0][1], 4, 2,
                &s->huffman_table[i+16][0][0], 4, 2, 0);

            /* group 2 AC histograms */
            init_vlc(&s->ac_vlc_2[i], 5, 32,
                &s->huffman_table[i+16*2][0][1], 4, 2,
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);

            /* group 3 AC histograms */
            init_vlc(&s->ac_vlc_3[i], 5, 32,
                &s->huffman_table[i+16*3][0][1], 4, 2,
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);

            /* group 4 AC histograms */
            init_vlc(&s->ac_vlc_4[i], 5, 32,
                &s->huffman_table[i+16*4][0][1], 4, 2,
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
        }
2351 2352
    }

2353 2354 2355 2356
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
        &superblock_run_length_vlc_table[0][1], 4, 2,
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);

2357
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
        &fragment_run_length_vlc_table[0][1], 4, 2,
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);

    init_vlc(&s->mode_code_vlc, 3, 8,
        &mode_code_vlc_table[0][1], 2, 1,
        &mode_code_vlc_table[0][0], 2, 1, 0);

    init_vlc(&s->motion_vector_vlc, 6, 63,
        &motion_vector_vlc_table[0][1], 2, 1,
        &motion_vector_vlc_table[0][0], 2, 1, 0);

2369 2370 2371 2372
    /* work out the block mapping tables */
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2373
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2374 2375
    init_block_mapping(s);

2376 2377 2378 2379
    for (i = 0; i < 3; i++) {
        s->current_frame.data[i] = NULL;
        s->last_frame.data[i] = NULL;
        s->golden_frame.data[i] = NULL;
2380 2381
    }

2382 2383 2384 2385 2386 2387
    return 0;
}

/*
 * This is the ffmpeg/libavcodec API frame decode function.
 */
2388
static int vp3_decode_frame(AVCodecContext *avctx,
2389 2390 2391 2392 2393 2394
                            void *data, int *data_size,
                            uint8_t *buf, int buf_size)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    static int counter = 0;
2395
    int i;
2396 2397

    init_get_bits(&gb, buf, buf_size * 8);
2398

2399 2400
    if (s->theora && get_bits1(&gb))
    {
2401
#if 1
2402 2403
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
        return -1;
2404
#else
2405 2406 2407 2408 2409 2410 2411
        int ptype = get_bits(&gb, 7);

        skip_bits(&gb, 6*8); /* "theora" */

        switch(ptype)
        {
            case 1:
2412
                theora_decode_comments(avctx, &gb);
2413 2414
                break;
            case 2:
2415
                theora_decode_tables(avctx, &gb);
2416 2417 2418 2419 2420 2421
                    init_dequantizer(s);
                break;
            default:
                av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
        }
        return buf_size;
2422
#endif
2423
    }
A
Alex Beregszaszi 已提交
2424 2425 2426

    s->keyframe = !get_bits1(&gb);
    if (!s->theora)
2427
        skip_bits(&gb, 1);
A
Alex Beregszaszi 已提交
2428 2429
    s->last_quality_index = s->quality_index;
    s->quality_index = get_bits(&gb, 6);
M
Matthieu Castet 已提交
2430
    if (s->theora >= 0x030200)
A
Alex Beregszaszi 已提交
2431
        skip_bits1(&gb);
2432

2433
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2434 2435
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
            s->keyframe?"key":"", counter, s->quality_index);
2436 2437
    counter++;

2438
    if (s->quality_index != s->last_quality_index) {
2439
        init_dequantizer(s);
2440 2441
        init_loop_filter(s);
    }
2442

2443
    if (s->keyframe) {
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
        if (!s->theora)
        {
            skip_bits(&gb, 4); /* width code */
            skip_bits(&gb, 4); /* height code */
            if (s->version)
            {
                s->version = get_bits(&gb, 5);
                if (counter == 1)
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
            }
        }
        if (s->version || s->theora)
        {
                if (get_bits1(&gb))
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
            skip_bits(&gb, 2); /* reserved? */
        }
A
Alex Beregszaszi 已提交
2461

2462 2463 2464
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
2465
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2466 2467 2468 2469 2470 2471
        } else {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
            if (s->last_frame.data[0])
                avctx->release_buffer(avctx, &s->last_frame);
        }
2472

2473
        s->golden_frame.reference = 3;
2474
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2475
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2476 2477 2478 2479
            return -1;
        }

        /* golden frame is also the current frame */
M
Michael Niedermayer 已提交
2480
        s->current_frame= s->golden_frame;
2481 2482 2483

