vp3.c 103.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17 18 19 20 21 22
 *
 */

/**
 * @file vp3.c
 * On2 VP3 Video Decoder
23 24 25 26 27 28
 *
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 * For more information about the VP3 coding process, visit:
 *   http://multimedia.cx/
 *
 * Theora decoder by Alex Beregszaszi
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "common.h"
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"

#include "vp3data.h"

#define FRAGMENT_PIXELS 8

45
/*
46
 * Debugging Variables
47
 *
48 49 50
 * Define one or more of the following compile-time variables to 1 to obtain
 * elaborate information about certain aspects of the decoding process.
 *
51
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52 53 54 55 56 57 58 59 60 61 62 63
 * DEBUG_VP3: high-level decoding flow
 * DEBUG_INIT: initialization parameters
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
 * DEBUG_MODES: unpacking the coding modes for individual fragments
 * DEBUG_VECTORS: display the motion vectors
 * DEBUG_TOKEN: display exhaustive information about each DCT token
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
 * DEBUG_DC_PRED: display the process of reversing DC prediction
 * DEBUG_IDCT: show every detail of the IDCT process
 */

64 65
#define KEYFRAMES_ONLY 0

A
Alex Beregszaszi 已提交
66
#define DEBUG_VP3 0
67 68 69 70 71 72 73 74 75 76 77
#define DEBUG_INIT 0
#define DEBUG_DEQUANTIZERS 0
#define DEBUG_BLOCK_CODING 0
#define DEBUG_MODES 0
#define DEBUG_VECTORS 0
#define DEBUG_TOKEN 0
#define DEBUG_VLC 0
#define DEBUG_DC_PRED 0
#define DEBUG_IDCT 0

#if DEBUG_VP3
A
Alex Beregszaszi 已提交
78
#define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
79 80 81 82 83
#else
static inline void debug_vp3(const char *format, ...) { }
#endif

#if DEBUG_INIT
A
Alex Beregszaszi 已提交
84
#define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
85 86 87 88 89
#else
static inline void debug_init(const char *format, ...) { }
#endif

#if DEBUG_DEQUANTIZERS
A
Alex Beregszaszi 已提交
90
#define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
91
#else
92
static inline void debug_dequantizers(const char *format, ...) { }
93 94 95
#endif

#if DEBUG_BLOCK_CODING
A
Alex Beregszaszi 已提交
96
#define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
97
#else
98
static inline void debug_block_coding(const char *format, ...) { }
99 100 101
#endif

#if DEBUG_MODES
102
#define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
103
#else
104
static inline void debug_modes(const char *format, ...) { }
105 106 107
#endif

#if DEBUG_VECTORS
A
Alex Beregszaszi 已提交
108
#define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
109
#else
110
static inline void debug_vectors(const char *format, ...) { }
111 112
#endif

113
#if DEBUG_TOKEN
A
Alex Beregszaszi 已提交
114
#define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
115
#else
116
static inline void debug_token(const char *format, ...) { }
117 118 119
#endif

#if DEBUG_VLC
A
Alex Beregszaszi 已提交
120
#define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
121
#else
122
static inline void debug_vlc(const char *format, ...) { }
123 124 125
#endif

#if DEBUG_DC_PRED
A
Alex Beregszaszi 已提交
126
#define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
127
#else
128
static inline void debug_dc_pred(const char *format, ...) { }
129 130 131
#endif

#if DEBUG_IDCT
A
Alex Beregszaszi 已提交
132
#define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
133
#else
134
static inline void debug_idct(const char *format, ...) { }
135 136
#endif

137 138 139 140 141 142 143
typedef struct Coeff {
    struct Coeff *next;
    DCTELEM coeff;
    uint8_t index;
} Coeff;

//FIXME split things out into their own arrays
144
typedef struct Vp3Fragment {
145
    Coeff *next_coeff;
146 147 148 149
    /* address of first pixel taking into account which plane the fragment
     * lives on as well as the plane stride */
    int first_pixel;
    /* this is the macroblock that the fragment belongs to */
150 151 152 153 154
    uint16_t macroblock;
    uint8_t coding_method;
    uint8_t coeff_count;
    int8_t motion_x;
    int8_t motion_y;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
} Vp3Fragment;

#define SB_NOT_CODED        0
#define SB_PARTIALLY_CODED  1
#define SB_FULLY_CODED      2

#define MODE_INTER_NO_MV      0
#define MODE_INTRA            1
#define MODE_INTER_PLUS_MV    2
#define MODE_INTER_LAST_MV    3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN     5
#define MODE_GOLDEN_MV        6
#define MODE_INTER_FOURMV     7
#define CODING_MODE_COUNT     8

/* special internal mode */
#define MODE_COPY             8

/* There are 6 preset schemes, plus a free-form scheme */
static int ModeAlphabet[7][CODING_MODE_COUNT] =
{
    /* this is the custom scheme */
    { 0, 0, 0, 0, 0, 0, 0, 0 },

    /* scheme 1: Last motion vector dominates */
181
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
182
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
183
         MODE_INTRA,            MODE_USING_GOLDEN,
184 185 186
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 2 */
187
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
188
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
189
         MODE_INTRA,            MODE_USING_GOLDEN,
190 191 192
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 3 */
193
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
194
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
195
         MODE_INTRA,            MODE_USING_GOLDEN,
196 197 198
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 4 */
199
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
200
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
201
         MODE_INTRA,            MODE_USING_GOLDEN,
202 203 204
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 5: No motion vector dominates */
205
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
206
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
207
         MODE_INTRA,            MODE_USING_GOLDEN,
208 209 210
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 6 */
211
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
212
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
213
         MODE_INTER_PLUS_MV,    MODE_INTRA,
214 215 216 217 218 219 220 221
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

};

#define MIN_DEQUANT_VAL 2

typedef struct Vp3DecodeContext {
    AVCodecContext *avctx;
222
    int theora, theora_tables;
A
Alex Beregszaszi 已提交
223
    int version;
224 225 226 227 228 229
    int width, height;
    AVFrame golden_frame;
    AVFrame last_frame;
    AVFrame current_frame;
    int keyframe;
    DSPContext dsp;
230
    int flipped_image;
231 232 233 234 235 236 237

    int quality_index;
    int last_quality_index;

    int superblock_count;
    int superblock_width;
    int superblock_height;
238 239 240 241
    int y_superblock_width;
    int y_superblock_height;
    int c_superblock_width;
    int c_superblock_height;
242 243 244 245 246 247 248 249 250 251 252 253 254
    int u_superblock_start;
    int v_superblock_start;
    unsigned char *superblock_coding;

    int macroblock_count;
    int macroblock_width;
    int macroblock_height;

    int fragment_count;
    int fragment_width;
    int fragment_height;

    Vp3Fragment *all_fragments;
255 256
    Coeff *coeffs;
    Coeff *next_coeff;
257 258
    int u_fragment_start;
    int v_fragment_start;
259

M
Michael Niedermayer 已提交
260
    ScanTable scantable;
261

262 263
    /* tables */
    uint16_t coded_dc_scale_factor[64];
264
    uint32_t coded_ac_scale_factor[64];
265 266 267
    uint16_t coded_intra_y_dequant[64];
    uint16_t coded_intra_c_dequant[64];
    uint16_t coded_inter_dequant[64];
268 269 270 271 272 273 274 275 276 277 278 279 280

    /* this is a list of indices into the all_fragments array indicating
     * which of the fragments are coded */
    int *coded_fragment_list;
    int coded_fragment_list_index;
    int pixel_addresses_inited;

    VLC dc_vlc[16];
    VLC ac_vlc_1[16];
    VLC ac_vlc_2[16];
    VLC ac_vlc_3[16];
    VLC ac_vlc_4[16];

281 282 283 284 285
    VLC superblock_run_length_vlc;
    VLC fragment_run_length_vlc;
    VLC mode_code_vlc;
    VLC motion_vector_vlc;

286 287
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
     * index into them */
288 289 290
    DECLARE_ALIGNED_16(int16_t, intra_y_dequant[64]);
    DECLARE_ALIGNED_16(int16_t, intra_c_dequant[64]);
    DECLARE_ALIGNED_16(int16_t, inter_dequant[64]);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

    /* This table contains superblock_count * 16 entries. Each set of 16
     * numbers corresponds to the fragment indices 0..15 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_fragments;

    /* This table contains superblock_count * 4 entries. Each set of 4
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_macroblocks;

    /* This table contains macroblock_count * 6 entries. Each set of 6
     * numbers corresponds to the fragment indices 0..5 which comprise
     * the macroblock (4 Y fragments and 2 C fragments). */
    int *macroblock_fragments;
308
    /* This is an array that indicates how a particular macroblock
309
     * is coded. */
310
    unsigned char *macroblock_coding;
311

312 313 314 315 316
    int first_coded_y_fragment;
    int first_coded_c_fragment;
    int last_coded_y_fragment;
    int last_coded_c_fragment;

M
Michael Niedermayer 已提交
317
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
M
Michael Niedermayer 已提交
318
    uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
319

320 321 322 323 324 325 326 327 328
    /* Huffman decode */
    int hti;
    unsigned int hbits;
    int entries;
    int huff_code_size;
    uint16_t huffman_table[80][32][2];

    uint32_t filter_limit_values[64];
    int bounding_values_array[256];
329 330
} Vp3DecodeContext;

331
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
A
Alex Beregszaszi 已提交
332

333 334 335 336 337 338 339 340
/************************************************************************
 * VP3 specific functions
 ************************************************************************/

/*
 * This function sets up all of the various blocks mappings:
 * superblocks <-> fragments, macroblocks <-> fragments,
 * superblocks <-> macroblocks
341 342
 *
 * Returns 0 is successful; returns 1 if *anything* went wrong.
343
 */
344
static int init_block_mapping(Vp3DecodeContext *s)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
{
    int i, j;
    signed int hilbert_walk_y[16];
    signed int hilbert_walk_c[16];
    signed int hilbert_walk_mb[4];

    int current_fragment = 0;
    int current_width = 0;
    int current_height = 0;
    int right_edge = 0;
    int bottom_edge = 0;
    int superblock_row_inc = 0;
    int *hilbert = NULL;
    int mapping_index = 0;

    int current_macroblock;
    int c_fragment;

    signed char travel_width[16] = {
364
         1,  1,  0, -1,
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
         0,  0,  1,  0,
         1,  0,  1,  0,
         0, -1,  0,  1
    };

    signed char travel_height[16] = {
         0,  0,  1,  0,
         1,  1,  0, -1,
         0,  1,  0, -1,
        -1,  0, -1,  0
    };

    signed char travel_width_mb[4] = {
         1,  0,  1,  0
    };

    signed char travel_height_mb[4] = {
         0,  1,  0, -1
    };

    debug_vp3("  vp3: initialize block mapping tables\n");

