vp3.c 99.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *
 * Copyright (C) 2003 the ffmpeg project
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * VP3 Video Decoder by Mike Melanson (melanson@pcisys.net)
20 21
 * For more information about the VP3 coding process, visit:
 *   http://www.pcisys.net/~melanson/codecs/
22
 *
23 24
 * Theora decoder by Alex Beregszaszi
 *
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 */

/**
 * @file vp3.c
 * On2 VP3 Video Decoder
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "common.h"
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"
#include "dsputil.h"

#include "vp3data.h"

#define FRAGMENT_PIXELS 8

/* 
 * Debugging Variables
 * 
 * Define one or more of the following compile-time variables to 1 to obtain
 * elaborate information about certain aspects of the decoding process.
 *
53
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
54 55 56 57 58 59 60 61 62 63 64 65
 * DEBUG_VP3: high-level decoding flow
 * DEBUG_INIT: initialization parameters
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
 * DEBUG_MODES: unpacking the coding modes for individual fragments
 * DEBUG_VECTORS: display the motion vectors
 * DEBUG_TOKEN: display exhaustive information about each DCT token
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
 * DEBUG_DC_PRED: display the process of reversing DC prediction
 * DEBUG_IDCT: show every detail of the IDCT process
 */

66 67
#define KEYFRAMES_ONLY 0

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
#define DEBUG_VP3 0
#define DEBUG_INIT 0
#define DEBUG_DEQUANTIZERS 0
#define DEBUG_BLOCK_CODING 0
#define DEBUG_MODES 0
#define DEBUG_VECTORS 0
#define DEBUG_TOKEN 0
#define DEBUG_VLC 0
#define DEBUG_DC_PRED 0
#define DEBUG_IDCT 0

#if DEBUG_VP3
#define debug_vp3 printf
#else
static inline void debug_vp3(const char *format, ...) { }
#endif

#if DEBUG_INIT
#define debug_init printf
#else
static inline void debug_init(const char *format, ...) { }
#endif

#if DEBUG_DEQUANTIZERS
#define debug_dequantizers printf 
#else
static inline void debug_dequantizers(const char *format, ...) { } 
#endif

#if DEBUG_BLOCK_CODING
#define debug_block_coding printf 
#else
static inline void debug_block_coding(const char *format, ...) { } 
#endif

#if DEBUG_MODES
#define debug_modes printf 
#else
static inline void debug_modes(const char *format, ...) { } 
#endif

#if DEBUG_VECTORS
#define debug_vectors printf 
#else
static inline void debug_vectors(const char *format, ...) { } 
#endif

#if DEBUG_TOKEN 
#define debug_token printf 
#else
static inline void debug_token(const char *format, ...) { } 
#endif

#if DEBUG_VLC
#define debug_vlc printf 
#else
static inline void debug_vlc(const char *format, ...) { } 
#endif

#if DEBUG_DC_PRED
#define debug_dc_pred printf 
#else
static inline void debug_dc_pred(const char *format, ...) { } 
#endif

#if DEBUG_IDCT
#define debug_idct printf 
#else
static inline void debug_idct(const char *format, ...) { } 
#endif

typedef struct Vp3Fragment {
    DCTELEM coeffs[64];
    int coding_method;
    int coeff_count;
    int last_coeff;
    int motion_x;
    int motion_y;
    /* address of first pixel taking into account which plane the fragment
     * lives on as well as the plane stride */
    int first_pixel;
    /* this is the macroblock that the fragment belongs to */
    int macroblock;
} Vp3Fragment;

#define SB_NOT_CODED        0
#define SB_PARTIALLY_CODED  1
#define SB_FULLY_CODED      2

#define MODE_INTER_NO_MV      0
#define MODE_INTRA            1
#define MODE_INTER_PLUS_MV    2
#define MODE_INTER_LAST_MV    3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN     5
#define MODE_GOLDEN_MV        6
#define MODE_INTER_FOURMV     7
#define CODING_MODE_COUNT     8

/* special internal mode */
#define MODE_COPY             8

/* There are 6 preset schemes, plus a free-form scheme */
static int ModeAlphabet[7][CODING_MODE_COUNT] =
{
    /* this is the custom scheme */
    { 0, 0, 0, 0, 0, 0, 0, 0 },

    /* scheme 1: Last motion vector dominates */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 2 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 3 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 4 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 5: No motion vector dominates */
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,     
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 6 */
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,      
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
         MODE_INTER_PLUS_MV,    MODE_INTRA,             
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

};

#define MIN_DEQUANT_VAL 2

typedef struct Vp3DecodeContext {
    AVCodecContext *avctx;
218
    int theora, theora_tables;
219 220 221 222 223 224
    int width, height;
    AVFrame golden_frame;
    AVFrame last_frame;
    AVFrame current_frame;
    int keyframe;
    DSPContext dsp;
225
    int flipped_image;
226 227 228 229 230 231 232

    int quality_index;
    int last_quality_index;

    int superblock_count;
    int superblock_width;
    int superblock_height;
233 234 235 236
    int y_superblock_width;
    int y_superblock_height;
    int c_superblock_width;
    int c_superblock_height;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    int u_superblock_start;
    int v_superblock_start;
    unsigned char *superblock_coding;

    int macroblock_count;
    int macroblock_width;
    int macroblock_height;

    int fragment_count;
    int fragment_width;
    int fragment_height;

    Vp3Fragment *all_fragments;
    int u_fragment_start;
    int v_fragment_start;
252 253 254 255 256 257 258
    
    /* tables */
    uint16_t coded_dc_scale_factor[64];
    uint32_t coded_quality_threshold[64];
    uint16_t coded_intra_y_dequant[64];
    uint16_t coded_intra_c_dequant[64];
    uint16_t coded_inter_dequant[64];
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

    /* this is a list of indices into the all_fragments array indicating
     * which of the fragments are coded */
    int *coded_fragment_list;
    int coded_fragment_list_index;
    int pixel_addresses_inited;

    VLC dc_vlc[16];
    VLC ac_vlc_1[16];
    VLC ac_vlc_2[16];
    VLC ac_vlc_3[16];
    VLC ac_vlc_4[16];

    int16_t intra_y_dequant[64];
    int16_t intra_c_dequant[64];
    int16_t inter_dequant[64];

    /* This table contains superblock_count * 16 entries. Each set of 16
     * numbers corresponds to the fragment indices 0..15 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_fragments;

    /* This table contains superblock_count * 4 entries. Each set of 4
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_macroblocks;

    /* This table contains macroblock_count * 6 entries. Each set of 6
     * numbers corresponds to the fragment indices 0..5 which comprise
     * the macroblock (4 Y fragments and 2 C fragments). */
    int *macroblock_fragments;
292 293
    /* This is an array that indicates how a particular macroblock 
     * is coded. */
294
    unsigned char *macroblock_coding;
295

296 297 298 299 300
    int first_coded_y_fragment;
    int first_coded_c_fragment;
    int last_coded_y_fragment;
    int last_coded_c_fragment;

M
Michael Niedermayer 已提交
301
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
M
Michael Niedermayer 已提交
302
    uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
303 304
} Vp3DecodeContext;

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/************************************************************************
 * VP3 I/DCT
 ************************************************************************/

#define IdctAdjustBeforeShift 8
#define xC1S7 64277
#define xC2S6 60547
#define xC3S5 54491
#define xC4S4 46341
#define xC5S3 36410
#define xC6S2 25080
#define xC7S1 12785

void vp3_idct_c(int16_t *input_data, int16_t *dequant_matrix, 
    int16_t *output_data)
{
    int32_t intermediate_data[64];
    int32_t *ip = intermediate_data;
    int16_t *op = output_data;

325
    int32_t A_, B_, C_, D_, _Ad, _Bd, _Cd, _Dd, E_, F_, G_, H_;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    int32_t _Ed, _Gd, _Add, _Bdd, _Fd, _Hd;
    int32_t t1, t2;

    int i, j;

    debug_idct("raw coefficient block:\n");
    for (i = 0; i < 8; i++) {
        for (j = 0; j < 8; j++) {
            debug_idct(" %5d", input_data[i * 8 + j]);
        }
        debug_idct("\n");
    }
    debug_idct("\n");

    for (i = 0; i < 64; i++) {
        j = dezigzag_index[i];
        intermediate_data[j] = dequant_matrix[i] * input_data[i];
    }

    debug_idct("dequantized block:\n");
    for (i = 0; i < 8; i++) {
        for (j = 0; j < 8; j++) {
            debug_idct(" %5d", intermediate_data[i * 8 + j]);
        }
        debug_idct("\n");
    }
    debug_idct("\n");

    /* Inverse DCT on the rows now */
    for (i = 0; i < 8; i++) {
        /* Check for non-zero values */
        if ( ip[0] | ip[1] | ip[2] | ip[3] | ip[4] | ip[5] | ip[6] | ip[7] ) {
            t1 = (int32_t)(xC1S7 * ip[1]);
            t2 = (int32_t)(xC7S1 * ip[7]);
            t1 >>= 16;
            t2 >>= 16;
362
            A_ = t1 + t2;
363 364 365 366 367

            t1 = (int32_t)(xC7S1 * ip[1]);
            t2 = (int32_t)(xC1S7 * ip[7]);
            t1 >>= 16;
            t2 >>= 16;
368
            B_ = t1 - t2;
369 370 371 372 373

            t1 = (int32_t)(xC3S5 * ip[3]);
            t2 = (int32_t)(xC5S3 * ip[5]);
            t1 >>= 16;
            t2 >>= 16;
374
            C_ = t1 + t2;
375 376 377 378 379

            t1 = (int32_t)(xC3S5 * ip[5]);
            t2 = (int32_t)(xC5S3 * ip[3]);
            t1 >>= 16;
            t2 >>= 16;
380
            D_ = t1 - t2;
381 382


383
            t1 = (int32_t)(xC4S4 * (A_ - C_));
384 385 386
            t1 >>= 16;
            _Ad = t1;

387
            t1 = (int32_t)(xC4S4 * (B_ - D_));
388 389 390 391
            t1 >>= 16;
            _Bd = t1;