        /* time to figure out pixel addresses? */
        if (!s->pixel_addresses_inited)
2484 2485 2486 2487 2488 2489
        {
            if (!s->flipped_image)
                vp3_calculate_pixel_addresses(s);
            else
                theora_calculate_pixel_addresses(s);
        }
2490 2491
    } else {
        /* allocate a new current frame */
2492
        s->current_frame.reference = 3;
2493
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2494
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2495 2496 2497 2498
            return -1;
        }
    }

M
Michael Niedermayer 已提交
2499 2500 2501
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
    s->current_frame.qstride= 0;

M
Michael Niedermayer 已提交
2502
    {START_TIMER
2503
    init_frame(s, &gb);
M
Michael Niedermayer 已提交
2504
    STOP_TIMER("init_frame")}
2505

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
#if KEYFRAMES_ONLY
if (!s->keyframe) {

    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
        s->current_frame.linesize[0] * s->height);
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
        s->current_frame.linesize[1] * s->height / 2);
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
        s->current_frame.linesize[2] * s->height / 2);

} else {
#endif

M
Michael Niedermayer 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
    {START_TIMER
    if (unpack_superblocks(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
        return -1;
    }
    STOP_TIMER("unpack_superblocks")}
    {START_TIMER
    if (unpack_modes(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
        return -1;
    }
    STOP_TIMER("unpack_modes")}
    {START_TIMER
    if (unpack_vectors(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
        return -1;
    }
    STOP_TIMER("unpack_vectors")}
    {START_TIMER
    if (unpack_dct_coeffs(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2540 2541
        return -1;
    }
M
Michael Niedermayer 已提交
2542 2543
    STOP_TIMER("unpack_dct_coeffs")}
    {START_TIMER
2544 2545

    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2546 2547 2548 2549 2550
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
        reverse_dc_prediction(s, s->u_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        reverse_dc_prediction(s, s->v_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
2551 2552 2553 2554 2555 2556 2557
    }
    STOP_TIMER("reverse_dc_prediction")}
    {START_TIMER

    for (i = 0; i < s->macroblock_height; i++)
        render_slice(s, i);
    STOP_TIMER("render_fragments")}
2558

M
Michael Niedermayer 已提交
2559
    {START_TIMER
2560
    apply_loop_filter(s);
M
Michael Niedermayer 已提交
2561
    STOP_TIMER("apply_loop_filter")}
2562 2563 2564 2565
#if KEYFRAMES_ONLY
}
#endif

2566 2567 2568
    *data_size=sizeof(AVFrame);
    *(AVFrame*)data= s->current_frame;

2569 2570 2571 2572 2573
    /* release the last frame, if it is allocated and if it is not the
     * golden frame */
    if ((s->last_frame.data[0]) &&
        (s->last_frame.data[0] != s->golden_frame.data[0]))
        avctx->release_buffer(avctx, &s->last_frame);
2574

2575
    /* shuffle frames (last = current) */
M
Michael Niedermayer 已提交
2576
    s->last_frame= s->current_frame;
2577
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

    return buf_size;
}

/*
 * This is the ffmpeg/libavcodec API module cleanup function.
 */
static int vp3_decode_end(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    av_free(s->all_fragments);
2590
    av_free(s->coeffs);
2591 2592 2593 2594
    av_free(s->coded_fragment_list);
    av_free(s->superblock_fragments);
    av_free(s->superblock_macroblocks);
    av_free(s->macroblock_fragments);
2595
    av_free(s->macroblock_coding);
2596

2597
    /* release all frames */
2598
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2599 2600 2601 2602 2603
        avctx->release_buffer(avctx, &s->golden_frame);
    if (s->last_frame.data[0])
        avctx->release_buffer(avctx, &s->last_frame);
    /* no need to release the current_frame since it will always be pointing
     * to the same frame as either the golden or last frame */
2604 2605 2606 2607

    return 0;
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
{
    Vp3DecodeContext *s = avctx->priv_data;

    if (get_bits(gb, 1)) {
        int token;
        if (s->entries >= 32) { /* overflow */
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
            return -1;
        }
        token = get_bits(gb, 5);
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
        s->huffman_table[s->hti][token][0] = s->hbits;
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
        s->entries++;
    }
    else {
        if (s->huff_code_size >= 32) {/* overflow */
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
            return -1;
        }
        s->huff_code_size++;
        s->hbits <<= 1;
        read_huffman_tree(avctx, gb);
        s->hbits |= 1;
        read_huffman_tree(avctx, gb);
        s->hbits >>= 1;
        s->huff_code_size--;
    }
    return 0;
}