    /* figure out hilbert pattern per these frame dimensions */
    hilbert_walk_y[0]  = 1;
    hilbert_walk_y[1]  = 1;
    hilbert_walk_y[2]  = s->fragment_width;
    hilbert_walk_y[3]  = -1;
    hilbert_walk_y[4]  = s->fragment_width;
    hilbert_walk_y[5]  = s->fragment_width;
    hilbert_walk_y[6]  = 1;
    hilbert_walk_y[7]  = -s->fragment_width;
    hilbert_walk_y[8]  = 1;
    hilbert_walk_y[9]  = s->fragment_width;
    hilbert_walk_y[10]  = 1;
    hilbert_walk_y[11] = -s->fragment_width;
    hilbert_walk_y[12] = -s->fragment_width;
    hilbert_walk_y[13] = -1;
    hilbert_walk_y[14] = -s->fragment_width;
    hilbert_walk_y[15] = 1;

    hilbert_walk_c[0]  = 1;
    hilbert_walk_c[1]  = 1;
    hilbert_walk_c[2]  = s->fragment_width / 2;
    hilbert_walk_c[3]  = -1;
    hilbert_walk_c[4]  = s->fragment_width / 2;
    hilbert_walk_c[5]  = s->fragment_width / 2;
    hilbert_walk_c[6]  = 1;
    hilbert_walk_c[7]  = -s->fragment_width / 2;
    hilbert_walk_c[8]  = 1;
    hilbert_walk_c[9]  = s->fragment_width / 2;
    hilbert_walk_c[10]  = 1;
    hilbert_walk_c[11] = -s->fragment_width / 2;
    hilbert_walk_c[12] = -s->fragment_width / 2;
    hilbert_walk_c[13] = -1;
    hilbert_walk_c[14] = -s->fragment_width / 2;
    hilbert_walk_c[15] = 1;

    hilbert_walk_mb[0] = 1;
    hilbert_walk_mb[1] = s->macroblock_width;
    hilbert_walk_mb[2] = 1;
    hilbert_walk_mb[3] = -s->macroblock_width;

    /* iterate through each superblock (all planes) and map the fragments */
    for (i = 0; i < s->superblock_count; i++) {
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
            i, s->u_superblock_start, s->v_superblock_start);

        /* time to re-assign the limits? */
        if (i == 0) {

            /* start of Y superblocks */
            right_edge = s->fragment_width;
            bottom_edge = s->fragment_height;
438
            current_width = -1;
439
            current_height = 0;
440
            superblock_row_inc = 3 * s->fragment_width -
441
                (s->y_superblock_width * 4 - s->fragment_width);
442 443 444 445 446 447 448 449 450 451
            hilbert = hilbert_walk_y;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = -1;

        } else if (i == s->u_superblock_start) {

            /* start of U superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
452
            current_width = -1;
453
            current_height = 0;
454
            superblock_row_inc = 3 * (s->fragment_width / 2) -
455
                (s->c_superblock_width * 4 - s->fragment_width / 2);
456 457 458 459 460 461 462 463 464 465
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->u_fragment_start - 1;

        } else if (i == s->v_superblock_start) {

            /* start of V superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
466
            current_width = -1;
467
            current_height = 0;
468
            superblock_row_inc = 3 * (s->fragment_width / 2) -
469
                (s->c_superblock_width * 4 - s->fragment_width / 2);
470 471 472 473 474 475 476
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->v_fragment_start - 1;

        }

477
        if (current_width >= right_edge - 1) {
478
            /* reset width and move to next superblock row */
479
            current_width = -1;
480 481 482 483 484 485 486 487 488
            current_height += 4;

            /* fragment is now at the start of a new superblock row */
            current_fragment += superblock_row_inc;
        }

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {
            current_fragment += hilbert[j];
489
            current_width += travel_width[j];
490 491 492
            current_height += travel_height[j];

            /* check if the fragment is in bounds */
493
            if ((current_width < right_edge) &&
494 495
                (current_height < bottom_edge)) {
                s->superblock_fragments[mapping_index] = current_fragment;
496
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
497 498
                    s->superblock_fragments[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
499 500
            } else {
                s->superblock_fragments[mapping_index] = -1;
501
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
502 503
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
504 505 506 507 508 509 510 511 512 513
            }

            mapping_index++;
        }
    }

    /* initialize the superblock <-> macroblock mapping; iterate through
     * all of the Y plane superblocks to build this mapping */
    right_edge = s->macroblock_width;
    bottom_edge = s->macroblock_height;
514
    current_width = -1;
515
    current_height = 0;
516 517
    superblock_row_inc = s->macroblock_width -
        (s->y_superblock_width * 2 - s->macroblock_width);;
518 519 520 521 522
    hilbert = hilbert_walk_mb;
    mapping_index = 0;
    current_macroblock = -1;
    for (i = 0; i < s->u_superblock_start; i++) {

523
        if (current_width >= right_edge - 1) {
524
            /* reset width and move to next superblock row */
525
            current_width = -1;
526 527 528 529 530 531 532 533 534
            current_height += 2;

            /* macroblock is now at the start of a new superblock row */
            current_macroblock += superblock_row_inc;
        }

        /* iterate through each potential macroblock in the superblock */
        for (j = 0; j < 4; j++) {
            current_macroblock += hilbert_walk_mb[j];
535
            current_width += travel_width_mb[j];
536 537 538
            current_height += travel_height_mb[j];

            /* check if the macroblock is in bounds */
539
            if ((current_width < right_edge) &&
540 541
                (current_height < bottom_edge)) {
                s->superblock_macroblocks[mapping_index] = current_macroblock;
542 543 544
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
                    s->superblock_macroblocks[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
545 546
            } else {
                s->superblock_macroblocks[mapping_index] = -1;
547 548 549
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
            }

            mapping_index++;
        }
    }

    /* initialize the macroblock <-> fragment mapping */
    current_fragment = 0;
    current_macroblock = 0;
    mapping_index = 0;
    for (i = 0; i < s->fragment_height; i += 2) {

        for (j = 0; j < s->fragment_width; j += 2) {

            debug_init("    macroblock %d contains fragments: ", current_macroblock);
            s->all_fragments[current_fragment].macroblock = current_macroblock;
            s->macroblock_fragments[mapping_index++] = current_fragment;
            debug_init("%d ", current_fragment);

            if (j + 1 < s->fragment_width) {
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
                debug_init("%d ", current_fragment + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if (i + 1 < s->fragment_height) {
577
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
578
                    current_macroblock;
579
                s->macroblock_fragments[mapping_index++] =
580 581 582 583 584 585
                    current_fragment + s->fragment_width;
                debug_init("%d ", current_fragment + s->fragment_width);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
586
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
587
                    current_macroblock;
588
                s->macroblock_fragments[mapping_index++] =
589 590 591 592 593 594
                    current_fragment + s->fragment_width + 1;
                debug_init("%d ", current_fragment + s->fragment_width + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            /* C planes */
595
            c_fragment = s->u_fragment_start +
596
                (i * s->fragment_width / 4) + (j / 2);
597
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
598 599 600
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

601
            c_fragment = s->v_fragment_start +
602
                (i * s->fragment_width / 4) + (j / 2);
603
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
604 605 606 607 608 609 610
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            debug_init("\n");

            if (j + 2 <= s->fragment_width)
                current_fragment += 2;
611
            else
612 613 614 615 616 617
                current_fragment++;
            current_macroblock++;
        }

        current_fragment += s->fragment_width;
    }
618 619

    return 0;  /* successful path out */
620 621 622 623 624 625 626 627 628 629 630 631 632
}

/*
 * This function wipes out all of the fragment data.
 */
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i;

    /* zero out all of the fragment information */
    s->coded_fragment_list_index = 0;
    for (i = 0; i < s->fragment_count; i++) {
        s->all_fragments[i].coeff_count = 0;
633 634 635
        s->all_fragments[i].motion_x = 127;
        s->all_fragments[i].motion_y = 127;
        s->all_fragments[i].next_coeff= NULL;
636 637 638
        s->coeffs[i].index=
        s->coeffs[i].coeff=0;
        s->coeffs[i].next= NULL;
639 640 641 642
    }
}

/*
643
 * This function sets up the dequantization tables used for a particular
644 645 646 647 648
 * frame.
 */
static void init_dequantizer(Vp3DecodeContext *s)
{

649
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
650
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
651 652 653 654
    int i, j;

    debug_vp3("  vp3: initializing dequantization tables\n");

655
    /*
656 657 658 659 660 661 662
     * Scale dequantizers:
     *
     *   quantizer * sf
     *   --------------
     *        100
     *
     * where sf = dc_scale_factor for DC quantizer
663
     *         or ac_scale_factor for AC quantizer
664 665 666
     *
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
     */
667
#define SCALER 4
668 669

    /* scale DC quantizers */
670
    s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
671 672 673 674
    if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_y_dequant[0] *= SCALER;

675
    s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
676 677 678 679
    if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_c_dequant[0] *= SCALER;

680
    s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
681 682 683 684 685 686 687
    if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
        s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
    s->inter_dequant[0] *= SCALER;

    /* scale AC quantizers, zigzag at the same time in preparation for
     * the dequantization phase */
    for (i = 1; i < 64; i++) {
M
Michael Niedermayer 已提交
688 689
        int k= s->scantable.scantable[i];
        j = s->scantable.permutated[i];
690

M
Michael Niedermayer 已提交
691
        s->intra_y_dequant[j] = s->coded_intra_y_dequant[k] * ac_scale_factor / 100;
692 693 694 695
        if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_y_dequant[j] *= SCALER;

M
Michael Niedermayer 已提交
696
        s->intra_c_dequant[j] = s->coded_intra_c_dequant[k] * ac_scale_factor / 100;
697 698 699 700
        if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_c_dequant[j] *= SCALER;