392 393
            _Cd = A_ + C_;
            _Dd = B_ + D_;
394 395 396

            t1 = (int32_t)(xC4S4 * (ip[0] + ip[4]));
            t1 >>= 16;
397
            E_ = t1;
398 399 400

            t1 = (int32_t)(xC4S4 * (ip[0] - ip[4]));
            t1 >>= 16;
401
            F_ = t1;
402 403 404 405 406

            t1 = (int32_t)(xC2S6 * ip[2]);
            t2 = (int32_t)(xC6S2 * ip[6]);
            t1 >>= 16;
            t2 >>= 16;
407
            G_ = t1 + t2;
408 409 410 411 412

            t1 = (int32_t)(xC6S2 * ip[2]);
            t2 = (int32_t)(xC2S6 * ip[6]);
            t1 >>= 16;
            t2 >>= 16;
413
            H_ = t1 - t2;
414 415


416 417
            _Ed = E_ - G_;
            _Gd = E_ + G_;
418

419 420
            _Add = F_ + _Ad;
            _Bdd = _Bd - H_;
421

422 423
            _Fd = F_ - _Ad;
            _Hd = _Bd + H_;
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

            /*  Final sequence of operations over-write original inputs. */
            ip[0] = (int16_t)((_Gd + _Cd )   >> 0);
            ip[7] = (int16_t)((_Gd - _Cd )   >> 0);

            ip[1] = (int16_t)((_Add + _Hd )  >> 0);
            ip[2] = (int16_t)((_Add - _Hd )  >> 0);

            ip[3] = (int16_t)((_Ed + _Dd )   >> 0);
            ip[4] = (int16_t)((_Ed - _Dd )   >> 0);

            ip[5] = (int16_t)((_Fd + _Bdd )  >> 0);
            ip[6] = (int16_t)((_Fd - _Bdd )  >> 0);

        }

        ip += 8;            /* next row */
    }

    ip = intermediate_data;

    for ( i = 0; i < 8; i++) {
        /* Check for non-zero values (bitwise or faster than ||) */
        if ( ip[0 * 8] | ip[1 * 8] | ip[2 * 8] | ip[3 * 8] |
             ip[4 * 8] | ip[5 * 8] | ip[6 * 8] | ip[7 * 8] ) {

            t1 = (int32_t)(xC1S7 * ip[1*8]);
            t2 = (int32_t)(xC7S1 * ip[7*8]);
            t1 >>= 16;
            t2 >>= 16;
454
            A_ = t1 + t2;
455 456 457 458 459

            t1 = (int32_t)(xC7S1 * ip[1*8]);
            t2 = (int32_t)(xC1S7 * ip[7*8]);
            t1 >>= 16;
            t2 >>= 16;
460
            B_ = t1 - t2;
461 462 463 464 465

            t1 = (int32_t)(xC3S5 * ip[3*8]);
            t2 = (int32_t)(xC5S3 * ip[5*8]);
            t1 >>= 16;
            t2 >>= 16;
466
            C_ = t1 + t2;
467 468 469 470 471

            t1 = (int32_t)(xC3S5 * ip[5*8]);
            t2 = (int32_t)(xC5S3 * ip[3*8]);
            t1 >>= 16;
            t2 >>= 16;
472
            D_ = t1 - t2;
473 474


475
            t1 = (int32_t)(xC4S4 * (A_ - C_));
476 477 478
            t1 >>= 16;
            _Ad = t1;

479
            t1 = (int32_t)(xC4S4 * (B_ - D_));
480 481 482 483
            t1 >>= 16;
            _Bd = t1;


484 485
            _Cd = A_ + C_;
            _Dd = B_ + D_;
486 487 488

            t1 = (int32_t)(xC4S4 * (ip[0*8] + ip[4*8]));
            t1 >>= 16;
489
            E_ = t1;
490 491 492

            t1 = (int32_t)(xC4S4 * (ip[0*8] - ip[4*8]));
            t1 >>= 16;
493
            F_ = t1;
494 495 496 497 498

            t1 = (int32_t)(xC2S6 * ip[2*8]);
            t2 = (int32_t)(xC6S2 * ip[6*8]);
            t1 >>= 16;
            t2 >>= 16;
499
            G_ = t1 + t2;
500 501 502 503 504

            t1 = (int32_t)(xC6S2 * ip[2*8]);
            t2 = (int32_t)(xC2S6 * ip[6*8]);
            t1 >>= 16;
            t2 >>= 16;
505
            H_ = t1 - t2;
506 507


508 509
            _Ed = E_ - G_;
            _Gd = E_ + G_;
510

511 512
            _Add = F_ + _Ad;
            _Bdd = _Bd - H_;
513

514 515
            _Fd = F_ - _Ad;
            _Hd = _Bd + H_;
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

            _Gd += IdctAdjustBeforeShift;
            _Add += IdctAdjustBeforeShift;
            _Ed += IdctAdjustBeforeShift;
            _Fd += IdctAdjustBeforeShift;

            /* Final sequence of operations over-write original inputs. */
            op[0*8] = (int16_t)((_Gd + _Cd )   >> 4);
            op[7*8] = (int16_t)((_Gd - _Cd )   >> 4);

            op[1*8] = (int16_t)((_Add + _Hd )  >> 4);
            op[2*8] = (int16_t)((_Add - _Hd )  >> 4);

            op[3*8] = (int16_t)((_Ed + _Dd )   >> 4);
            op[4*8] = (int16_t)((_Ed - _Dd )   >> 4);

            op[5*8] = (int16_t)((_Fd + _Bdd )  >> 4);
            op[6*8] = (int16_t)((_Fd - _Bdd )  >> 4);

        } else {

            op[0*8] = 0;
            op[7*8] = 0;
            op[1*8] = 0;
            op[2*8] = 0;
            op[3*8] = 0;
            op[4*8] = 0;
            op[5*8] = 0;
            op[6*8] = 0;
        }

        ip++;            /* next column */
        op++;
    }
}

void vp3_idct_put(int16_t *input_data, int16_t *dequant_matrix, 
    uint8_t *dest, int stride)
{
    int16_t transformed_data[64];
    int16_t *op;
    int i, j;

    vp3_idct_c(input_data, dequant_matrix, transformed_data);

    /* place in final output */
    op = transformed_data;
    for (i = 0; i < 8; i++) {
        for (j = 0; j < 8; j++) {
            if (*op < -128)
                *dest = 0;
            else if (*op > 127)
                *dest = 255;
            else
                *dest = (uint8_t)(*op + 128);
            op++;
            dest++;
        }
        dest += (stride - 8);
    }
}

void vp3_idct_add(int16_t *input_data, int16_t *dequant_matrix, 
    uint8_t *dest, int stride)
{
    int16_t transformed_data[64];
    int16_t *op;
    int i, j;
    int16_t sample;

    vp3_idct_c(input_data, dequant_matrix, transformed_data);

    /* place in final output */
    op = transformed_data;
    for (i = 0; i < 8; i++) {
        for (j = 0; j < 8; j++) {
            sample = *dest + *op;
            if (sample < 0)
                *dest = 0;
            else if (sample > 255)
                *dest = 255;
            else
                *dest = (uint8_t)(sample & 0xFF);
            op++;
            dest++;
        }
        dest += (stride - 8);
    }
}

606 607 608 609 610 611 612 613
/************************************************************************
 * VP3 specific functions
 ************************************************************************/

/*
 * This function sets up all of the various blocks mappings:
 * superblocks <-> fragments, macroblocks <-> fragments,
 * superblocks <-> macroblocks
614 615
 *
 * Returns 0 is successful; returns 1 if *anything* went wrong.
616
 */
617
static int init_block_mapping(Vp3DecodeContext *s) 
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
{
    int i, j;
    signed int hilbert_walk_y[16];
    signed int hilbert_walk_c[16];
    signed int hilbert_walk_mb[4];

    int current_fragment = 0;
    int current_width = 0;
    int current_height = 0;
    int right_edge = 0;
    int bottom_edge = 0;
    int superblock_row_inc = 0;
    int *hilbert = NULL;
    int mapping_index = 0;

    int current_macroblock;
    int c_fragment;

    signed char travel_width[16] = {
         1,  1,  0, -1, 
         0,  0,  1,  0,
         1,  0,  1,  0,
         0, -1,  0,  1
    };

    signed char travel_height[16] = {
         0,  0,  1,  0,
         1,  1,  0, -1,
         0,  1,  0, -1,
        -1,  0, -1,  0
    };

    signed char travel_width_mb[4] = {
         1,  0,  1,  0
    };

    signed char travel_height_mb[4] = {
         0,  1,  0, -1
    };

    debug_vp3("  vp3: initialize block mapping tables\n");

    /* figure out hilbert pattern per these frame dimensions */
    hilbert_walk_y[0]  = 1;
    hilbert_walk_y[1]  = 1;
    hilbert_walk_y[2]  = s->fragment_width;
    hilbert_walk_y[3]  = -1;
    hilbert_walk_y[4]  = s->fragment_width;
    hilbert_walk_y[5]  = s->fragment_width;
    hilbert_walk_y[6]  = 1;
    hilbert_walk_y[7]  = -s->fragment_width;
    hilbert_walk_y[8]  = 1;
    hilbert_walk_y[9]  = s->fragment_width;
    hilbert_walk_y[10]  = 1;
    hilbert_walk_y[11] = -s->fragment_width;
    hilbert_walk_y[12] = -s->fragment_width;
    hilbert_walk_y[13] = -1;
    hilbert_walk_y[14] = -s->fragment_width;
    hilbert_walk_y[15] = 1;

    hilbert_walk_c[0]  = 1;
    hilbert_walk_c[1]  = 1;
    hilbert_walk_c[2]  = s->fragment_width / 2;
    hilbert_walk_c[3]  = -1;
    hilbert_walk_c[4]  = s->fragment_width / 2;
    hilbert_walk_c[5]  = s->fragment_width / 2;
    hilbert_walk_c[6]  = 1;
    hilbert_walk_c[7]  = -s->fragment_width / 2;
    hilbert_walk_c[8]  = 1;
    hilbert_walk_c[9]  = s->fragment_width / 2;
    hilbert_walk_c[10]  = 1;
    hilbert_walk_c[11] = -s->fragment_width / 2;
    hilbert_walk_c[12] = -s->fragment_width / 2;
    hilbert_walk_c[13] = -1;
    hilbert_walk_c[14] = -s->fragment_width / 2;
    hilbert_walk_c[15] = 1;

    hilbert_walk_mb[0] = 1;
    hilbert_walk_mb[1] = s->macroblock_width;
    hilbert_walk_mb[2] = 1;
    hilbert_walk_mb[3] = -s->macroblock_width;