2640
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2641 2642
{
    Vp3DecodeContext *s = avctx->priv_data;
2643

2644
    s->theora = get_bits_long(gb, 24);
M
cleanup  
Michael Niedermayer 已提交
2645
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %X\n", s->theora);
2646

M
Matthieu Castet 已提交
2647
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2648
    /* but previous versions have the image flipped relative to vp3 */
M
Matthieu Castet 已提交
2649
    if (s->theora < 0x030200)
2650
    {
2651
        s->flipped_image = 1;
2652 2653
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
    }
2654

2655 2656
    s->width = get_bits(gb, 16) << 4;
    s->height = get_bits(gb, 16) << 4;
2657

2658
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2659
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2660 2661 2662
        s->width= s->height= 0;
        return -1;
    }
2663 2664 2665

    if (s->theora >= 0x030400)
    {
2666
        skip_bits(gb, 32); /* total number of superblocks in a frame */
2667
        // fixme, the next field is 36bits long
2668 2669 2670
        skip_bits(gb, 32); /* total number of blocks in a frame */
        skip_bits(gb, 4); /* total number of blocks in a frame */
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
2671

2672 2673
        skip_bits(gb, 24); /* frame width */
        skip_bits(gb, 24); /* frame height */
2674 2675 2676
    }
    else
    {
2677 2678
        skip_bits(gb, 24); /* frame width */
        skip_bits(gb, 24); /* frame height */
2679
    }
2680

2681 2682
    skip_bits(gb, 8); /* offset x */
    skip_bits(gb, 8); /* offset y */
2683

2684 2685 2686 2687
    skip_bits(gb, 32); /* fps numerator */
    skip_bits(gb, 32); /* fps denumerator */
    skip_bits(gb, 24); /* aspect numerator */
    skip_bits(gb, 24); /* aspect denumerator */
2688

M
Matthieu Castet 已提交
2689
    if (s->theora < 0x030200)
2690 2691
        skip_bits(gb, 5); /* keyframe frequency force */
    skip_bits(gb, 8); /* colorspace */
2692
    if (s->theora >= 0x030400)
2693 2694
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
    skip_bits(gb, 24); /* bitrate */
2695

2696
    skip_bits(gb, 6); /* quality hint */
2697

M
Matthieu Castet 已提交
2698
    if (s->theora >= 0x030200)
2699
    {
2700
        skip_bits(gb, 5); /* keyframe frequency force */
2701

2702
        if (s->theora < 0x030400)
2703
            skip_bits(gb, 5); /* spare bits */
2704
    }
2705

2706
//    align_get_bits(gb);
2707

2708 2709 2710 2711 2712 2713
    avctx->width = s->width;
    avctx->height = s->height;

    return 0;
}

2714
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2715 2716
{
    Vp3DecodeContext *s = avctx->priv_data;
2717
    int i, n, matrices;
M
Matthieu Castet 已提交
2718 2719

    if (s->theora >= 0x030200) {
2720
        n = get_bits(gb, 3);
2721
        /* loop filter limit values table */
M
Matthieu Castet 已提交
2722
        for (i = 0; i < 64; i++)
2723
            s->filter_limit_values[i] = get_bits(gb, n);
M
Matthieu Castet 已提交
2724
    }
2725

M
Matthieu Castet 已提交
2726
    if (s->theora >= 0x030200)
2727
        n = get_bits(gb, 4) + 1;
M
Matthieu Castet 已提交
2728 2729
    else
        n = 16;
2730 2731
    /* quality threshold table */
    for (i = 0; i < 64; i++)
2732
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2733

M
Matthieu Castet 已提交
2734
    if (s->theora >= 0x030200)
2735
        n = get_bits(gb, 4) + 1;
M
Matthieu Castet 已提交
2736 2737
    else
        n = 16;
2738 2739
    /* dc scale factor table */
    for (i = 0; i < 64; i++)
2740
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2741

M
Matthieu Castet 已提交
2742
    if (s->theora >= 0x030200)
2743
        matrices = get_bits(gb, 9) + 1;
M
Matthieu Castet 已提交
2744
    else
2745 2746 2747 2748
        matrices = 3;
    if (matrices != 3) {
        av_log(avctx,AV_LOG_ERROR, "unsupported matrices: %d\n", matrices);
//        return -1;
M
Matthieu Castet 已提交
2749
    }
2750 2751
    /* y coeffs */
    for (i = 0; i < 64; i++)
2752
        s->coded_intra_y_dequant[i] = get_bits(gb, 8);
2753 2754 2755