M
Michael Niedermayer 已提交
701
        s->inter_dequant[j] = s->coded_inter_dequant[k] * ac_scale_factor / 100;
702 703 704 705
        if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
            s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
        s->inter_dequant[j] *= SCALER;
    }
706

M
Michael Niedermayer 已提交
707
    memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

    /* print debug information as requested */
    debug_dequantizers("intra Y dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("intra C dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("interframe dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->inter_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/*
 * This function initializes the loop filter boundary limits if the frame's
 * quality index is different from the previous frame's.
 */
static void init_loop_filter(Vp3DecodeContext *s)
{
    int *bounding_values= s->bounding_values_array+127;
    int filter_limit;
    int x;

    filter_limit = s->filter_limit_values[s->quality_index];

    /* set up the bounding values */
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
    for (x = 0; x < filter_limit; x++) {
        bounding_values[-x - filter_limit] = -filter_limit + x;
        bounding_values[-x] = -x;
        bounding_values[x] = x;
        bounding_values[x + filter_limit] = filter_limit - x;
    }
}

760
/*
761
 * This function unpacks all of the superblock/macroblock/fragment coding
762 763
 * information from the bitstream.
 */
764
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
765 766 767 768 769 770
{
    int bit = 0;
    int current_superblock = 0;
    int current_run = 0;
    int decode_fully_flags = 0;
    int decode_partial_blocks = 0;
771
    int first_c_fragment_seen;
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

    int i, j;
    int current_fragment;

    debug_vp3("  vp3: unpacking superblock coding\n");

    if (s->keyframe) {

        debug_vp3("    keyframe-- all superblocks are fully coded\n");
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);

    } else {

        /* unpack the list of partially-coded superblocks */
        bit = get_bits(gb, 1);
787
        /* toggle the bit because as soon as the first run length is
788 789 790
         * fetched the bit will be toggled again */
        bit ^= 1;
        while (current_superblock < s->superblock_count) {
791
            if (current_run-- == 0) {
792
                bit ^= 1;
793
                current_run = get_vlc2(gb,
794 795
                    s->superblock_run_length_vlc.table, 6, 2);
                if (current_run == 33)
796
                    current_run += get_bits(gb, 12);
797 798 799 800 801 802 803
                debug_block_coding("      setting superblocks %d..%d to %s\n",
                    current_superblock,
                    current_superblock + current_run - 1,
                    (bit) ? "partially coded" : "not coded");

                /* if any of the superblocks are not partially coded, flag
                 * a boolean to decode the list of fully-coded superblocks */
804
                if (bit == 0) {
805
                    decode_fully_flags = 1;
806
                } else {
807

808 809 810 811
                    /* make a note of the fact that there are partially coded
                     * superblocks */
                    decode_partial_blocks = 1;
                }
812
            }
813
            s->superblock_coding[current_superblock++] = bit;
814 815 816 817 818 819 820 821 822
        }

        /* unpack the list of fully coded superblocks if any of the blocks were
         * not marked as partially coded in the previous step */
        if (decode_fully_flags) {

            current_superblock = 0;
            current_run = 0;
            bit = get_bits(gb, 1);
823
            /* toggle the bit because as soon as the first run length is
824 825 826 827 828 829 830
             * fetched the bit will be toggled again */
            bit ^= 1;
            while (current_superblock < s->superblock_count) {

                /* skip any superblocks already marked as partially coded */
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {

831
                    if (current_run-- == 0) {
832
                        bit ^= 1;
833
                        current_run = get_vlc2(gb,
834 835
                            s->superblock_run_length_vlc.table, 6, 2);
                        if (current_run == 33)
836
                            current_run += get_bits(gb, 12);
837 838 839 840 841
                    }

                    debug_block_coding("      setting superblock %d to %s\n",
                        current_superblock,
                        (bit) ? "fully coded" : "not coded");
842
                    s->superblock_coding[current_superblock] = 2*bit;
843 844 845 846 847 848 849 850 851 852 853
                }
                current_superblock++;
            }
        }

        /* if there were partial blocks, initialize bitstream for
         * unpacking fragment codings */
        if (decode_partial_blocks) {

            current_run = 0;
            bit = get_bits(gb, 1);
854
            /* toggle the bit because as soon as the first run length is
855 856 857 858 859 860 861 862
             * fetched the bit will be toggled again */
            bit ^= 1;
        }
    }

    /* figure out which fragments are coded; iterate through each
     * superblock (all planes) */
    s->coded_fragment_list_index = 0;
863
    s->next_coeff= s->coeffs + s->fragment_count;
864 865
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
866
    first_c_fragment_seen = 0;
867
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
868 869 870 871 872 873 874
    for (i = 0; i < s->superblock_count; i++) {

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {

            /* if the fragment is in bounds, check its coding status */
            current_fragment = s->superblock_fragments[i * 16 + j];
875
            if (current_fragment >= s->fragment_count) {
876
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
877 878 879
                    current_fragment, s->fragment_count);
                return 1;
            }
880 881 882 883
            if (current_fragment != -1) {
                if (s->superblock_coding[i] == SB_NOT_CODED) {

                    /* copy all the fragments from the prior frame */
884
                    s->all_fragments[current_fragment].coding_method =
885 886 887 888 889 890
                        MODE_COPY;

                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {

                    /* fragment may or may not be coded; this is the case
                     * that cares about the fragment coding runs */
891
                    if (current_run-- == 0) {
892
                        bit ^= 1;
893
                        current_run = get_vlc2(gb,
894
                            s->fragment_run_length_vlc.table, 5, 2);
895 896 897
                    }

                    if (bit) {
898
                        /* default mode; actual mode will be decoded in
899
                         * the next phase */
900
                        s->all_fragments[current_fragment].coding_method =
901
                            MODE_INTER_NO_MV;
902
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
903
                        s->coded_fragment_list[s->coded_fragment_list_index] =
904
                            current_fragment;
905
                        if ((current_fragment >= s->u_fragment_start) &&
906 907
                            (s->last_coded_y_fragment == -1) &&
                            (!first_c_fragment_seen)) {
908 909
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
910
                            first_c_fragment_seen = 1;
911 912
                        }
                        s->coded_fragment_list_index++;
913
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
914 915 916 917 918 919 920 921 922 923 924 925 926 927
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
                            i, current_fragment);
                    } else {
                        /* not coded; copy this fragment from the prior frame */
                        s->all_fragments[current_fragment].coding_method =
                            MODE_COPY;
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
                            i, current_fragment);
                    }

                } else {

                    /* fragments are fully coded in this superblock; actual
                     * coding will be determined in next step */
928
                    s->all_fragments[current_fragment].coding_method =
929
                        MODE_INTER_NO_MV;
930
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
931
                    s->coded_fragment_list[s->coded_fragment_list_index] =
932
                        current_fragment;
933
                    if ((current_fragment >= s->u_fragment_start) &&
934 935
                        (s->last_coded_y_fragment == -1) &&
                        (!first_c_fragment_seen)) {
936 937
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
938
                        first_c_fragment_seen = 1;
939 940
                    }
                    s->coded_fragment_list_index++;
941
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
942 943 944 945 946 947
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
                        i, current_fragment);
                }
            }
        }
    }
948

949 950
    if (!first_c_fragment_seen)
        /* only Y fragments coded in this frame */
951
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
952
    else
953
        /* end the list of coded C fragments */
954
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
955

956 957 958 959 960 961
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
        s->coded_fragment_list_index,
        s->first_coded_y_fragment,
        s->last_coded_y_fragment,
        s->first_coded_c_fragment,
        s->last_coded_c_fragment);
962 963

    return 0;
964 965 966 967 968 969
}

/*
 * This function unpacks all the coding mode data for individual macroblocks
 * from the bitstream.
 */
970
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
{
    int i, j, k;
    int scheme;
    int current_macroblock;
    int current_fragment;
    int coding_mode;

    debug_vp3("  vp3: unpacking encoding modes\n");

    if (s->keyframe) {
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");

        for (i = 0; i < s->fragment_count; i++)
            s->all_fragments[i].coding_method = MODE_INTRA;

    } else {

        /* fetch the mode coding scheme for this frame */
        scheme = get_bits(gb, 3);
        debug_modes("    using mode alphabet %d\n", scheme);

        /* is it a custom coding scheme? */
        if (scheme == 0) {
            debug_modes("    custom mode alphabet ahead:\n");
            for (i = 0; i < 8; i++)
996
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
997 998 999
        }

        for (i = 0; i < 8; i++)
1000
            debug_modes("      mode[%d][%d] = %d\n", scheme, i,
1001 1002 1003 1004 1005 1006 1007 1008 1009
                ModeAlphabet[scheme][i]);

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1010
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1011
                    continue;
1012
                if (current_macroblock >= s->macroblock_count) {
1013
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1014 1015 1016
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1017 1018 1019 1020 1021

                /* mode 7 means get 3 bits for each coding mode */
                if (scheme == 7)
                    coding_mode = get_bits(gb, 3);
                else
1022 1023
                    coding_mode = ModeAlphabet[scheme]
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
1024

1025
                s->macroblock_coding[current_macroblock] = coding_mode;
1026
                for (k = 0; k < 6; k++) {
1027
                    current_fragment =
1028
                        s->macroblock_fragments[current_macroblock * 6 + k];
1029 1030 1031
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1032
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1033 1034 1035
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1036
                    if (s->all_fragments[current_fragment].coding_method !=
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
                        MODE_COPY)
                        s->all_fragments[current_fragment].coding_method =
                            coding_mode;
                }

                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
            }
        }
    }
1047 1048

    return 0;
1049 1050
}

1051 1052 1053 1054
/*
 * This function unpacks all the motion vectors for the individual
 * macroblocks from the bitstream.
 */
1055
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
{
    int i, j, k;
    int coding_mode;
    int motion_x[6];
    int motion_y[6];
    int last_motion_x = 0;
    int last_motion_y = 0;
    int prior_last_motion_x = 0;
    int prior_last_motion_y = 0;
    int current_macroblock;
    int current_fragment;

    debug_vp3("  vp3: unpacking motion vectors\n");
    if (s->keyframe) {

        debug_vp3("    keyframe-- there are no motion vectors\n");