    /* iterate through each superblock (all planes) and map the fragments */
    for (i = 0; i < s->superblock_count; i++) {
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
            i, s->u_superblock_start, s->v_superblock_start);

        /* time to re-assign the limits? */
        if (i == 0) {

            /* start of Y superblocks */
            right_edge = s->fragment_width;
            bottom_edge = s->fragment_height;
711
            current_width = -1;
712
            current_height = 0;
713 714
            superblock_row_inc = 3 * s->fragment_width - 
                (s->y_superblock_width * 4 - s->fragment_width);
715 716 717 718 719 720 721 722 723 724
            hilbert = hilbert_walk_y;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = -1;

        } else if (i == s->u_superblock_start) {

            /* start of U superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
725
            current_width = -1;
726
            current_height = 0;
727 728
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
                (s->c_superblock_width * 4 - s->fragment_width / 2);
729 730 731 732 733 734 735 736 737 738
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->u_fragment_start - 1;

        } else if (i == s->v_superblock_start) {

            /* start of V superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
739
            current_width = -1;
740
            current_height = 0;
741 742
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
                (s->c_superblock_width * 4 - s->fragment_width / 2);
743 744 745 746 747 748 749
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->v_fragment_start - 1;

        }

750
        if (current_width >= right_edge - 1) {
751
            /* reset width and move to next superblock row */
752
            current_width = -1;
753 754 755 756 757 758 759 760 761
            current_height += 4;

            /* fragment is now at the start of a new superblock row */
            current_fragment += superblock_row_inc;
        }

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {
            current_fragment += hilbert[j];
762
            current_width += travel_width[j];
763 764 765
            current_height += travel_height[j];

            /* check if the fragment is in bounds */
766
            if ((current_width < right_edge) &&
767 768
                (current_height < bottom_edge)) {
                s->superblock_fragments[mapping_index] = current_fragment;
769 770 771
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n", 
                    s->superblock_fragments[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
772 773
            } else {
                s->superblock_fragments[mapping_index] = -1;
774 775 776
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n", 
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
777 778 779 780 781 782 783 784 785 786
            }

            mapping_index++;
        }
    }

    /* initialize the superblock <-> macroblock mapping; iterate through
     * all of the Y plane superblocks to build this mapping */
    right_edge = s->macroblock_width;
    bottom_edge = s->macroblock_height;
787
    current_width = -1;
788
    current_height = 0;
789 790
    superblock_row_inc = s->macroblock_width -
        (s->y_superblock_width * 2 - s->macroblock_width);;
791 792 793 794 795
    hilbert = hilbert_walk_mb;
    mapping_index = 0;
    current_macroblock = -1;
    for (i = 0; i < s->u_superblock_start; i++) {

796
        if (current_width >= right_edge - 1) {
797
            /* reset width and move to next superblock row */
798
            current_width = -1;
799 800 801 802 803 804 805 806 807
            current_height += 2;

            /* macroblock is now at the start of a new superblock row */
            current_macroblock += superblock_row_inc;
        }

        /* iterate through each potential macroblock in the superblock */
        for (j = 0; j < 4; j++) {
            current_macroblock += hilbert_walk_mb[j];
808
            current_width += travel_width_mb[j];
809 810 811
            current_height += travel_height_mb[j];

            /* check if the macroblock is in bounds */
812
            if ((current_width < right_edge) &&
813 814
                (current_height < bottom_edge)) {
                s->superblock_macroblocks[mapping_index] = current_macroblock;
815 816 817
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
                    s->superblock_macroblocks[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
818 819
            } else {
                s->superblock_macroblocks[mapping_index] = -1;
820 821 822
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
            }

            mapping_index++;
        }
    }

    /* initialize the macroblock <-> fragment mapping */
    current_fragment = 0;
    current_macroblock = 0;
    mapping_index = 0;
    for (i = 0; i < s->fragment_height; i += 2) {

        for (j = 0; j < s->fragment_width; j += 2) {

            debug_init("    macroblock %d contains fragments: ", current_macroblock);
            s->all_fragments[current_fragment].macroblock = current_macroblock;
            s->macroblock_fragments[mapping_index++] = current_fragment;
            debug_init("%d ", current_fragment);

            if (j + 1 < s->fragment_width) {
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
                debug_init("%d ", current_fragment + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if (i + 1 < s->fragment_height) {
                s->all_fragments[current_fragment + s->fragment_width].macroblock = 
                    current_macroblock;
                s->macroblock_fragments[mapping_index++] = 
                    current_fragment + s->fragment_width;
                debug_init("%d ", current_fragment + s->fragment_width);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = 
                    current_macroblock;
                s->macroblock_fragments[mapping_index++] = 
                    current_fragment + s->fragment_width + 1;
                debug_init("%d ", current_fragment + s->fragment_width + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            /* C planes */
            c_fragment = s->u_fragment_start + 
                (i * s->fragment_width / 4) + (j / 2);
870
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
871 872 873 874 875
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            c_fragment = s->v_fragment_start + 
                (i * s->fragment_width / 4) + (j / 2);
876
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
877 878 879 880 881 882 883 884 885 886 887 888 889 890
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            debug_init("\n");

            if (j + 2 <= s->fragment_width)
                current_fragment += 2;
            else 
                current_fragment++;
            current_macroblock++;
        }

        current_fragment += s->fragment_width;
    }
891 892

    return 0;  /* successful path out */
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

/*
 * This function unpacks a single token (which should be in the range 0..31)
 * and returns a zero run (number of zero coefficients in current DCT matrix
 * before next non-zero coefficient), the next DCT coefficient, and the
 * number of consecutive, non-EOB'd DCT blocks to EOB.
 */
static void unpack_token(GetBitContext *gb, int token, int *zero_run,
                         DCTELEM *coeff, int *eob_run) 
{
    int sign;

    *zero_run = 0;
    *eob_run = 0;
    *coeff = 0;

    debug_token("    vp3 token %d: ", token);
    switch (token) {

    case 0:
        debug_token("DCT_EOB_TOKEN, EOB next block\n");
        *eob_run = 1;
        break;

    case 1:
        debug_token("DCT_EOB_PAIR_TOKEN, EOB next 2 blocks\n");
        *eob_run = 2;
        break;

    case 2:
        debug_token("DCT_EOB_TRIPLE_TOKEN, EOB next 3 blocks\n");
        *eob_run = 3;
        break;

    case 3:
        debug_token("DCT_REPEAT_RUN_TOKEN, ");
        *eob_run = get_bits(gb, 2) + 4;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 4:
        debug_token("DCT_REPEAT_RUN2_TOKEN, ");
        *eob_run = get_bits(gb, 3) + 8;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 5:
        debug_token("DCT_REPEAT_RUN3_TOKEN, ");
        *eob_run = get_bits(gb, 4) + 16;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 6:
        debug_token("DCT_REPEAT_RUN4_TOKEN, ");
        *eob_run = get_bits(gb, 12);
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 7:
        debug_token("DCT_SHORT_ZRL_TOKEN, ");
        /* note that this token actually indicates that (3 extra bits) + 1 0s
         * should be output; this case specifies a run of (3 EBs) 0s and a
         * coefficient of 0. */
        *zero_run = get_bits(gb, 3);
        *coeff = 0;
        debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
        break;

    case 8:
        debug_token("DCT_ZRL_TOKEN, ");
        /* note that this token actually indicates that (6 extra bits) + 1 0s
         * should be output; this case specifies a run of (6 EBs) 0s and a
         * coefficient of 0. */
        *zero_run = get_bits(gb, 6);
        *coeff = 0;
        debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
        break;

    case 9:
        debug_token("ONE_TOKEN, output 1\n");
        *coeff = 1;
        break;

    case 10:
        debug_token("MINUS_ONE_TOKEN, output -1\n");
        *coeff = -1;
        break;

    case 11:
        debug_token("TWO_TOKEN, output 2\n");
        *coeff = 2;
        break;

    case 12:
        debug_token("MINUS_TWO_TOKEN, output -2\n");
        *coeff = -2;
        break;

    case 13:
    case 14:
    case 15:
    case 16:
        debug_token("LOW_VAL_TOKENS, ");
        if (get_bits(gb, 1))
            *coeff = -(3 + (token - 13));
        else
            *coeff = 3 + (token - 13);
        debug_token("output %d\n", *coeff);
        break;

    case 17:
        debug_token("DCT_VAL_CATEGORY3, ");
        sign = get_bits(gb, 1);
        *coeff = 7 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 18:
        debug_token("DCT_VAL_CATEGORY4, ");
        sign = get_bits(gb, 1);
        *coeff = 9 + get_bits(gb, 2);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 19:
        debug_token("DCT_VAL_CATEGORY5, ");
        sign = get_bits(gb, 1);
        *coeff = 13 + get_bits(gb, 3);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 20:
        debug_token("DCT_VAL_CATEGORY6, ");
        sign = get_bits(gb, 1);
        *coeff = 21 + get_bits(gb, 4);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 21:
        debug_token("DCT_VAL_CATEGORY7, ");
        sign = get_bits(gb, 1);
        *coeff = 37 + get_bits(gb, 5);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 22:
        debug_token("DCT_VAL_CATEGORY8, ");
        sign = get_bits(gb, 1);
        *coeff = 69 + get_bits(gb, 9);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 23:
    case 24:
    case 25:
    case 26:
    case 27:
        debug_token("DCT_RUN_CATEGORY1, ");
        *zero_run = token - 22;
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 28:
        debug_token("DCT_RUN_CATEGORY1B, ");
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        *zero_run = 6 + get_bits(gb, 2);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 29:
        debug_token("DCT_RUN_CATEGORY1C, ");
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        *zero_run = 10 + get_bits(gb, 3);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 30:
        debug_token("DCT_RUN_CATEGORY2, ");
        sign = get_bits(gb, 1);
        *coeff = 2 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        *zero_run = 1;
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 31:
        debug_token("DCT_RUN_CATEGORY2, ");
        sign = get_bits(gb, 1);
        *coeff = 2 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        *zero_run = 2 + get_bits(gb, 1);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    default:
1113
        av_log(NULL, AV_LOG_ERROR, "  vp3: help! Got a bad token: %d > 31\n", token);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        break;