    /* uv coeffs */
    for (i = 0; i < 64; i++)
2756
        s->coded_intra_c_dequant[i] = get_bits(gb, 8);
2757 2758 2759

    /* inter coeffs */
    for (i = 0; i < 64; i++)
2760
        s->coded_inter_dequant[i] = get_bits(gb, 8);
A
Alex Beregszaszi 已提交
2761

2762 2763 2764
    /* skip unknown matrices */
    n = matrices - 3;
    while(n--)
2765
        for (i = 0; i < 64; i++)
2766
            skip_bits(gb, 8);
2767

2768 2769 2770 2771
    for (i = 0; i <= 1; i++) {
        for (n = 0; n <= 2; n++) {
            int newqr;
            if (i > 0 || n > 0)
2772
                newqr = get_bits(gb, 1);
2773 2774 2775 2776
            else
                newqr = 1;
            if (!newqr) {
                if (i > 0)
2777
                    get_bits(gb, 1);
2778
                //FIXME this is simply incomplete
2779 2780 2781
            }
            else {
                int qi = 0;
2782
                //FIXME this is simply incomplete
2783
                skip_bits(gb, av_log2(matrices-1)+1);
2784
                while (qi < 63) {
2785 2786
                    qi += get_bits(gb, av_log2(63-qi)+1) + 1;
                    skip_bits(gb, av_log2(matrices-1)+1);
2787
                }
2788
                if (qi > 63) {
2789
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2790 2791
                    return -1;
                }
2792 2793 2794 2795
            }
        }
    }

2796
    /* Huffman tables */
2797 2798 2799
    for (s->hti = 0; s->hti < 80; s->hti++) {
        s->entries = 0;
        s->huff_code_size = 1;
2800
        if (!get_bits(gb, 1)) {
2801
            s->hbits = 0;
2802
            read_huffman_tree(avctx, gb);
2803
            s->hbits = 1;
2804
            read_huffman_tree(avctx, gb);
2805 2806
        }
    }
2807

2808
    s->theora_tables = 1;
2809

2810 2811 2812 2813 2814 2815 2816 2817
    return 0;
}

static int theora_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    int ptype;
2818 2819
    uint8_t *p= avctx->extradata;
    int op_bytes, i;
2820

2821 2822 2823
    s->theora = 1;

    if (!avctx->extradata_size)
2824 2825
    {
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2826
        return -1;
2827
    }
2828

2829 2830 2831 2832 2833 2834
  for(i=0;i<3;i++) {
    op_bytes = *(p++)<<8;
    op_bytes += *(p++);

    init_get_bits(&gb, p, op_bytes);
    p += op_bytes;
2835 2836 2837

    ptype = get_bits(&gb, 8);
    debug_vp3("Theora headerpacket type: %x\n", ptype);
2838

2839 2840 2841
     if (!(ptype & 0x80))
     {
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2842
//        return -1;
2843
     }
2844 2845

    // FIXME: check for this aswell
2846
    skip_bits(&gb, 6*8); /* "theora" */
2847

2848 2849 2850
    switch(ptype)
    {
        case 0x80:
2851
            theora_decode_header(avctx, &gb);
2852 2853
                break;
        case 0x81:
2854
// FIXME: is this needed? it breaks sometimes
2855 2856 2857
//            theora_decode_comments(avctx, gb);
            break;
        case 0x82:
2858
            theora_decode_tables(avctx, &gb);
2859 2860 2861 2862
            break;
        default:
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
            break;
2863
    }
2864 2865
    if(8*op_bytes != get_bits_count(&gb))
        av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*op_bytes - get_bits_count(&gb), ptype);
2866
  }
2867

M
Matthieu Castet 已提交
2868
    vp3_decode_init(avctx);
2869 2870 2871
    return 0;
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
AVCodec vp3_decoder = {
    "vp3",
    CODEC_TYPE_VIDEO,
    CODEC_ID_VP3,
    sizeof(Vp3DecodeContext),
    vp3_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
2884

2885
#ifndef CONFIG_LIBTHEORA
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
AVCodec theora_decoder = {
    "theora",
    CODEC_TYPE_VIDEO,
    CODEC_ID_THEORA,
    sizeof(Vp3DecodeContext),
    theora_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
2898
#endif