    } else {

        memset(motion_x, 0, 6 * sizeof(int));
        memset(motion_y, 0, 6 * sizeof(int));

        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
        coding_mode = get_bits(gb, 1);
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
            (coding_mode == 0) ? "VLC" : "fixed-length");

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1090
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1091
                    continue;
1092
                if (current_macroblock >= s->macroblock_count) {
1093
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1094 1095 1096
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1097 1098

                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1099
                if (current_fragment >= s->fragment_count) {
1100
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1101 1102 1103
                        current_fragment, s->fragment_count);
                    return 1;
                }
1104
                switch (s->macroblock_coding[current_macroblock]) {
1105 1106 1107 1108 1109

                case MODE_INTER_PLUS_MV:
                case MODE_GOLDEN_MV:
                    /* all 6 fragments use the same motion vector */
                    if (coding_mode == 0) {
1110 1111
                        motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
                        motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1112
                    } else {
1113 1114
                        motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
                        motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1115
                    }
1116

1117 1118 1119 1120 1121 1122
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1123
                    if (s->macroblock_coding[current_macroblock] ==
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
                        MODE_INTER_PLUS_MV) {
                        prior_last_motion_x = last_motion_x;
                        prior_last_motion_y = last_motion_y;
                        last_motion_x = motion_x[0];
                        last_motion_y = motion_y[0];
                    }
                    break;

                case MODE_INTER_FOURMV:
                    /* fetch 4 vectors from the bitstream, one for each
                     * Y fragment, then average for the C fragment vectors */
                    motion_x[4] = motion_y[4] = 0;
                    for (k = 0; k < 4; k++) {
                        if (coding_mode == 0) {
1138 1139
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1140
                        } else {
1141 1142
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1143 1144 1145 1146 1147
                        }
                        motion_x[4] += motion_x[k];
                        motion_y[4] += motion_y[k];
                    }

1148
                    if (motion_x[4] >= 0)
1149 1150 1151 1152 1153
                        motion_x[4] = (motion_x[4] + 2) / 4;
                    else
                        motion_x[4] = (motion_x[4] - 2) / 4;
                    motion_x[5] = motion_x[4];

1154
                    if (motion_y[4] >= 0)
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
                        motion_y[4] = (motion_y[4] + 2) / 4;
                    else
                        motion_y[4] = (motion_y[4] - 2) / 4;
                    motion_y[5] = motion_y[4];

                    /* vector maintenance; vector[3] is treated as the
                     * last vector in this case */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[3];
                    last_motion_y = motion_y[3];
                    break;

                case MODE_INTER_LAST_MV:
                    /* all 6 fragments use the last motion vector */
                    motion_x[0] = last_motion_x;
                    motion_y[0] = last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* no vector maintenance (last vector remains the
                     * last vector) */
                    break;

                case MODE_INTER_PRIOR_LAST:
                    /* all 6 fragments use the motion vector prior to the
                     * last motion vector */
                    motion_x[0] = prior_last_motion_x;
                    motion_y[0] = prior_last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[0];
                    last_motion_y = motion_y[0];
                    break;
1197 1198 1199 1200 1201 1202 1203 1204

                default:
                    /* covers intra, inter without MV, golden without MV */
                    memset(motion_x, 0, 6 * sizeof(int));
                    memset(motion_y, 0, 6 * sizeof(int));

                    /* no vector maintenance */
                    break;
1205 1206 1207 1208 1209
                }

                /* assign the motion vectors to the correct fragments */
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
                    current_fragment,
1210
                    s->macroblock_coding[current_macroblock]);
1211
                for (k = 0; k < 6; k++) {
1212
                    current_fragment =
1213
                        s->macroblock_fragments[current_macroblock * 6 + k];
1214 1215 1216
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1217
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1218 1219 1220
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1221
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1222
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1223 1224
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
                        k, current_fragment, motion_x[k], motion_y[k]);
1225 1226 1227 1228
                }
            }
        }
    }
1229 1230

    return 0;
1231 1232
}

1233
/*
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 * data. This function unpacks all the VLCs for either the Y plane or both
 * C planes, and is called for DC coefficients or different AC coefficient
 * levels (since different coefficient types require different VLC tables.
 *
 * This function returns a residual eob run. E.g, if a particular token gave
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 * left in the current fragment range, 3 would be returned so that it could
 * be passed into the next call to this same function.
 */
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                        VLC *table, int coeff_index,
                        int first_fragment, int last_fragment,
                        int eob_run)
{
    int i;
    int token;
1252 1253
    int zero_run = 0;
    DCTELEM coeff = 0;
1254
    Vp3Fragment *fragment;
M
Michael Niedermayer 已提交
1255
    uint8_t *perm= s->scantable.permutated;
1256
    int bits_to_get;
1257

1258
    if ((first_fragment >= s->fragment_count) ||
1259 1260
        (last_fragment >= s->fragment_count)) {

1261
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1262
            first_fragment, last_fragment);
1263
        return 0;
1264 1265
    }

1266
    for (i = first_fragment; i <= last_fragment; i++) {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

        fragment = &s->all_fragments[s->coded_fragment_list[i]];
        if (fragment->coeff_count > coeff_index)
            continue;

        if (!eob_run) {
            /* decode a VLC into a token */
            token = get_vlc2(gb, table->table, 5, 3);
            debug_vlc(" token = %2d, ", token);
            /* use the token to get a zero run, a coefficient, and an eob run */
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
            if (token <= 6) {
                eob_run = eob_run_base[token];
                if (eob_run_get_bits[token])
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
                coeff = zero_run = 0;
            } else {
                bits_to_get = coeff_get_bits[token];
                if (!bits_to_get)
                    coeff = coeff_tables[token][0];
                else
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];

                zero_run = zero_run_base[token];
                if (zero_run_get_bits[token])
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
            }
1293 1294 1295 1296
        }

        if (!eob_run) {
            fragment->coeff_count += zero_run;
1297 1298 1299 1300 1301 1302 1303
            if (fragment->coeff_count < 64){
                fragment->next_coeff->coeff= coeff;
                fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
                fragment->next_coeff->next= s->next_coeff;
                s->next_coeff->next=NULL;
                fragment->next_coeff= s->next_coeff++;
            }
1304
            debug_vlc(" fragment %d coeff = %d\n",
1305
                s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
1306
        } else {
1307
            fragment->coeff_count |= 128;
1308
            debug_vlc(" fragment %d eob with %d coefficients\n",
1309
                s->coded_fragment_list[i], fragment->coeff_count&127);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
            eob_run--;
        }
    }

    return eob_run;
}

/*
 * This function unpacks all of the DCT coefficient data from the
 * bitstream.
 */
1321
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
{
    int i;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    int residual_eob_run = 0;

    /* fetch the DC table indices */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    /* unpack the Y plane DC coefficients */
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
        dc_y_table);
1337
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1338
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1339 1340 1341 1342 1343

    /* unpack the C plane DC coefficients */
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
        dc_c_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1344
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1345

1346
    /* fetch the AC table indices */
1347 1348 1349
    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

1350
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1351 1352 1353 1354
    for (i = 1; i <= 5; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1355
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1356
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1357 1358 1359

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1360
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1361
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1362 1363
    }

1364
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1365 1366 1367 1368
    for (i = 6; i <= 14; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1369
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1370
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1371 1372 1373

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1374
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1375
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1376 1377
    }

1378
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1379 1380 1381 1382
    for (i = 15; i <= 27; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1383
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1384
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1385 1386 1387

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1388
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1389
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1390 1391
    }

1392
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1393 1394 1395 1396
    for (i = 28; i <= 63; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1397
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1398
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1399 1400 1401

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1402
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1403
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1404
    }
1405 1406

    return 0;
1407 1408 1409 1410
}

/*
 * This function reverses the DC prediction for each coded fragment in
1411
 * the frame. Much of this function is adapted directly from the original
1412 1413 1414 1415 1416
 * VP3 source code.
 */
#define COMPATIBLE_FRAME(x) \
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1417
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1418 1419 1420 1421 1422
static inline int iabs (int x) { return ((x < 0) ? -x : x); }

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
1423
                                  int fragment_height)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
{

#define PUL 8
#define PU 4
#define PUR 2
#define PL 1

    int x, y;
    int i = first_fragment;

    /*
     * Fragment prediction groups:
     *
     * 32222222226
     * 10000000004
     * 10000000004
     * 10000000004
     * 10000000004
     *
1443
     * Note: Groups 5 and 7 do not exist as it would mean that the
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
     */
    int predictor_group;
    short predicted_dc;

    /* validity flags for the left, up-left, up, and up-right fragments */
    int fl, ful, fu, fur;

    /* DC values for the left, up-left, up, and up-right fragments */
    int vl, vul, vu, vur;

    /* indices for the left, up-left, up, and up-right fragments */
    int l, ul, u, ur;

1458
    /*
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
     * The 6 fields mean:
     *   0: up-left multiplier
     *   1: up multiplier
     *   2: up-right multiplier
     *   3: left multiplier
     *   4: mask
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
     */
    int predictor_transform[16][6] = {
        {  0,  0,  0,  0,   0,  0 },
        {  0,  0,  0,  1,   0,  0 },        // PL
        {  0,  0,  1,  0,   0,  0 },        // PUR
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PU
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
        {  1,  0,  0,  0,   0,  0 },        // PUL
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
    };

    /* This table shows which types of blocks can use other blocks for
     * prediction. For example, INTRA is the only mode in this table to
     * have a frame number of 0. That means INTRA blocks can only predict
1489
     * from other INTRA blocks. There are 2 golden frame coding types;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
     * blocks encoding in these modes can only predict from other blocks
     * that were encoded with these 1 of these 2 modes. */
    unsigned char compatible_frame[8] = {
        1,    /* MODE_INTER_NO_MV */
        0,    /* MODE_INTRA */
        1,    /* MODE_INTER_PLUS_MV */
        1,    /* MODE_INTER_LAST_MV */
        1,    /* MODE_INTER_PRIOR_MV */
        2,    /* MODE_USING_GOLDEN */
        2,    /* MODE_GOLDEN_MV */
        1     /* MODE_INTER_FOUR_MV */
    };
    int current_frame_type;

    /* there is a last DC predictor for each of the 3 frame types */
    short last_dc[3];

    int transform = 0;

    debug_vp3("  vp3: reversing DC prediction\n");

    vul = vu = vur = vl = 0;
    last_dc[0] = last_dc[1] = last_dc[2] = 0;