  }
}

/*
 * This function wipes out all of the fragment data.
 */
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i;

    /* zero out all of the fragment information */
    s->coded_fragment_list_index = 0;
    for (i = 0; i < s->fragment_count; i++) {
        memset(s->all_fragments[i].coeffs, 0, 64 * sizeof(DCTELEM));
        s->all_fragments[i].coeff_count = 0;
        s->all_fragments[i].last_coeff = 0;
1132 1133
s->all_fragments[i].motion_x = 0xbeef;
s->all_fragments[i].motion_y = 0xbeef;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    }
}

/*
 * This function sets of the dequantization tables used for a particular
 * frame.
 */
static void init_dequantizer(Vp3DecodeContext *s)
{

1144 1145
    int quality_scale = s->coded_quality_threshold[s->quality_index];
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    int i, j;

    debug_vp3("  vp3: initializing dequantization tables\n");

    /* 
     * Scale dequantizers:
     *
     *   quantizer * sf
     *   --------------
     *        100
     *
     * where sf = dc_scale_factor for DC quantizer
     *           or quality_scale for AC quantizer
     *
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
     */
1162
#define SCALER 4
1163 1164

    /* scale DC quantizers */
1165
    s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
1166 1167 1168 1169
    if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_y_dequant[0] *= SCALER;

1170
    s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
1171 1172 1173 1174
    if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_c_dequant[0] *= SCALER;

1175
    s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
1176 1177 1178 1179 1180 1181 1182 1183
    if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
        s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
    s->inter_dequant[0] *= SCALER;

    /* scale AC quantizers, zigzag at the same time in preparation for
     * the dequantization phase */
    for (i = 1; i < 64; i++) {

M
Mike Melanson 已提交
1184
        j = zigzag_index[i];
1185

1186
        s->intra_y_dequant[j] = s->coded_intra_y_dequant[i] * quality_scale / 100;
1187 1188 1189 1190
        if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_y_dequant[j] *= SCALER;

1191
        s->intra_c_dequant[j] = s->coded_intra_c_dequant[i] * quality_scale / 100;
1192 1193 1194 1195
        if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_c_dequant[j] *= SCALER;

1196
        s->inter_dequant[j] = s->coded_inter_dequant[i] * quality_scale / 100;
1197 1198 1199 1200
        if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
            s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
        s->inter_dequant[j] *= SCALER;
    }
M
Michael Niedermayer 已提交
1201 1202
    
    memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

    /* print debug information as requested */
    debug_dequantizers("intra Y dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("intra C dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("interframe dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->inter_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");
}

/*
 * This function is used to fetch runs of 1s or 0s from the bitstream for
 * use in determining which superblocks are fully and partially coded.
 *
 *  Codeword                RunLength
 *  0                       1
 *  10x                     2-3
 *  110x                    4-5
 *  1110xx                  6-9
 *  11110xxx                10-17
 *  111110xxxx              18-33
 *  111111xxxxxxxxxxxx      34-4129
 */
static int get_superblock_run_length(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return 1;

    else if (get_bits(gb, 1) == 0)
        return (2 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (4 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (6 + get_bits(gb, 2));

    else if (get_bits(gb, 1) == 0)
        return (10 + get_bits(gb, 3));

    else if (get_bits(gb, 1) == 0)
        return (18 + get_bits(gb, 4));

    else
        return (34 + get_bits(gb, 12));

}

/*
 * This function is used to fetch runs of 1s or 0s from the bitstream for
 * use in determining which particular fragments are coded.
 *
 * Codeword                RunLength
 * 0x                      1-2
 * 10x                     3-4
 * 110x                    5-6
 * 1110xx                  7-10
 * 11110xx                 11-14
 * 11111xxxx               15-30
 */
static int get_fragment_run_length(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return (1 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (3 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (5 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (7 + get_bits(gb, 2));

    else if (get_bits(gb, 1) == 0)
        return (11 + get_bits(gb, 2));

    else
        return (15 + get_bits(gb, 4));

}

/*
 * This function decodes a VLC from the bitstream and returns a number
 * that ranges from 0..7. The number indicates which of the 8 coding
 * modes to use.
 *
 *  VLC       Number
 *  0            0
 *  10           1
 *  110          2
 *  1110         3
 *  11110        4
 *  111110       5
 *  1111110      6
 *  1111111      7
 *
 */
static int get_mode_code(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return 0;

    else if (get_bits(gb, 1) == 0)
        return 1;

    else if (get_bits(gb, 1) == 0)
        return 2;

    else if (get_bits(gb, 1) == 0)
        return 3;

    else if (get_bits(gb, 1) == 0)
        return 4;

    else if (get_bits(gb, 1) == 0)
        return 5;

    else if (get_bits(gb, 1) == 0)
        return 6;

    else
        return 7;

}

/*
 * This function extracts a motion vector from the bitstream using a VLC
 * scheme. 3 bits are fetched from the bitstream and 1 of 8 actions is
 * taken depending on the value on those 3 bits:
 *
 *  0: return 0
 *  1: return 1
 *  2: return -1
 *  3: if (next bit is 1) return -2, else return 2
 *  4: if (next bit is 1) return -3, else return 3
 *  5: return 4 + (next 2 bits), next bit is sign
 *  6: return 8 + (next 3 bits), next bit is sign
 *  7: return 16 + (next 4 bits), next bit is sign
 */
static int get_motion_vector_vlc(GetBitContext *gb)
{
    int bits;

    bits = get_bits(gb, 3);

    switch(bits) {

    case 0:
        bits = 0;
        break;

    case 1:
        bits = 1;
        break;

    case 2:
        bits = -1;
        break;

    case 3:
        if (get_bits(gb, 1) == 0)
            bits = 2;
        else
            bits = -2;
        break;

    case 4:
        if (get_bits(gb, 1) == 0)
            bits = 3;
        else
            bits = -3;
        break;

    case 5:
        bits = 4 + get_bits(gb, 2);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    case 6:
        bits = 8 + get_bits(gb, 3);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    case 7:
        bits = 16 + get_bits(gb, 4);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    }

    return bits;
}

/*
 * This function fetches a 5-bit number from the stream followed by
 * a sign and calls it a motion vector.
 */
static int get_motion_vector_fixed(GetBitContext *gb)
{

    int bits;

    bits = get_bits(gb, 5);

    if (get_bits(gb, 1) == 1)
        bits = -bits;

    return bits;
}

/*
 * This function unpacks all of the superblock/macroblock/fragment coding 
 * information from the bitstream.
 */
1444
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
1445 1446 1447 1448 1449 1450
{
    int bit = 0;
    int current_superblock = 0;
    int current_run = 0;
    int decode_fully_flags = 0;
    int decode_partial_blocks = 0;
1451
    int first_c_fragment_seen;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

    int i, j;
    int current_fragment;

    debug_vp3("  vp3: unpacking superblock coding\n");

    if (s->keyframe) {

        debug_vp3("    keyframe-- all superblocks are fully coded\n");
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);

    } else {

        /* unpack the list of partially-coded superblocks */
        bit = get_bits(gb, 1);
        /* toggle the bit because as soon as the first run length is 
         * fetched the bit will be toggled again */
        bit ^= 1;
        while (current_superblock < s->superblock_count) {
            if (current_run == 0) {
                bit ^= 1;
                current_run = get_superblock_run_length(gb);
                debug_block_coding("      setting superblocks %d..%d to %s\n",
                    current_superblock,
                    current_superblock + current_run - 1,
                    (bit) ? "partially coded" : "not coded");

                /* if any of the superblocks are not partially coded, flag
                 * a boolean to decode the list of fully-coded superblocks */
1481
                if (bit == 0) {
1482
                    decode_fully_flags = 1;
1483
                } else {
1484

1485 1486 1487 1488
                    /* make a note of the fact that there are partially coded
                     * superblocks */
                    decode_partial_blocks = 1;
                }
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
            }
            s->superblock_coding[current_superblock++] = 
                (bit) ? SB_PARTIALLY_CODED : SB_NOT_CODED;
            current_run--;
        }

        /* unpack the list of fully coded superblocks if any of the blocks were
         * not marked as partially coded in the previous step */
        if (decode_fully_flags) {

            current_superblock = 0;
            current_run = 0;
            bit = get_bits(gb, 1);
            /* toggle the bit because as soon as the first run length is 
             * fetched the bit will be toggled again */
            bit ^= 1;
            while (current_superblock < s->superblock_count) {

                /* skip any superblocks already marked as partially coded */
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {

                    if (current_run == 0) {
                        bit ^= 1;
                        current_run = get_superblock_run_length(gb);
                    }

                    debug_block_coding("      setting superblock %d to %s\n",
                        current_superblock,
                        (bit) ? "fully coded" : "not coded");
                    s->superblock_coding[current_superblock] = 
                        (bit) ? SB_FULLY_CODED : SB_NOT_CODED;
                    current_run--;
                }
                current_superblock++;
            }
        }

        /* if there were partial blocks, initialize bitstream for
         * unpacking fragment codings */
        if (decode_partial_blocks) {

            current_run = 0;
            bit = get_bits(gb, 1);
            /* toggle the bit because as soon as the first run length is 
             * fetched the bit will be toggled again */
            bit ^= 1;
        }
    }

    /* figure out which fragments are coded; iterate through each
     * superblock (all planes) */
    s->coded_fragment_list_index = 0;
1541 1542
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
1543
    first_c_fragment_seen = 0;
1544
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
1545 1546 1547 1548 1549 1550 1551
    for (i = 0; i < s->superblock_count; i++) {