    /* for each fragment row... */
    for (y = 0; y < fragment_height; y++) {

        /* for each fragment in a row... */
        for (x = 0; x < fragment_width; x++, i++) {

            /* reverse prediction if this block was coded */
            if (s->all_fragments[i].coding_method != MODE_COPY) {

1523
                current_frame_type =
1524 1525 1526 1527
                    compatible_frame[s->all_fragments[i].coding_method];
                predictor_group = (x == 0) + ((y == 0) << 1) +
                    ((x + 1 == fragment_width) << 2);
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
1528
                    i, predictor_group, DC_COEFF(i));
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

                switch (predictor_group) {

                case 0:
                    /* main body of fragments; consider all 4 possible
                     * fragments for prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1543 1544 1545 1546
                    vul = DC_COEFF(ul);
                    vu = DC_COEFF(u);
                    vur = DC_COEFF(ur);
                    vl = DC_COEFF(l);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);

                    break;

                case 1:
                    /* left column of fragments, not including top corner;
                     * only consider up and up-right fragments */

                    /* calculate the indices of the predicting fragments */
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;

                    /* fetch the DC values for the predicting fragments */
1568 1569
                    vu = DC_COEFF(u);
                    vur = DC_COEFF(ur);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

                    /* figure out which fragments are valid */
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);

                    /* decide which predictor transform to use */
                    transform = (fu*PU) | (fur*PUR);

                    break;

                case 2:
                case 6:
                    /* top row of fragments, not including top-left frag;
                     * only consider the left fragment for prediction */

                    /* calculate the indices of the predicting fragments */
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1589
                    vl = DC_COEFF(l);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

                    /* figure out which fragments are valid */
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL);

                    break;

                case 3:
                    /* top-left fragment */

                    /* nothing to predict from in this case */
                    transform = 0;

                    break;

                case 4:
                    /* right column of fragments, not including top corner;
                     * consider up-left, up, and left fragments for
                     * prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1618 1619 1620
                    vul = DC_COEFF(ul);
                    vu = DC_COEFF(u);
                    vl = DC_COEFF(l);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);

                    break;

                }

                debug_dc_pred("transform = %d, ", transform);

                if (transform == 0) {

                    /* if there were no fragments to predict from, use last
                     * DC saved */
1640
                    predicted_dc = last_dc[current_frame_type];
1641
                    debug_dc_pred("from last DC (%d) = %d\n",
1642
                        current_frame_type, DC_COEFF(i));
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

                } else {

                    /* apply the appropriate predictor transform */
                    predicted_dc =
                        (predictor_transform[transform][0] * vul) +
                        (predictor_transform[transform][1] * vu) +
                        (predictor_transform[transform][2] * vur) +
                        (predictor_transform[transform][3] * vl);

                    /* if there is a shift value in the transform, add
                     * the sign bit before the shift */
                    if (predictor_transform[transform][5] != 0) {
1656
                        predicted_dc += ((predicted_dc >> 15) &
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
                            predictor_transform[transform][4]);
                        predicted_dc >>= predictor_transform[transform][5];
                    }

                    /* check for outranging on the [ul u l] and
                     * [ul u ur l] predictors */
                    if ((transform == 13) || (transform == 15)) {
                        if (iabs(predicted_dc - vu) > 128)
                            predicted_dc = vu;
                        else if (iabs(predicted_dc - vl) > 128)
                            predicted_dc = vl;
                        else if (iabs(predicted_dc - vul) > 128)
                            predicted_dc = vul;
                    }

1672
                    debug_dc_pred("from pred DC = %d\n",
1673
                    DC_COEFF(i));
1674 1675
                }

1676 1677 1678 1679 1680 1681 1682 1683
                /* at long last, apply the predictor */
                if(s->coeffs[i].index){
                    *s->next_coeff= s->coeffs[i];
                    s->coeffs[i].index=0;
                    s->coeffs[i].coeff=0;
                    s->coeffs[i].next= s->next_coeff++;
                }
                s->coeffs[i].coeff += predicted_dc;
1684
                /* save the DC */
1685 1686 1687 1688 1689 1690 1691
                last_dc[current_frame_type] = DC_COEFF(i);
                if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
                    s->all_fragments[i].coeff_count= 129;
//                    s->all_fragments[i].next_coeff= s->next_coeff;
                    s->coeffs[i].next= s->next_coeff;
                    (s->next_coeff++)->next=NULL;
                }
1692 1693 1694 1695 1696
            }
        }
    }
}

1697 1698 1699 1700 1701 1702

static void horizontal_filter(unsigned char *first_pixel, int stride,
    int *bounding_values);
static void vertical_filter(unsigned char *first_pixel, int stride,
    int *bounding_values);

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/*
 * Perform the final rendering for a particular slice of data.
 * The slice number ranges from 0..(macroblock_height - 1).
 */
static void render_slice(Vp3DecodeContext *s, int slice)
{
    int x, y;
    int m, n;
    int i;  /* indicates current fragment */
    int16_t *dequantizer;
1713
    DECLARE_ALIGNED_16(DCTELEM, block[64]);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
    unsigned char *output_plane;
    unsigned char *last_plane;
    unsigned char *golden_plane;
    int stride;
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
    int upper_motion_limit, lower_motion_limit;
    int motion_halfpel_index;
    uint8_t *motion_source;
    int plane;
    int plane_width;
    int plane_height;
    int slice_height;
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1727
    int fragment_width;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

    if (slice >= s->macroblock_height)
        return;

    for (plane = 0; plane < 3; plane++) {

        /* set up plane-specific parameters */
        if (plane == 0) {
            output_plane = s->current_frame.data[0];
            last_plane = s->last_frame.data[0];
            golden_plane = s->golden_frame.data[0];
            stride = s->current_frame.linesize[0];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[0];
            lower_motion_limit = s->height * s->current_frame.linesize[0] + s->width - 8;
            y = slice * FRAGMENT_PIXELS * 2;
            plane_width = s->width;
            plane_height = s->height;
            slice_height = y + FRAGMENT_PIXELS * 2;
            i = s->macroblock_fragments[current_macroblock_entry + 0];
        } else if (plane == 1) {
            output_plane = s->current_frame.data[1];
            last_plane = s->last_frame.data[1];
            golden_plane = s->golden_frame.data[1];
            stride = s->current_frame.linesize[1];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[1];
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[1] + (s->width / 2) - 8;
            y = slice * FRAGMENT_PIXELS;
            plane_width = s->width / 2;
            plane_height = s->height / 2;
            slice_height = y + FRAGMENT_PIXELS;
            i = s->macroblock_fragments[current_macroblock_entry + 4];
        } else {
            output_plane = s->current_frame.data[2];
            last_plane = s->last_frame.data[2];
            golden_plane = s->golden_frame.data[2];
            stride = s->current_frame.linesize[2];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[2];
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[2] + (s->width / 2) - 8;
            y = slice * FRAGMENT_PIXELS;
            plane_width = s->width / 2;
            plane_height = s->height / 2;
            slice_height = y + FRAGMENT_PIXELS;
            i = s->macroblock_fragments[current_macroblock_entry + 5];
        }
1775
        fragment_width = plane_width / FRAGMENT_PIXELS;
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
        if(ABS(stride) > 2048)
            return; //various tables are fixed size

        /* for each fragment row in the slice (both of them)... */
        for (; y < slice_height; y += 8) {

            /* for each fragment in a row... */
            for (x = 0; x < plane_width; x += 8, i++) {

                if ((i < 0) || (i >= s->fragment_count)) {
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
                    return;
                }

                /* transform if this block was coded */
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {

                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
                        motion_source= golden_plane;
1798
                    else
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
                        motion_source= last_plane;

                    motion_source += s->all_fragments[i].first_pixel;
                    motion_halfpel_index = 0;

                    /* sort out the motion vector if this fragment is coded
                     * using a motion vector method */
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
                        int src_x, src_y;
                        motion_x = s->all_fragments[i].motion_x;
                        motion_y = s->all_fragments[i].motion_y;
                        if(plane){
                            motion_x= (motion_x>>1) | (motion_x&1);
                            motion_y= (motion_y>>1) | (motion_y&1);
                        }

                        src_x= (motion_x>>1) + x;
                        src_y= (motion_y>>1) + y;
                        if ((motion_x == 127) || (motion_y == 127))
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);

                        motion_halfpel_index = motion_x & 0x01;
                        motion_source += (motion_x >> 1);

                        motion_halfpel_index |= (motion_y & 0x01) << 1;
                        motion_source += ((motion_y >> 1) * stride);

                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
                            uint8_t *temp= s->edge_emu_buffer;
                            if(stride<0) temp -= 9*stride;
                            else temp += 9*stride;

                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
                            motion_source= temp;
                        }
                    }
1836

1837 1838 1839 1840

                    /* first, take care of copying a block from either the
                     * previous or the golden frame */
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1841 1842 1843
                        /* Note, it is possible to implement all MC cases with
                           put_no_rnd_pixels_l2 which would look more like the
                           VP3 source but this would be slower as
1844 1845 1846 1847 1848 1849 1850 1851 1852
                           put_no_rnd_pixels_tab is better optimzed */
                        if(motion_halfpel_index != 3){
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
                                output_plane + s->all_fragments[i].first_pixel,
                                motion_source, stride, 8);
                        }else{
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
                            s->dsp.put_no_rnd_pixels_l2[1](
                                output_plane + s->all_fragments[i].first_pixel,
1853 1854
                                motion_source - d,
                                motion_source + stride + 1 + d,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
                                stride, 8);
                        }
                        dequantizer = s->inter_dequant;
                    }else{
                        if (plane == 0)
                            dequantizer = s->intra_y_dequant;
                        else
                            dequantizer = s->intra_c_dequant;
                    }

                    /* dequantize the DCT coefficients */
1866 1867
                    debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
                        i, s->all_fragments[i].coding_method,
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
                        DC_COEFF(i), dequantizer[0]);

                    if(s->avctx->idct_algo==FF_IDCT_VP3){
                        Coeff *coeff= s->coeffs + i;
                        memset(block, 0, sizeof(block));
                        while(coeff->next){
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
                            coeff= coeff->next;
                        }
                    }else{
                        Coeff *coeff= s->coeffs + i;
                        memset(block, 0, sizeof(block));
                        while(coeff->next){
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
                            coeff= coeff->next;
                        }
                    }