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {

            /* if the fragment is in bounds, check its coding status */
            current_fragment = s->superblock_fragments[i * 16 + j];
1552
            if (current_fragment >= s->fragment_count) {
1553
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
1554 1555 1556
                    current_fragment, s->fragment_count);
                return 1;
            }
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
            if (current_fragment != -1) {
                if (s->superblock_coding[i] == SB_NOT_CODED) {

                    /* copy all the fragments from the prior frame */
                    s->all_fragments[current_fragment].coding_method = 
                        MODE_COPY;

                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {

                    /* fragment may or may not be coded; this is the case
                     * that cares about the fragment coding runs */
                    if (current_run == 0) {
                        bit ^= 1;
                        current_run = get_fragment_run_length(gb);
                    }

                    if (bit) {
1574 1575
                        /* default mode; actual mode will be decoded in 
                         * the next phase */
1576 1577
                        s->all_fragments[current_fragment].coding_method = 
                            MODE_INTER_NO_MV;
1578
                        s->coded_fragment_list[s->coded_fragment_list_index] = 
1579
                            current_fragment;
1580
                        if ((current_fragment >= s->u_fragment_start) &&
1581 1582
                            (s->last_coded_y_fragment == -1) &&
                            (!first_c_fragment_seen)) {
1583 1584
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
1585
                            first_c_fragment_seen = 1;
1586 1587
                        }
                        s->coded_fragment_list_index++;
1588
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
                            i, current_fragment);
                    } else {
                        /* not coded; copy this fragment from the prior frame */
                        s->all_fragments[current_fragment].coding_method =
                            MODE_COPY;
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
                            i, current_fragment);
                    }

                    current_run--;

                } else {

                    /* fragments are fully coded in this superblock; actual
                     * coding will be determined in next step */
                    s->all_fragments[current_fragment].coding_method = 
                        MODE_INTER_NO_MV;
1607
                    s->coded_fragment_list[s->coded_fragment_list_index] = 
1608
                        current_fragment;
1609
                    if ((current_fragment >= s->u_fragment_start) &&
1610 1611
                        (s->last_coded_y_fragment == -1) &&
                        (!first_c_fragment_seen)) {
1612 1613
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
1614
                        first_c_fragment_seen = 1;
1615 1616
                    }
                    s->coded_fragment_list_index++;
1617
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
1618 1619 1620 1621 1622 1623
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
                        i, current_fragment);
                }
            }
        }
    }
1624

1625 1626
    if (!first_c_fragment_seen)
        /* only Y fragments coded in this frame */
1627
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
1628
    else 
1629
        /* end the list of coded C fragments */
1630
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
1631

1632 1633 1634 1635 1636 1637
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
        s->coded_fragment_list_index,
        s->first_coded_y_fragment,
        s->last_coded_y_fragment,
        s->first_coded_c_fragment,
        s->last_coded_c_fragment);
1638 1639

    return 0;
1640 1641 1642 1643 1644 1645
}

/*
 * This function unpacks all the coding mode data for individual macroblocks
 * from the bitstream.
 */
1646
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
{
    int i, j, k;
    int scheme;
    int current_macroblock;
    int current_fragment;
    int coding_mode;

    debug_vp3("  vp3: unpacking encoding modes\n");

    if (s->keyframe) {
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");

        for (i = 0; i < s->fragment_count; i++)
            s->all_fragments[i].coding_method = MODE_INTRA;

    } else {

        /* fetch the mode coding scheme for this frame */
        scheme = get_bits(gb, 3);
        debug_modes("    using mode alphabet %d\n", scheme);

        /* is it a custom coding scheme? */
        if (scheme == 0) {
            debug_modes("    custom mode alphabet ahead:\n");
            for (i = 0; i < 8; i++)
1672
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        }

        for (i = 0; i < 8; i++)
            debug_modes("      mode[%d][%d] = %d\n", scheme, i, 
                ModeAlphabet[scheme][i]);

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1686
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1687
                    continue;
1688
                if (current_macroblock >= s->macroblock_count) {
1689
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1690 1691 1692
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1693 1694 1695 1696 1697 1698 1699

                /* mode 7 means get 3 bits for each coding mode */
                if (scheme == 7)
                    coding_mode = get_bits(gb, 3);
                else
                    coding_mode = ModeAlphabet[scheme][get_mode_code(gb)];

1700
                s->macroblock_coding[current_macroblock] = coding_mode;
1701 1702 1703
                for (k = 0; k < 6; k++) {
                    current_fragment = 
                        s->macroblock_fragments[current_macroblock * 6 + k];
1704 1705 1706
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1707
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1708 1709 1710
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                    if (s->all_fragments[current_fragment].coding_method != 
                        MODE_COPY)
                        s->all_fragments[current_fragment].coding_method =
                            coding_mode;
                }

                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
            }
        }
    }
1722 1723

    return 0;
1724 1725
}

1726 1727 1728 1729
/*
 * This function unpacks all the motion vectors for the individual
 * macroblocks from the bitstream.
 */
1730
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
{
    int i, j, k;
    int coding_mode;
    int motion_x[6];
    int motion_y[6];
    int last_motion_x = 0;
    int last_motion_y = 0;
    int prior_last_motion_x = 0;
    int prior_last_motion_y = 0;
    int current_macroblock;
    int current_fragment;

    debug_vp3("  vp3: unpacking motion vectors\n");
    if (s->keyframe) {

        debug_vp3("    keyframe-- there are no motion vectors\n");

    } else {

        memset(motion_x, 0, 6 * sizeof(int));
        memset(motion_y, 0, 6 * sizeof(int));

        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
        coding_mode = get_bits(gb, 1);
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
            (coding_mode == 0) ? "VLC" : "fixed-length");

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1765
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1766
                    continue;
1767
                if (current_macroblock >= s->macroblock_count) {
1768
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1769 1770 1771
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1772 1773

                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1774
                if (current_fragment >= s->fragment_count) {
1775
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1776 1777 1778
                        current_fragment, s->fragment_count);
                    return 1;
                }
1779
                switch (s->macroblock_coding[current_macroblock]) {
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

                case MODE_INTER_PLUS_MV:
                case MODE_GOLDEN_MV:
                    /* all 6 fragments use the same motion vector */
                    if (coding_mode == 0) {
                        motion_x[0] = get_motion_vector_vlc(gb);
                        motion_y[0] = get_motion_vector_vlc(gb);
                    } else {
                        motion_x[0] = get_motion_vector_fixed(gb);
                        motion_y[0] = get_motion_vector_fixed(gb);
                    }
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1797
                    if (s->macroblock_coding[current_macroblock] ==
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
                        MODE_INTER_PLUS_MV) {
                        prior_last_motion_x = last_motion_x;
                        prior_last_motion_y = last_motion_y;
                        last_motion_x = motion_x[0];
                        last_motion_y = motion_y[0];
                    }
                    break;

                case MODE_INTER_FOURMV:
                    /* fetch 4 vectors from the bitstream, one for each
                     * Y fragment, then average for the C fragment vectors */
                    motion_x[4] = motion_y[4] = 0;
                    for (k = 0; k < 4; k++) {
                        if (coding_mode == 0) {
                            motion_x[k] = get_motion_vector_vlc(gb);
                            motion_y[k] = get_motion_vector_vlc(gb);
                        } else {
                            motion_x[k] = get_motion_vector_fixed(gb);
                            motion_y[k] = get_motion_vector_fixed(gb);
                        }
                        motion_x[4] += motion_x[k];
                        motion_y[4] += motion_y[k];
                    }

                    if (motion_x[4] >= 0) 
                        motion_x[4] = (motion_x[4] + 2) / 4;
                    else
                        motion_x[4] = (motion_x[4] - 2) / 4;
                    motion_x[5] = motion_x[4];

                    if (motion_y[4] >= 0) 
                        motion_y[4] = (motion_y[4] + 2) / 4;
                    else
                        motion_y[4] = (motion_y[4] - 2) / 4;
                    motion_y[5] = motion_y[4];

                    /* vector maintenance; vector[3] is treated as the
                     * last vector in this case */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[3];
                    last_motion_y = motion_y[3];
                    break;

                case MODE_INTER_LAST_MV:
                    /* all 6 fragments use the last motion vector */
                    motion_x[0] = last_motion_x;
                    motion_y[0] = last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* no vector maintenance (last vector remains the
                     * last vector) */
                    break;

                case MODE_INTER_PRIOR_LAST:
                    /* all 6 fragments use the motion vector prior to the
                     * last motion vector */
                    motion_x[0] = prior_last_motion_x;
                    motion_y[0] = prior_last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[0];
                    last_motion_y = motion_y[0];
                    break;
1871 1872 1873 1874 1875 1876 1877 1878

                default:
                    /* covers intra, inter without MV, golden without MV */
                    memset(motion_x, 0, 6 * sizeof(int));
                    memset(motion_y, 0, 6 * sizeof(int));

                    /* no vector maintenance */
                    break;
1879 1880 1881 1882 1883
                }

                /* assign the motion vectors to the correct fragments */
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
                    current_fragment,
1884
                    s->macroblock_coding[current_macroblock]);
1885 1886 1887
                for (k = 0; k < 6; k++) {
                    current_fragment = 
                        s->macroblock_fragments[current_macroblock * 6 + k];
1888 1889 1890
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1891
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1892 1893 1894
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1895
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1896
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1897 1898
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
                        k, current_fragment, motion_x[k], motion_y[k]);
1899 1900 1901 1902
                }
            }
        }
    }
1903 1904

    return 0;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
}

/* 
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 * data. This function unpacks all the VLCs for either the Y plane or both
 * C planes, and is called for DC coefficients or different AC coefficient
 * levels (since different coefficient types require different VLC tables.
 *
 * This function returns a residual eob run. E.g, if a particular token gave
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 * left in the current fragment range, 3 would be returned so that it could
 * be passed into the next call to this same function.
 */
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                        VLC *table, int coeff_index,
                        int first_fragment, int last_fragment,
                        int eob_run)
{
    int i;
    int token;
    int zero_run;
    DCTELEM coeff;
    Vp3Fragment *fragment;