                    /* invert DCT and place (or add) in final output */
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
                            block[0] += 128<<3;
                        s->dsp.idct_put(
                            output_plane + s->all_fragments[i].first_pixel,
                            stride,
                            block);
                    } else {
                        s->dsp.idct_add(
                            output_plane + s->all_fragments[i].first_pixel,
                            stride,
                            block);
                    }

                    debug_idct("block after idct_%s():\n",
                        (s->all_fragments[i].coding_method == MODE_INTRA)?
                        "put" : "add");
                    for (m = 0; m < 8; m++) {
                        for (n = 0; n < 8; n++) {
1907
                            debug_idct(" %3d", *(output_plane +
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
                                s->all_fragments[i].first_pixel + (m * stride + n)));
                        }
                        debug_idct("\n");
                    }
                    debug_idct("\n");

                } else {

                    /* copy directly from the previous frame */
                    s->dsp.put_pixels_tab[1][0](
                        output_plane + s->all_fragments[i].first_pixel,
                        last_plane + s->all_fragments[i].first_pixel,
                        stride, 8);

                }
1923
#if 0
1924 1925 1926 1927 1928 1929 1930
                /* perform the left edge filter if:
                 *   - the fragment is not on the left column
                 *   - the fragment is coded in this frame
                 *   - the fragment is not coded in this frame but the left
                 *     fragment is coded in this frame (this is done instead
                 *     of a right edge filter when rendering the left fragment
                 *     since this fragment is not available yet) */
1931
                if ((x > 0) &&
1932 1933 1934
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1935
                    horizontal_filter(
1936 1937
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
                        -stride, bounding_values);
1938 1939
                }

1940 1941 1942 1943 1944 1945 1946
                /* perform the top edge filter if:
                 *   - the fragment is not on the top row
                 *   - the fragment is coded in this frame
                 *   - the fragment is not coded in this frame but the above
                 *     fragment is coded in this frame (this is done instead
                 *     of a bottom edge filter when rendering the above
                 *     fragment since this fragment is not available yet) */
1947
                if ((y > 0) &&
1948 1949 1950
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1951
                    vertical_filter(
1952 1953
                        output_plane + s->all_fragments[i].first_pixel - stride,
                        -stride, bounding_values);
1954
                }
1955
#endif
1956 1957 1958 1959 1960 1961 1962
            }
        }
    }

     /* this looks like a good place for slice dispatch... */
     /* algorithm:
      *   if (slice == s->macroblock_height - 1)
1963 1964 1965
      *     dispatch (both last slice & 2nd-to-last slice);
      *   else if (slice > 0)
      *     dispatch (slice - 1);
1966 1967 1968 1969 1970
      */

    emms_c();
}

1971 1972 1973
static void horizontal_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
1974
    unsigned char *end;
1975 1976
    int filter_value;

1977
    for (end= first_pixel + 8*stride; first_pixel < end; first_pixel += stride) {
1978
        filter_value =
1979 1980
            (first_pixel[-2] - first_pixel[ 1])
         +3*(first_pixel[ 0] - first_pixel[-1]);
1981
        filter_value = bounding_values[(filter_value + 4) >> 3];
1982 1983
        first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
        first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
1984 1985 1986 1987 1988 1989
    }
}

static void vertical_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
1990
    unsigned char *end;
1991
    int filter_value;
1992
    const int nstride= -stride;
1993

1994
    for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
1995
        filter_value =
1996 1997
            (first_pixel[2 * nstride] - first_pixel[ stride])
         +3*(first_pixel[0          ] - first_pixel[nstride]);
1998
        filter_value = bounding_values[(filter_value + 4) >> 3];
1999
        first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
2000
        first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    }
}

static void apply_loop_filter(Vp3DecodeContext *s)
{
    int x, y, plane;
    int width, height;
    int fragment;
    int stride;
    unsigned char *plane_data;
2011
    int *bounding_values= s->bounding_values_array+127;
2012

2013
#if 0
2014
    int bounding_values_array[256];
2015 2016 2017 2018 2019 2020 2021
    int filter_limit;

    /* find the right loop limit value */
    for (x = 63; x >= 0; x--) {
        if (vp31_ac_scale_factor[x] >= s->quality_index)
            break;
    }
2022
    filter_limit = vp31_filter_limit_values[s->quality_index];
2023 2024

    /* set up the bounding values */
2025
    memset(bounding_values_array, 0, 256 * sizeof(int));
2026 2027 2028 2029 2030 2031
    for (x = 0; x < filter_limit; x++) {
        bounding_values[-x - filter_limit] = -filter_limit + x;
        bounding_values[-x] = -x;
        bounding_values[x] = x;
        bounding_values[x + filter_limit] = filter_limit - x;
    }
2032
#endif
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

    for (plane = 0; plane < 3; plane++) {

        if (plane == 0) {
            /* Y plane parameters */
            fragment = 0;
            width = s->fragment_width;
            height = s->fragment_height;
            stride = s->current_frame.linesize[0];
            plane_data = s->current_frame.data[0];
        } else if (plane == 1) {
            /* U plane parameters */
            fragment = s->u_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[1];
            plane_data = s->current_frame.data[1];
        } else {
            /* V plane parameters */
            fragment = s->v_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[2];
            plane_data = s->current_frame.data[2];
        }

        for (y = 0; y < height; y++) {
2060

2061
            for (x = 0; x < width; x++) {
M
Michael Niedermayer 已提交
2062
START_TIMER
2063 2064 2065 2066
                /* do not perform left edge filter for left columns frags */
                if ((x > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    horizontal_filter(
2067
                        plane_data + s->all_fragments[fragment].first_pixel - 7*stride,
2068 2069 2070 2071 2072 2073 2074
                        stride, bounding_values);
                }

                /* do not perform top edge filter for top row fragments */
                if ((y > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    vertical_filter(
2075
                        plane_data + s->all_fragments[fragment].first_pixel + stride,
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
                        stride, bounding_values);
                }

                /* do not perform right edge filter for right column
                 * fragments or if right fragment neighbor is also coded
                 * in this frame (it will be filtered in next iteration) */
                if ((x < width - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
                    horizontal_filter(
2086
                        plane_data + s->all_fragments[fragment + 1].first_pixel - 7*stride,
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
                        stride, bounding_values);
                }

                /* do not perform bottom edge filter for bottom row
                 * fragments or if bottom fragment neighbor is also coded
                 * in this frame (it will be filtered in the next row) */
                if ((y < height - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
                    vertical_filter(
2097
                        plane_data + s->all_fragments[fragment + width].first_pixel + stride,
2098 2099 2100 2101
                        stride, bounding_values);
                }

                fragment++;
M
Michael Niedermayer 已提交
2102
STOP_TIMER("loop filter")
2103 2104 2105
            }
        }
    }
2106 2107
}

2108
/*
2109 2110 2111 2112
 * This function computes the first pixel addresses for each fragment.
 * This function needs to be invoked after the first frame is allocated
 * so that it has access to the plane strides.
 */
2113
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
2114 2115 2116 2117 2118 2119 2120 2121 2122
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = s->fragment_height; y > 0; y--) {
        for (x = 0; x < s->fragment_width; x++) {
2123
            s->all_fragments[i++].first_pixel =
2124 2125 2126
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
2127
            debug_init("  fragment %d, first pixel @ %d\n",
2128 2129 2130 2131 2132 2133 2134 2135
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2136
            s->all_fragments[i++].first_pixel =
2137 2138 2139
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
2140
            debug_init("  fragment %d, first pixel @ %d\n",
2141 2142 2143 2144 2145 2146 2147 2148
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2149
            s->all_fragments[i++].first_pixel =
2150 2151 2152
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
2153
            debug_init("  fragment %d, first pixel @ %d\n",
2154 2155 2156 2157 2158
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2159
/* FIXME: this should be merged with the above! */
2160
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s)
2161 2162 2163 2164 2165 2166 2167 2168 2169
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = 1; y <= s->fragment_height; y++) {
        for (x = 0; x < s->fragment_width; x++) {
2170
            s->all_fragments[i++].first_pixel =
2171 2172 2173
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
2174
            debug_init("  fragment %d, first pixel @ %d\n",
2175 2176 2177 2178 2179 2180 2181 2182
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2183
            s->all_fragments[i++].first_pixel =
2184 2185 2186
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
2187
            debug_init("  fragment %d, first pixel @ %d\n",
2188 2189 2190 2191 2192 2193 2194 2195
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2196
            s->all_fragments[i++].first_pixel =
2197 2198 2199
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
2200
            debug_init("  fragment %d, first pixel @ %d\n",
2201 2202 2203 2204 2205
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2206 2207 2208 2209 2210 2211 2212
/*
 * This is the ffmpeg/libavcodec API init function.
 */
static int vp3_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i;
2213 2214 2215 2216
    int c_width;
    int c_height;
    int y_superblock_count;
    int c_superblock_count;
2217

A
Alex Beregszaszi 已提交
2218
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
2219
        s->version = 0;
A
Alex Beregszaszi 已提交
2220
    else
2221
        s->version = 1;
A
Alex Beregszaszi 已提交
2222

2223
    s->avctx = avctx;
2224 2225
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
2226 2227
    avctx->pix_fmt = PIX_FMT_YUV420P;
    avctx->has_b_frames = 0;
2228 2229
    if(avctx->idct_algo==FF_IDCT_AUTO)
        avctx->idct_algo=FF_IDCT_VP3;
2230
    dsputil_init(&s->dsp, avctx);
2231

M
Michael Niedermayer 已提交
2232
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
2233 2234 2235 2236 2237

    /* initialize to an impossible value which will force a recalculation
     * in the first frame decode */
    s->quality_index = -1;

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
    s->y_superblock_width = (s->width + 31) / 32;
    s->y_superblock_height = (s->height + 31) / 32;
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;

    /* work out the dimensions for the C planes */
    c_width = s->width / 2;
    c_height = s->height / 2;
    s->c_superblock_width = (c_width + 31) / 32;
    s->c_superblock_height = (c_height + 31) / 32;
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;

    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
    s->u_superblock_start = y_superblock_count;
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
    s->superblock_coding = av_malloc(s->superblock_count);

    s->macroblock_width = (s->width + 15) / 16;
    s->macroblock_height = (s->height + 15) / 16;
    s->macroblock_count = s->macroblock_width * s->macroblock_height;

    s->fragment_width = s->width / FRAGMENT_PIXELS;
    s->fragment_height = s->height / FRAGMENT_PIXELS;

    /* fragment count covers all 8x8 blocks for all 3 planes */
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
    s->u_fragment_start = s->fragment_width * s->fragment_height;
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;

2266 2267 2268 2269 2270 2271
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
    debug_init("  C plane: %d x %d\n", c_width, c_height);
    debug_init("  Y superblocks: %d x %d, %d total\n",
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
    debug_init("  C superblocks: %d x %d, %d total\n",
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
2272
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n",
2273
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
    debug_init("  macroblocks: %d x %d, %d total\n",
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
        s->fragment_count,
        s->fragment_width,
        s->fragment_height,
        s->u_fragment_start,
        s->v_fragment_start);

    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2284
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
2285 2286 2287
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
    s->pixel_addresses_inited = 0;

2288 2289
    if (!s->theora_tables)
    {
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
        for (i = 0; i < 64; i++)
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
        for (i = 0; i < 64; i++)
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
        for (i = 0; i < 64; i++)
            s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
        for (i = 0; i < 64; i++)
            s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
        for (i = 0; i < 64; i++)
            s->coded_inter_dequant[i] = vp31_inter_dequant[i];
        for (i = 0; i < 64; i++)
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
2302

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
        /* init VLC tables */
        for (i = 0; i < 16; i++) {

            /* DC histograms */
            init_vlc(&s->dc_vlc[i], 5, 32,
                &dc_bias[i][0][1], 4, 2,
                &dc_bias[i][0][0], 4, 2, 0);

            /* group 1 AC histograms */
            init_vlc(&s->ac_vlc_1[i], 5, 32,
                &ac_bias_0[i][0][1], 4, 2,
                &ac_bias_0[i][0][0], 4, 2, 0);

            /* group 2 AC histograms */
            init_vlc(&s->ac_vlc_2[i], 5, 32,
                &ac_bias_1[i][0][1], 4, 2,
                &ac_bias_1[i][0][0], 4, 2, 0);

            /* group 3 AC histograms */
            init_vlc(&s->ac_vlc_3[i], 5, 32,
                &ac_bias_2[i][0][1], 4, 2,
                &ac_bias_2[i][0][0], 4, 2, 0);

            /* group 4 AC histograms */
            init_vlc(&s->ac_vlc_4[i], 5, 32,
                &ac_bias_3[i][0][1], 4, 2,
                &ac_bias_3[i][0][0], 4, 2, 0);
        }
    } else {
        for (i = 0; i < 16; i++) {

            /* DC histograms */
            init_vlc(&s->dc_vlc[i], 5, 32,
                &s->huffman_table[i][0][1], 4, 2,
                &s->huffman_table[i][0][0], 4, 2, 0);

            /* group 1 AC histograms */
            init_vlc(&s->ac_vlc_1[i], 5, 32,
                &s->huffman_table[i+16][0][1], 4, 2,
                &s->huffman_table[i+16][0][0], 4, 2, 0);

            /* group 2 AC histograms */
            init_vlc(&s->ac_vlc_2[i], 5, 32,
                &s->huffman_table[i+16*2][0][1], 4, 2,
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);

            /* group 3 AC histograms */
            init_vlc(&s->ac_vlc_3[i], 5, 32,
                &s->huffman_table[i+16*3][0][1], 4, 2,
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);

            /* group 4 AC histograms */
            init_vlc(&s->ac_vlc_4[i], 5, 32,
                &s->huffman_table[i+16*4][0][1], 4, 2,
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
        }
2359 2360
    }

2361 2362 2363 2364
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
        &superblock_run_length_vlc_table[0][1], 4, 2,
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);

2365
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
        &fragment_run_length_vlc_table[0][1], 4, 2,
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);

    init_vlc(&s->mode_code_vlc, 3, 8,
        &mode_code_vlc_table[0][1], 2, 1,
        &mode_code_vlc_table[0][0], 2, 1, 0);

    init_vlc(&s->motion_vector_vlc, 6, 63,
        &motion_vector_vlc_table[0][1], 2, 1,
        &motion_vector_vlc_table[0][0], 2, 1, 0);

2377 2378 2379 2380
    /* work out the block mapping tables */
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2381
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2382 2383
    init_block_mapping(s);

2384 2385 2386 2387
    for (i = 0; i < 3; i++) {
        s->current_frame.data[i] = NULL;
        s->last_frame.data[i] = NULL;
        s->golden_frame.data[i] = NULL;
2388 2389
    }

2390 2391 2392 2393 2394 2395
    return 0;
}

/*
 * This is the ffmpeg/libavcodec API frame decode function.
 */
2396
static int vp3_decode_frame(AVCodecContext *avctx,
2397 2398 2399 2400 2401 2402
                            void *data, int *data_size,
                            uint8_t *buf, int buf_size)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    static int counter = 0;
2403
    int i;
2404 2405

    init_get_bits(&gb, buf, buf_size * 8);
2406

2407 2408
    if (s->theora && get_bits1(&gb))
    {
2409
#if 1
2410 2411
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
        return -1;
2412
#else
2413 2414 2415 2416 2417 2418 2419
        int ptype = get_bits(&gb, 7);

        skip_bits(&gb, 6*8); /* "theora" */

        switch(ptype)
        {
            case 1:
2420
                theora_decode_comments(avctx, &gb);
2421 2422
                break;
            case 2:
2423
                theora_decode_tables(avctx, &gb);
2424 2425 2426 2427 2428 2429
                    init_dequantizer(s);
                break;
            default:
                av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
        }
        return buf_size;
2430
#endif
2431
    }
A
Alex Beregszaszi 已提交
2432 2433 2434

    s->keyframe = !get_bits1(&gb);
    if (!s->theora)
2435
        skip_bits(&gb, 1);
A
Alex Beregszaszi 已提交
2436 2437
    s->last_quality_index = s->quality_index;
    s->quality_index = get_bits(&gb, 6);
M
Matthieu Castet 已提交
2438
    if (s->theora >= 0x030200)
A
Alex Beregszaszi 已提交
2439
        skip_bits1(&gb);
2440

2441
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2442 2443
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
            s->keyframe?"key":"", counter, s->quality_index);
2444 2445
    counter++;

2446
    if (s->quality_index != s->last_quality_index) {
2447
        init_dequantizer(s);
2448 2449
        init_loop_filter(s);
    }
2450

2451
    if (s->keyframe) {
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
        if (!s->theora)
        {
            skip_bits(&gb, 4); /* width code */
            skip_bits(&gb, 4); /* height code */
            if (s->version)
            {
                s->version = get_bits(&gb, 5);
                if (counter == 1)
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
            }
        }
        if (s->version || s->theora)
        {
                if (get_bits1(&gb))
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
            skip_bits(&gb, 2); /* reserved? */
        }
A
Alex Beregszaszi 已提交
2469

2470 2471 2472
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
2473
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2474 2475 2476 2477 2478 2479
        } else {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
            if (s->last_frame.data[0])
                avctx->release_buffer(avctx, &s->last_frame);
        }
2480

2481
        s->golden_frame.reference = 3;
2482
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2483
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2484 2485 2486 2487
            return -1;
        }

        /* golden frame is also the current frame */
2488
        memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
2489 2490 2491

        /* time to figure out pixel addresses? */
        if (!s->pixel_addresses_inited)
2492 2493 2494 2495 2496 2497
        {
            if (!s->flipped_image)
                vp3_calculate_pixel_addresses(s);
            else
                theora_calculate_pixel_addresses(s);
        }
2498 2499
    } else {
        /* allocate a new current frame */
2500
        s->current_frame.reference = 3;
2501
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2502
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2503 2504 2505 2506
            return -1;
        }
    }

M
Michael Niedermayer 已提交
2507 2508 2509
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
    s->current_frame.qstride= 0;

M
Michael Niedermayer 已提交
2510
    {START_TIMER
2511
    init_frame(s, &gb);
M
Michael Niedermayer 已提交
2512
    STOP_TIMER("init_frame")}
2513

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
#if KEYFRAMES_ONLY
if (!s->keyframe) {

    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
        s->current_frame.linesize[0] * s->height);
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
        s->current_frame.linesize[1] * s->height / 2);
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
        s->current_frame.linesize[2] * s->height / 2);

} else {
#endif

M
Michael Niedermayer 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
    {START_TIMER
    if (unpack_superblocks(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
        return -1;
    }
    STOP_TIMER("unpack_superblocks")}
    {START_TIMER
    if (unpack_modes(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
        return -1;
    }
    STOP_TIMER("unpack_modes")}
    {START_TIMER
    if (unpack_vectors(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
        return -1;
    }
    STOP_TIMER("unpack_vectors")}
    {START_TIMER
    if (unpack_dct_coeffs(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2548 2549
        return -1;
    }
M
Michael Niedermayer 已提交
2550 2551
    STOP_TIMER("unpack_dct_coeffs")}
    {START_TIMER
2552 2553

    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2554 2555 2556 2557 2558
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
        reverse_dc_prediction(s, s->u_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        reverse_dc_prediction(s, s->v_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
2559 2560 2561 2562 2563 2564 2565
    }
    STOP_TIMER("reverse_dc_prediction")}
    {START_TIMER

    for (i = 0; i < s->macroblock_height; i++)
        render_slice(s, i);
    STOP_TIMER("render_fragments")}
2566

M
Michael Niedermayer 已提交
2567
    {START_TIMER
2568
    apply_loop_filter(s);
M
Michael Niedermayer 已提交
2569
    STOP_TIMER("apply_loop_filter")}
2570 2571 2572 2573
#if KEYFRAMES_ONLY
}
#endif

2574 2575 2576
    *data_size=sizeof(AVFrame);
    *(AVFrame*)data= s->current_frame;

2577 2578 2579 2580 2581
    /* release the last frame, if it is allocated and if it is not the
     * golden frame */
    if ((s->last_frame.data[0]) &&
        (s->last_frame.data[0] != s->golden_frame.data[0]))
        avctx->release_buffer(avctx, &s->last_frame);
2582