1930
    if ((first_fragment >= s->fragment_count) ||
1931 1932
        (last_fragment >= s->fragment_count)) {

1933
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1934
            first_fragment, last_fragment);
1935
        return 0;
1936 1937
    }

1938
    for (i = first_fragment; i <= last_fragment; i++) {
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

        fragment = &s->all_fragments[s->coded_fragment_list[i]];
        if (fragment->coeff_count > coeff_index)
            continue;

        if (!eob_run) {
            /* decode a VLC into a token */
            token = get_vlc2(gb, table->table, 5, 3);
            debug_vlc(" token = %2d, ", token);
            /* use the token to get a zero run, a coefficient, and an eob run */
            unpack_token(gb, token, &zero_run, &coeff, &eob_run);
        }

        if (!eob_run) {
            fragment->coeff_count += zero_run;
            if (fragment->coeff_count < 64)
                fragment->coeffs[fragment->coeff_count++] = coeff;
            debug_vlc(" fragment %d coeff = %d\n",
                s->coded_fragment_list[i], fragment->coeffs[coeff_index]);
        } else {
            fragment->last_coeff = fragment->coeff_count;
            fragment->coeff_count = 64;
            debug_vlc(" fragment %d eob with %d coefficients\n", 
                s->coded_fragment_list[i], fragment->last_coeff);
            eob_run--;
        }
    }

    return eob_run;
}

/*
 * This function unpacks all of the DCT coefficient data from the
 * bitstream.
 */
1974
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
{
    int i;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    int residual_eob_run = 0;

    /* fetch the DC table indices */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    /* unpack the Y plane DC coefficients */
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
        dc_y_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, 
1991
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1992 1993 1994 1995 1996

    /* unpack the C plane DC coefficients */
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
        dc_c_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1997
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1998

1999
    /* fetch the AC table indices */
2000 2001 2002
    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

2003
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
2004 2005 2006 2007 2008
    for (i = 1; i <= 5; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, 
2009
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
2010 2011 2012 2013

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, 
2014
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
2015 2016
    }

2017
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
2018 2019 2020 2021 2022
    for (i = 6; i <= 14; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, 
2023
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
2024 2025 2026 2027

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, 
2028
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
2029 2030
    }

2031
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
2032 2033 2034 2035 2036
    for (i = 15; i <= 27; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, 
2037
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
2038 2039 2040 2041

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, 
2042
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
2043 2044
    }

2045
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
2046 2047 2048 2049 2050
    for (i = 28; i <= 63; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, 
2051
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
2052 2053 2054 2055

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, 
2056
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
2057
    }
2058 2059

    return 0;
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
}

/*
 * This function reverses the DC prediction for each coded fragment in
 * the frame. Much of this function is adapted directly from the original 
 * VP3 source code.
 */
#define COMPATIBLE_FRAME(x) \
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
static inline int iabs (int x) { return ((x < 0) ? -x : x); }

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
                                  int fragment_height) 
{

#define PUL 8
#define PU 4
#define PUR 2
#define PL 1

    int x, y;
    int i = first_fragment;

    /*
     * Fragment prediction groups:
     *
     * 32222222226
     * 10000000004
     * 10000000004
     * 10000000004
     * 10000000004
     *
     * Note: Groups 5 and 7 do not exist as it would mean that the 
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
     */
    int predictor_group;
    short predicted_dc;

    /* validity flags for the left, up-left, up, and up-right fragments */
    int fl, ful, fu, fur;

    /* DC values for the left, up-left, up, and up-right fragments */
    int vl, vul, vu, vur;

    /* indices for the left, up-left, up, and up-right fragments */
    int l, ul, u, ur;

    /* 
     * The 6 fields mean:
     *   0: up-left multiplier
     *   1: up multiplier
     *   2: up-right multiplier
     *   3: left multiplier
     *   4: mask
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
     */
    int predictor_transform[16][6] = {
        {  0,  0,  0,  0,   0,  0 },
        {  0,  0,  0,  1,   0,  0 },        // PL
        {  0,  0,  1,  0,   0,  0 },        // PUR
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PU
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
        {  1,  0,  0,  0,   0,  0 },        // PUL
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
    };

    /* This table shows which types of blocks can use other blocks for
     * prediction. For example, INTRA is the only mode in this table to
     * have a frame number of 0. That means INTRA blocks can only predict
     * from other INTRA blocks. There are 2 golden frame coding types; 
     * blocks encoding in these modes can only predict from other blocks
     * that were encoded with these 1 of these 2 modes. */
    unsigned char compatible_frame[8] = {
        1,    /* MODE_INTER_NO_MV */
        0,    /* MODE_INTRA */
        1,    /* MODE_INTER_PLUS_MV */
        1,    /* MODE_INTER_LAST_MV */
        1,    /* MODE_INTER_PRIOR_MV */
        2,    /* MODE_USING_GOLDEN */
        2,    /* MODE_GOLDEN_MV */
        1     /* MODE_INTER_FOUR_MV */
    };
    int current_frame_type;

    /* there is a last DC predictor for each of the 3 frame types */
    short last_dc[3];

    int transform = 0;

    debug_vp3("  vp3: reversing DC prediction\n");

    vul = vu = vur = vl = 0;
    last_dc[0] = last_dc[1] = last_dc[2] = 0;

    /* for each fragment row... */
    for (y = 0; y < fragment_height; y++) {

        /* for each fragment in a row... */
        for (x = 0; x < fragment_width; x++, i++) {

            /* reverse prediction if this block was coded */
            if (s->all_fragments[i].coding_method != MODE_COPY) {

                current_frame_type = 
                    compatible_frame[s->all_fragments[i].coding_method];
                predictor_group = (x == 0) + ((y == 0) << 1) +
                    ((x + 1 == fragment_width) << 2);
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
                    i, predictor_group, s->all_fragments[i].coeffs[0]);

                switch (predictor_group) {

                case 0:
                    /* main body of fragments; consider all 4 possible
                     * fragments for prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vul = s->all_fragments[ul].coeffs[0];
                    vu = s->all_fragments[u].coeffs[0];
                    vur = s->all_fragments[ur].coeffs[0];
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);

                    break;

                case 1:
                    /* left column of fragments, not including top corner;
                     * only consider up and up-right fragments */

                    /* calculate the indices of the predicting fragments */
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;

                    /* fetch the DC values for the predicting fragments */
                    vu = s->all_fragments[u].coeffs[0];
                    vur = s->all_fragments[ur].coeffs[0];

                    /* figure out which fragments are valid */
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);

                    /* decide which predictor transform to use */
                    transform = (fu*PU) | (fur*PUR);

                    break;

                case 2:
                case 6:
                    /* top row of fragments, not including top-left frag;
                     * only consider the left fragment for prediction */

                    /* calculate the indices of the predicting fragments */
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL);

                    break;

                case 3:
                    /* top-left fragment */

                    /* nothing to predict from in this case */
                    transform = 0;

                    break;

                case 4:
                    /* right column of fragments, not including top corner;
                     * consider up-left, up, and left fragments for
                     * prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vul = s->all_fragments[ul].coeffs[0];
                    vu = s->all_fragments[u].coeffs[0];
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);

                    break;

                }

                debug_dc_pred("transform = %d, ", transform);

                if (transform == 0) {

                    /* if there were no fragments to predict from, use last
                     * DC saved */
                    s->all_fragments[i].coeffs[0] += last_dc[current_frame_type];
                    debug_dc_pred("from last DC (%d) = %d\n", 
                        current_frame_type, s->all_fragments[i].coeffs[0]);

                } else {

                    /* apply the appropriate predictor transform */
                    predicted_dc =
                        (predictor_transform[transform][0] * vul) +
                        (predictor_transform[transform][1] * vu) +
                        (predictor_transform[transform][2] * vur) +
                        (predictor_transform[transform][3] * vl);

                    /* if there is a shift value in the transform, add
                     * the sign bit before the shift */
                    if (predictor_transform[transform][5] != 0) {
                        predicted_dc += ((predicted_dc >> 15) & 
                            predictor_transform[transform][4]);
                        predicted_dc >>= predictor_transform[transform][5];
                    }

                    /* check for outranging on the [ul u l] and
                     * [ul u ur l] predictors */
                    if ((transform == 13) || (transform == 15)) {
                        if (iabs(predicted_dc - vu) > 128)
                            predicted_dc = vu;
                        else if (iabs(predicted_dc - vl) > 128)
                            predicted_dc = vl;
                        else if (iabs(predicted_dc - vul) > 128)
                            predicted_dc = vul;
                    }

                    /* at long last, apply the predictor */
                    s->all_fragments[i].coeffs[0] += predicted_dc;
                    debug_dc_pred("from pred DC = %d\n", 
                    s->all_fragments[i].coeffs[0]);
                }

                /* save the DC */
                last_dc[current_frame_type] = s->all_fragments[i].coeffs[0];
            }
        }
    }
}

/*
 * This function performs the final rendering of each fragment's data
 * onto the output frame.
 */
static void render_fragments(Vp3DecodeContext *s,
                             int first_fragment,
2343 2344
                             int width,
                             int height,
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
                             int plane /* 0 = Y, 1 = U, 2 = V */) 
{
    int x, y;
    int m, n;
    int i = first_fragment;
    int16_t *dequantizer;
    unsigned char *output_plane;
    unsigned char *last_plane;
    unsigned char *golden_plane;
    int stride;
2355
    int motion_x, motion_y;
2356
    int upper_motion_limit, lower_motion_limit;
2357
    int motion_halfpel_index;
M
Michael Niedermayer 已提交
2358
    uint8_t *motion_source;
2359 2360 2361 2362 2363 2364 2365 2366

    debug_vp3("  vp3: rendering final fragments for %s\n",
        (plane == 0) ? "Y plane" : (plane == 1) ? "U plane" : "V plane");

    /* set up plane-specific parameters */
    if (plane == 0) {
        dequantizer = s->intra_y_dequant;
        output_plane = s->current_frame.data[0];
2367 2368
        last_plane = s->last_frame.data[0];
        golden_plane = s->golden_frame.data[0];
2369 2370
        stride = s->current_frame.linesize[0];
	if (!s->flipped_image) stride = -stride;
2371 2372
        upper_motion_limit = 7 * s->current_frame.linesize[0];
        lower_motion_limit = height * s->current_frame.linesize[0] + width - 8;
2373 2374 2375
    } else if (plane == 1) {
        dequantizer = s->intra_c_dequant;
        output_plane = s->current_frame.data[1];
2376 2377
        last_plane = s->last_frame.data[1];
        golden_plane = s->golden_frame.data[1];
2378 2379
        stride = s->current_frame.linesize[1];
	if (!s->flipped_image) stride = -stride;
2380 2381
        upper_motion_limit = 7 * s->current_frame.linesize[1];
        lower_motion_limit = height * s->current_frame.linesize[1] + width - 8;
2382 2383 2384
    } else {
        dequantizer = s->intra_c_dequant;
        output_plane = s->current_frame.data[2];
2385 2386
        last_plane = s->last_frame.data[2];
        golden_plane = s->golden_frame.data[2];
2387 2388
        stride = s->current_frame.linesize[2];
	if (!s->flipped_image) stride = -stride;
2389 2390
        upper_motion_limit = 7 * s->current_frame.linesize[2];
        lower_motion_limit = height * s->current_frame.linesize[2] + width - 8;
2391 2392 2393
    }

    /* for each fragment row... */
2394
    for (y = 0; y < height; y += 8) {
2395 2396

        /* for each fragment in a row... */
2397
        for (x = 0; x < width; x += 8, i++) {
2398

2399
            if ((i < 0) || (i >= s->fragment_count)) {
2400
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_fragments(): bad fragment number (%d)\n", i);
2401 2402 2403
                return;
            }

2404
            /* transform if this block was coded */
2405 2406
            if (s->all_fragments[i].coding_method != MODE_COPY) {

M
Michael Niedermayer 已提交
2407 2408 2409 2410 2411 2412 2413
                if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
                    (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
                    motion_source= golden_plane;
                else 
                    motion_source= last_plane;

                motion_source += s->all_fragments[i].first_pixel;
2414 2415 2416 2417 2418 2419
                motion_halfpel_index = 0;

                /* sort out the motion vector if this fragment is coded
                 * using a motion vector method */
                if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
                    (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
M
Michael Niedermayer 已提交
2420
                    int src_x, src_y;
2421 2422
                    motion_x = s->all_fragments[i].motion_x;
                    motion_y = s->all_fragments[i].motion_y;
M
Michael Niedermayer 已提交
2423 2424 2425 2426 2427
                    if(plane){
                        motion_x= (motion_x>>1) | (motion_x&1);
                        motion_y= (motion_y>>1) | (motion_y&1);
                    }

M
Michael Niedermayer 已提交
2428 2429
                    src_x= (motion_x>>1) + x;
                    src_y= (motion_y>>1) + y;
2430
if ((motion_x == 0xbeef) || (motion_y == 0xbeef))
2431
av_log(s->avctx, AV_LOG_ERROR, " help! got beefy vector! (%X, %X)\n", motion_x, motion_y);
2432

M
Michael Niedermayer 已提交
2433 2434
                    motion_halfpel_index = motion_x & 0x01;
                    motion_source += (motion_x >> 1);
2435 2436

//                    motion_y = -motion_y;
M
Michael Niedermayer 已提交
2437 2438
                    motion_halfpel_index |= (motion_y & 0x01) << 1;
                    motion_source += ((motion_y >> 1) * stride);
2439

M
Michael Niedermayer 已提交
2440 2441 2442
                    if(src_x<0 || src_y<0 || src_x + 9 >= width || src_y + 9 >= height){
                        uint8_t *temp= s->edge_emu_buffer;
                        if(stride<0) temp -= 9*stride;
2443
			else temp += 9*stride;
M
Michael Niedermayer 已提交
2444 2445 2446

                        ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, width, height);
                        motion_source= temp;
2447
                    }
2448 2449
                }

2450 2451 2452 2453
                /* first, take care of copying a block from either the
                 * previous or the golden frame */
                if (s->all_fragments[i].coding_method != MODE_INTRA) {

M
Michael Niedermayer 已提交
2454
                    s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
2455
                        output_plane + s->all_fragments[i].first_pixel,
M
Michael Niedermayer 已提交
2456
                        motion_source,
2457 2458 2459
                        stride, 8);
                }

2460
                /* dequantize the DCT coefficients */
2461 2462 2463
                debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n", 
                    i, s->all_fragments[i].coding_method, 
                    s->all_fragments[i].coeffs[0], dequantizer[0]);
2464

2465 2466
                /* invert DCT and place (or add) in final output */
                if (s->all_fragments[i].coding_method == MODE_INTRA) {
2467
                    vp3_idct_put(s->all_fragments[i].coeffs, dequantizer,
2468
                        output_plane + s->all_fragments[i].first_pixel,
2469
                        stride);
2470
                } else {
2471
                    vp3_idct_add(s->all_fragments[i].coeffs, dequantizer,
2472
                        output_plane + s->all_fragments[i].first_pixel,
2473
                        stride);
2474
                }
2475 2476 2477 2478

                debug_idct("block after idct_%s():\n",
                    (s->all_fragments[i].coding_method == MODE_INTRA)?
                    "put" : "add");
2479 2480
                for (m = 0; m < 8; m++) {
                    for (n = 0; n < 8; n++) {
2481 2482
                        debug_idct(" %3d", *(output_plane + 
                            s->all_fragments[i].first_pixel + (m * stride + n)));
2483 2484 2485 2486 2487 2488 2489
                    }
                    debug_idct("\n");
                }
                debug_idct("\n");

            } else {

2490 2491 2492 2493 2494
                /* copy directly from the previous frame */
                s->dsp.put_pixels_tab[1][0](
                    output_plane + s->all_fragments[i].first_pixel,
                    last_plane + s->all_fragments[i].first_pixel,
                    stride, 8);
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

            }
        }
    }

    emms_c();

}

/* 
 * This function computes the first pixel addresses for each fragment.
 * This function needs to be invoked after the first frame is allocated
 * so that it has access to the plane strides.
 */
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) 
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = s->fragment_height; y > 0; y--) {
        for (x = 0; x < s->fragment_width; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
/* FIXME: this should be merged with the above! */
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s) 
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = 1; y <= s->fragment_height; y++) {
        for (x = 0; x < s->fragment_width; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2602 2603 2604 2605 2606 2607 2608
/*
 * This is the ffmpeg/libavcodec API init function.
 */
static int vp3_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i;
2609 2610 2611 2612
    int c_width;
    int c_height;
    int y_superblock_count;
    int c_superblock_count;
2613 2614

    s->avctx = avctx;
2615
#if 0
2616 2617
    s->width = avctx->width;
    s->height = avctx->height;
2618 2619 2620 2621
#else
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
#endif
2622 2623 2624 2625 2626 2627 2628 2629
    avctx->pix_fmt = PIX_FMT_YUV420P;
    avctx->has_b_frames = 0;
    dsputil_init(&s->dsp, avctx);

    /* initialize to an impossible value which will force a recalculation
     * in the first frame decode */
    s->quality_index = -1;

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
    s->y_superblock_width = (s->width + 31) / 32;
    s->y_superblock_height = (s->height + 31) / 32;
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;

    /* work out the dimensions for the C planes */
    c_width = s->width / 2;
    c_height = s->height / 2;
    s->c_superblock_width = (c_width + 31) / 32;
    s->c_superblock_height = (c_height + 31) / 32;
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;

    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
    s->u_superblock_start = y_superblock_count;
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    s->superblock_coding = av_malloc(s->superblock_count);

    s->macroblock_width = (s->width + 15) / 16;
    s->macroblock_height = (s->height + 15) / 16;
    s->macroblock_count = s->macroblock_width * s->macroblock_height;

    s->fragment_width = s->width / FRAGMENT_PIXELS;
    s->fragment_height = s->height / FRAGMENT_PIXELS;

    /* fragment count covers all 8x8 blocks for all 3 planes */
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
    s->u_fragment_start = s->fragment_width * s->fragment_height;
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;

2658 2659 2660 2661 2662 2663 2664 2665
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
    debug_init("  C plane: %d x %d\n", c_width, c_height);
    debug_init("  Y superblocks: %d x %d, %d total\n",
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
    debug_init("  C superblocks: %d x %d, %d total\n",
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n", 
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
    debug_init("  macroblocks: %d x %d, %d total\n",
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
        s->fragment_count,
        s->fragment_width,
        s->fragment_height,
        s->u_fragment_start,
        s->v_fragment_start);

    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
    s->pixel_addresses_inited = 0;

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
    if (!s->theora_tables)
    {
	for (i = 0; i < 64; i++)
	    s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
	for (i = 0; i < 64; i++)
	    s->coded_quality_threshold[i] = vp31_quality_threshold[i];
	for (i = 0; i < 64; i++)
	    s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
	for (i = 0; i < 64; i++)
	    s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
	for (i = 0; i < 64; i++)
	    s->coded_inter_dequant[i] = vp31_inter_dequant[i];
    }

2693 2694 2695
    /* init VLC tables */
    for (i = 0; i < 16; i++) {

2696
        /* DC histograms */
2697 2698 2699 2700
        init_vlc(&s->dc_vlc[i], 5, 32,
            &dc_bias[i][0][1], 4, 2,
            &dc_bias[i][0][0], 4, 2);

2701
        /* group 1 AC histograms */
2702 2703 2704 2705
        init_vlc(&s->ac_vlc_1[i], 5, 32,
            &ac_bias_0[i][0][1], 4, 2,
            &ac_bias_0[i][0][0], 4, 2);

2706
        /* group 2 AC histograms */
2707 2708 2709 2710
        init_vlc(&s->ac_vlc_2[i], 5, 32,
            &ac_bias_1[i][0][1], 4, 2,
            &ac_bias_1[i][0][0], 4, 2);

2711
        /* group 3 AC histograms */
2712 2713 2714 2715
        init_vlc(&s->ac_vlc_3[i], 5, 32,
            &ac_bias_2[i][0][1], 4, 2,
            &ac_bias_2[i][0][0], 4, 2);