2583 2584
    /* shuffle frames (last = current) */
    memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
2585
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597

    return buf_size;
}

/*
 * This is the ffmpeg/libavcodec API module cleanup function.
 */
static int vp3_decode_end(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    av_free(s->all_fragments);
2598
    av_free(s->coeffs);
2599 2600 2601 2602
    av_free(s->coded_fragment_list);
    av_free(s->superblock_fragments);
    av_free(s->superblock_macroblocks);
    av_free(s->macroblock_fragments);
2603
    av_free(s->macroblock_coding);
2604

2605
    /* release all frames */
2606
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2607 2608 2609 2610 2611
        avctx->release_buffer(avctx, &s->golden_frame);
    if (s->last_frame.data[0])
        avctx->release_buffer(avctx, &s->last_frame);
    /* no need to release the current_frame since it will always be pointing
     * to the same frame as either the golden or last frame */
2612 2613 2614 2615

    return 0;
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
{
    Vp3DecodeContext *s = avctx->priv_data;

    if (get_bits(gb, 1)) {
        int token;
        if (s->entries >= 32) { /* overflow */
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
            return -1;
        }
        token = get_bits(gb, 5);
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
        s->huffman_table[s->hti][token][0] = s->hbits;
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
        s->entries++;
    }
    else {
        if (s->huff_code_size >= 32) {/* overflow */
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
            return -1;
        }
        s->huff_code_size++;
        s->hbits <<= 1;
        read_huffman_tree(avctx, gb);
        s->hbits |= 1;
        read_huffman_tree(avctx, gb);
        s->hbits >>= 1;
        s->huff_code_size--;
    }
    return 0;
}

2648
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2649 2650
{
    Vp3DecodeContext *s = avctx->priv_data;
2651

2652
    s->theora = get_bits_long(gb, 24);
M
cleanup  
Michael Niedermayer 已提交
2653
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %X\n", s->theora);
2654

M
Matthieu Castet 已提交
2655
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2656
    /* but previous versions have the image flipped relative to vp3 */
M
Matthieu Castet 已提交
2657
    if (s->theora < 0x030200)
2658
    {
2659
        s->flipped_image = 1;
2660 2661
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
    }
2662

2663 2664
    s->width = get_bits(gb, 16) << 4;
    s->height = get_bits(gb, 16) << 4;
2665

2666
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2667
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2668 2669 2670
        s->width= s->height= 0;
        return -1;
    }
2671 2672 2673

    if (s->theora >= 0x030400)
    {
2674
        skip_bits(gb, 32); /* total number of superblocks in a frame */
2675
        // fixme, the next field is 36bits long
2676 2677 2678
        skip_bits(gb, 32); /* total number of blocks in a frame */
        skip_bits(gb, 4); /* total number of blocks in a frame */
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
2679

2680 2681
        skip_bits(gb, 24); /* frame width */
        skip_bits(gb, 24); /* frame height */
2682 2683 2684
    }
    else
    {
2685 2686
        skip_bits(gb, 24); /* frame width */
        skip_bits(gb, 24); /* frame height */
2687
    }
2688

2689 2690
    skip_bits(gb, 8); /* offset x */
    skip_bits(gb, 8); /* offset y */
2691

2692 2693 2694 2695
    skip_bits(gb, 32); /* fps numerator */
    skip_bits(gb, 32); /* fps denumerator */
    skip_bits(gb, 24); /* aspect numerator */
    skip_bits(gb, 24); /* aspect denumerator */
2696

M
Matthieu Castet 已提交
2697
    if (s->theora < 0x030200)
2698 2699
        skip_bits(gb, 5); /* keyframe frequency force */
    skip_bits(gb, 8); /* colorspace */
2700
    if (s->theora >= 0x030400)
2701 2702
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
    skip_bits(gb, 24); /* bitrate */
2703

2704
    skip_bits(gb, 6); /* quality hint */
2705

M
Matthieu Castet 已提交
2706
    if (s->theora >= 0x030200)
2707
    {
2708
        skip_bits(gb, 5); /* keyframe frequency force */
2709

2710
        if (s->theora < 0x030400)
2711
            skip_bits(gb, 5); /* spare bits */
2712
    }
2713

2714
//    align_get_bits(gb);
2715

2716 2717 2718 2719 2720 2721
    avctx->width = s->width;
    avctx->height = s->height;

    return 0;
}

2722
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2723 2724
{
    Vp3DecodeContext *s = avctx->priv_data;
2725
    int i, n, matrices;
M
Matthieu Castet 已提交
2726 2727

    if (s->theora >= 0x030200) {
2728
        n = get_bits(gb, 3);
2729
        /* loop filter limit values table */
M
Matthieu Castet 已提交
2730
        for (i = 0; i < 64; i++)
2731
            s->filter_limit_values[i] = get_bits(gb, n);
M
Matthieu Castet 已提交
2732
    }
2733

M
Matthieu Castet 已提交
2734
    if (s->theora >= 0x030200)
2735
        n = get_bits(gb, 4) + 1;
M
Matthieu Castet 已提交
2736 2737
    else
        n = 16;
2738 2739
    /* quality threshold table */
    for (i = 0; i < 64; i++)
2740
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2741

M
Matthieu Castet 已提交
2742
    if (s->theora >= 0x030200)
2743
        n = get_bits(gb, 4) + 1;
M
Matthieu Castet 已提交
2744 2745
    else
        n = 16;
2746 2747
    /* dc scale factor table */
    for (i = 0; i < 64; i++)
2748
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2749

M
Matthieu Castet 已提交
2750
    if (s->theora >= 0x030200)
2751
        matrices = get_bits(gb, 9) + 1;
M
Matthieu Castet 已提交
2752
    else
2753 2754 2755 2756
        matrices = 3;
    if (matrices != 3) {
        av_log(avctx,AV_LOG_ERROR, "unsupported matrices: %d\n", matrices);
//        return -1;
M
Matthieu Castet 已提交
2757
    }
2758 2759
    /* y coeffs */
    for (i = 0; i < 64; i++)
2760
        s->coded_intra_y_dequant[i] = get_bits(gb, 8);
2761 2762 2763

    /* uv coeffs */
    for (i = 0; i < 64; i++)
2764
        s->coded_intra_c_dequant[i] = get_bits(gb, 8);
2765 2766 2767

    /* inter coeffs */
    for (i = 0; i < 64; i++)
2768
        s->coded_inter_dequant[i] = get_bits(gb, 8);
A
Alex Beregszaszi 已提交
2769

2770 2771 2772
    /* skip unknown matrices */
    n = matrices - 3;
    while(n--)
2773
        for (i = 0; i < 64; i++)
2774
            skip_bits(gb, 8);
2775

2776 2777 2778 2779
    for (i = 0; i <= 1; i++) {
        for (n = 0; n <= 2; n++) {
            int newqr;
            if (i > 0 || n > 0)
2780
                newqr = get_bits(gb, 1);
2781 2782 2783 2784
            else
                newqr = 1;
            if (!newqr) {
                if (i > 0)
2785
                    get_bits(gb, 1);
2786
                //FIXME this is simply incomplete
2787 2788 2789
            }
            else {
                int qi = 0;
2790
                //FIXME this is simply incomplete
2791
                skip_bits(gb, av_log2(matrices-1)+1);
2792
                while (qi < 63) {
2793 2794
                    qi += get_bits(gb, av_log2(63-qi)+1) + 1;
                    skip_bits(gb, av_log2(matrices-1)+1);
2795
                }
2796
                if (qi > 63) {
2797
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2798 2799
                    return -1;
                }
2800 2801 2802 2803
            }
        }
    }

2804
    /* Huffman tables */
2805 2806 2807
    for (s->hti = 0; s->hti < 80; s->hti++) {
        s->entries = 0;
        s->huff_code_size = 1;
2808
        if (!get_bits(gb, 1)) {
2809
            s->hbits = 0;
2810
            read_huffman_tree(avctx, gb);
2811
            s->hbits = 1;
2812
            read_huffman_tree(avctx, gb);
2813 2814
        }
    }
2815

2816
    s->theora_tables = 1;
2817

2818 2819 2820 2821 2822 2823 2824 2825
    return 0;
}

static int theora_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    int ptype;
2826 2827
    uint8_t *p= avctx->extradata;
    int op_bytes, i;
2828

2829 2830 2831
    s->theora = 1;

    if (!avctx->extradata_size)
2832 2833
    {
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2834
        return -1;
2835
    }
2836

2837 2838 2839 2840 2841 2842
  for(i=0;i<3;i++) {
    op_bytes = *(p++)<<8;
    op_bytes += *(p++);

    init_get_bits(&gb, p, op_bytes);
    p += op_bytes;
2843 2844 2845

    ptype = get_bits(&gb, 8);
    debug_vp3("Theora headerpacket type: %x\n", ptype);
2846

2847 2848 2849
     if (!(ptype & 0x80))
     {
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2850
//        return -1;
2851
     }
2852 2853

    // FIXME: check for this aswell
2854
    skip_bits(&gb, 6*8); /* "theora" */
2855

2856 2857 2858
    switch(ptype)
    {
        case 0x80:
2859
            theora_decode_header(avctx, &gb);
2860 2861
                break;
        case 0x81:
2862
// FIXME: is this needed? it breaks sometimes
2863 2864 2865
//            theora_decode_comments(avctx, gb);
            break;
        case 0x82:
2866
            theora_decode_tables(avctx, &gb);
2867 2868 2869 2870
            break;
        default:
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
            break;
2871
    }
2872 2873
    if(8*op_bytes != get_bits_count(&gb))
        av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*op_bytes - get_bits_count(&gb), ptype);
2874
  }
2875

M
Matthieu Castet 已提交
2876
    vp3_decode_init(avctx);
2877 2878 2879
    return 0;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
AVCodec vp3_decoder = {
    "vp3",
    CODEC_TYPE_VIDEO,
    CODEC_ID_VP3,
    sizeof(Vp3DecodeContext),
    vp3_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
2892

2893
#ifndef CONFIG_LIBTHEORA
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
AVCodec theora_decoder = {
    "theora",
    CODEC_TYPE_VIDEO,
    CODEC_ID_THEORA,
    sizeof(Vp3DecodeContext),
    theora_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
2906
#endif