2716
        /* group 4 AC histograms */
2717 2718 2719 2720 2721
        init_vlc(&s->ac_vlc_4[i], 5, 32,
            &ac_bias_3[i][0][1], 4, 2,
            &ac_bias_3[i][0][0], 4, 2);
    }

2722
    /* build quantization zigzag table */
2723
    for (i = 0; i < 64; i++)
M
Mike Melanson 已提交
2724
        zigzag_index[dezigzag_index[i]] = i;
2725 2726 2727 2728 2729

    /* work out the block mapping tables */
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2730
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2731 2732
    init_block_mapping(s);

2733 2734 2735 2736
    for (i = 0; i < 3; i++) {
        s->current_frame.data[i] = NULL;
        s->last_frame.data[i] = NULL;
        s->golden_frame.data[i] = NULL;
2737 2738
    }

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
    return 0;
}

/*
 * This is the ffmpeg/libavcodec API frame decode function.
 */
static int vp3_decode_frame(AVCodecContext *avctx, 
                            void *data, int *data_size,
                            uint8_t *buf, int buf_size)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    static int counter = 0;

    *data_size = 0;

    init_get_bits(&gb, buf, buf_size * 8);
2756 2757 2758
    
    if (s->theora && get_bits1(&gb))
    {
2759
	av_log(s->avctx, AV_LOG_ERROR, "Theora: bad frame indicator\n");
2760 2761
	return -1;
    }
2762

2763
    s->keyframe = !get_bits1(&gb);
2764
    if (s->theora)
2765
    {
2766 2767 2768 2769 2770 2771 2772 2773
	s->last_quality_index = s->quality_index;
	s->quality_index = get_bits(&gb, 6);
	if ( s->keyframe)
	{
	    if (get_bits1(&gb))
		av_log(s->avctx, AV_LOG_ERROR, "Theora: warning, unsupported keyframe coding type?!\n");
	    skip_bits(&gb, 2); /* reserved? */
	}
2774 2775
    }
    else
2776
    {
2777
	skip_bits(&gb, 1);
2778 2779 2780
	s->last_quality_index = s->quality_index;
	s->quality_index = get_bits(&gb, 6);
    }
2781

2782 2783
    debug_vp3(" VP3 %sframe #%d: Q index = %d\n",
	s->keyframe?"key":"", counter, s->quality_index);
2784 2785
    counter++;

2786 2787 2788
    if (s->quality_index != s->last_quality_index)
        init_dequantizer(s);

2789
    if (s->keyframe) {
2790
        /* skip the other 2 header bytes for now */
2791
        if (!s->theora) skip_bits(&gb, 16);
2792 2793 2794
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
2795
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2796 2797 2798 2799 2800 2801
        } else {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
            if (s->last_frame.data[0])
                avctx->release_buffer(avctx, &s->last_frame);
        }
2802

2803
        s->golden_frame.reference = 3;
2804
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2805
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2806 2807 2808 2809
            return -1;
        }

        /* golden frame is also the current frame */
2810
        memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
2811 2812 2813

        /* time to figure out pixel addresses? */
        if (!s->pixel_addresses_inited)
2814 2815 2816 2817 2818 2819
	{
	    if (!s->flipped_image)
        	vp3_calculate_pixel_addresses(s);
	    else
		theora_calculate_pixel_addresses(s);
	}
2820 2821
    } else {
        /* allocate a new current frame */
2822
        s->current_frame.reference = 3;
2823
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2824
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2825 2826 2827 2828
            return -1;
        }
    }

M
Michael Niedermayer 已提交
2829 2830 2831
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
    s->current_frame.qstride= 0;

2832 2833
    init_frame(s, &gb);

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
#if KEYFRAMES_ONLY
if (!s->keyframe) {

    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
        s->current_frame.linesize[0] * s->height);
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
        s->current_frame.linesize[1] * s->height / 2);
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
        s->current_frame.linesize[2] * s->height / 2);

} else {
#endif

    if (unpack_superblocks(s, &gb) ||
        unpack_modes(s, &gb) ||
        unpack_vectors(s, &gb) ||
        unpack_dct_coeffs(s, &gb)) {

2852
        av_log(s->avctx, AV_LOG_ERROR, "  vp3: could not decode frame\n");
2853 2854
        return -1;
    }
2855 2856

    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2857
    render_fragments(s, 0, s->width, s->height, 0);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869

    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
        reverse_dc_prediction(s, s->u_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        reverse_dc_prediction(s, s->v_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        render_fragments(s, s->u_fragment_start, s->width / 2, s->height / 2, 1);
        render_fragments(s, s->v_fragment_start, s->width / 2, s->height / 2, 2);
    } else {
        memset(s->current_frame.data[1], 0x80, s->width * s->height / 4);
        memset(s->current_frame.data[2], 0x80, s->width * s->height / 4);
    }
2870

2871 2872 2873 2874
#if KEYFRAMES_ONLY
}
#endif

2875 2876 2877
    *data_size=sizeof(AVFrame);
    *(AVFrame*)data= s->current_frame;

2878 2879 2880 2881 2882
    /* release the last frame, if it is allocated and if it is not the
     * golden frame */
    if ((s->last_frame.data[0]) &&
        (s->last_frame.data[0] != s->golden_frame.data[0]))
        avctx->release_buffer(avctx, &s->last_frame);
2883

2884 2885
    /* shuffle frames (last = current) */
    memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
2886
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

    return buf_size;
}

/*
 * This is the ffmpeg/libavcodec API module cleanup function.
 */
static int vp3_decode_end(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    av_free(s->all_fragments);
    av_free(s->coded_fragment_list);
    av_free(s->superblock_fragments);
    av_free(s->superblock_macroblocks);
    av_free(s->macroblock_fragments);
2903
    av_free(s->macroblock_coding);
2904
    
2905
    /* release all frames */
2906
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2907 2908 2909 2910 2911
        avctx->release_buffer(avctx, &s->golden_frame);
    if (s->last_frame.data[0])
        avctx->release_buffer(avctx, &s->last_frame);
    /* no need to release the current_frame since it will always be pointing
     * to the same frame as either the golden or last frame */
2912 2913 2914 2915

    return 0;
}

2916 2917 2918
static int theora_decode_header(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    int major, minor, micro;

    major = get_bits(&gb, 8); /* version major */
    minor = get_bits(&gb, 8); /* version minor */
    micro = get_bits(&gb, 8); /* version micro */
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %d.%d.%d\n",
	major, minor, micro);

    /* 3.3.0 aka alpha3 has the same frame orientation as original vp3 */
    /* but previous versions have the image flipped relative to vp3 */
    if ((major <= 3) && (minor < 3))
    {
	s->flipped_image = 1;
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
    }
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

    s->width = get_bits(&gb, 16) << 4;
    s->height = get_bits(&gb, 16) << 4;
    
    skip_bits(&gb, 24); /* frame width */
    skip_bits(&gb, 24); /* frame height */

    skip_bits(&gb, 8); /* offset x */
    skip_bits(&gb, 8); /* offset y */

    skip_bits(&gb, 32); /* fps numerator */
    skip_bits(&gb, 32); /* fps denumerator */
    skip_bits(&gb, 24); /* aspect numerator */
    skip_bits(&gb, 24); /* aspect denumerator */
    
    skip_bits(&gb, 5); /* keyframe frequency force */
    skip_bits(&gb, 8); /* colorspace */
    skip_bits(&gb, 24); /* bitrate */

    skip_bits(&gb, 6); /* last(?) quality index */
    
//    align_get_bits(&gb);
    
    avctx->width = s->width;
    avctx->height = s->height;

    vp3_decode_init(avctx);

    return 0;
}

A
Alex Beregszaszi 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb)
{
    int nb_comments, i, tmp;

    tmp = get_bits(&gb, 32);
    while(tmp-=8)
	skip_bits(&gb, 8);

    nb_comments = get_bits(&gb, 32);
    for (i = 0; i < nb_comments; i++)
    {
	tmp = get_bits(&gb, 32);
	while(tmp-=8)
	    skip_bits(&gb, 8);
    }
    
    return 0;
}

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i;
    
    /* quality threshold table */
    for (i = 0; i < 64; i++)
	s->coded_quality_threshold[i] = get_bits(&gb, 16);

    /* dc scale factor table */
    for (i = 0; i < 64; i++)
	s->coded_dc_scale_factor[i] = get_bits(&gb, 16);

    /* y coeffs */
    for (i = 0; i < 64; i++)
	s->coded_intra_y_dequant[i] = get_bits(&gb, 8);

    /* uv coeffs */
    for (i = 0; i < 64; i++)
	s->coded_intra_c_dequant[i] = get_bits(&gb, 8);

    /* inter coeffs */
    for (i = 0; i < 64; i++)
	s->coded_inter_dequant[i] = get_bits(&gb, 8);
    
    s->theora_tables = 1;
    
    return 0;
}

static int theora_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    int ptype;
    
    s->theora = 1;

    if (!avctx->extradata_size)
	return -1;

    init_get_bits(&gb, avctx->extradata, avctx->extradata_size);

    ptype = get_bits(&gb, 8);
    debug_vp3("Theora headerpacket type: %x\n", ptype);
	    
    if (!(ptype & 0x80))
	return -1;
	
    skip_bits(&gb, 6*8); /* "theora" */
	
    switch(ptype)
    {
        case 0x80:
            theora_decode_header(avctx, gb);
	    vp3_decode_init(avctx);
    	    break;
	case 0x81:
A
Alex Beregszaszi 已提交
3042
	    theora_decode_comments(avctx, gb);
3043 3044 3045 3046 3047 3048 3049 3050 3051
	    break;
	case 0x82:
	    theora_decode_tables(avctx, gb);
	    break;
    }

    return 0;
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
AVCodec vp3_decoder = {
    "vp3",
    CODEC_TYPE_VIDEO,
    CODEC_ID_VP3,
    sizeof(Vp3DecodeContext),
    vp3_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

AVCodec theora_decoder = {
    "theora",
    CODEC_TYPE_VIDEO,
    CODEC_ID_THEORA,
    sizeof(Vp3DecodeContext),
    theora_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};