vp3.c 85.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 *
 * Copyright (C) 2003 the ffmpeg project
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * VP3 Video Decoder by Mike Melanson (melanson@pcisys.net)
 *
 */

/**
 * @file vp3.c
 * On2 VP3 Video Decoder
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "common.h"
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"
#include "dsputil.h"
#include "bswap.h"

#include "vp3data.h"

#define FRAGMENT_PIXELS 8

/* 
 * Debugging Variables
 * 
 * Define one or more of the following compile-time variables to 1 to obtain
 * elaborate information about certain aspects of the decoding process.
 *
50
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
51 52 53 54 55 56 57 58 59 60 61 62
 * DEBUG_VP3: high-level decoding flow
 * DEBUG_INIT: initialization parameters
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
 * DEBUG_MODES: unpacking the coding modes for individual fragments
 * DEBUG_VECTORS: display the motion vectors
 * DEBUG_TOKEN: display exhaustive information about each DCT token
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
 * DEBUG_DC_PRED: display the process of reversing DC prediction
 * DEBUG_IDCT: show every detail of the IDCT process
 */

63 64
#define KEYFRAMES_ONLY 0

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#define DEBUG_VP3 0
#define DEBUG_INIT 0
#define DEBUG_DEQUANTIZERS 0
#define DEBUG_BLOCK_CODING 0
#define DEBUG_MODES 0
#define DEBUG_VECTORS 0
#define DEBUG_TOKEN 0
#define DEBUG_VLC 0
#define DEBUG_DC_PRED 0
#define DEBUG_IDCT 0

#if DEBUG_VP3
#define debug_vp3 printf
#else
static inline void debug_vp3(const char *format, ...) { }
#endif

#if DEBUG_INIT
#define debug_init printf
#else
static inline void debug_init(const char *format, ...) { }
#endif

#if DEBUG_DEQUANTIZERS
#define debug_dequantizers printf 
#else
static inline void debug_dequantizers(const char *format, ...) { } 
#endif

#if DEBUG_BLOCK_CODING
#define debug_block_coding printf 
#else
static inline void debug_block_coding(const char *format, ...) { } 
#endif

#if DEBUG_MODES
#define debug_modes printf 
#else
static inline void debug_modes(const char *format, ...) { } 
#endif

#if DEBUG_VECTORS
#define debug_vectors printf 
#else
static inline void debug_vectors(const char *format, ...) { } 
#endif

#if DEBUG_TOKEN 
#define debug_token printf 
#else
static inline void debug_token(const char *format, ...) { } 
#endif

#if DEBUG_VLC
#define debug_vlc printf 
#else
static inline void debug_vlc(const char *format, ...) { } 
#endif

#if DEBUG_DC_PRED
#define debug_dc_pred printf 
#else
static inline void debug_dc_pred(const char *format, ...) { } 
#endif

#if DEBUG_IDCT
#define debug_idct printf 
#else
static inline void debug_idct(const char *format, ...) { } 
#endif

typedef struct Vp3Fragment {
    DCTELEM coeffs[64];
    int coding_method;
    int coeff_count;
    int last_coeff;
    int motion_x;
    int motion_y;
143 144 145
    /* this indicates which ffmpeg put_pixels() function to use:
     * 00b = no halfpel, 01b = x halfpel, 10b = y halfpel, 11b = both halfpel */
    int motion_halfpel_index;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    /* address of first pixel taking into account which plane the fragment
     * lives on as well as the plane stride */
    int first_pixel;
    /* this is the macroblock that the fragment belongs to */
    int macroblock;
} Vp3Fragment;

#define SB_NOT_CODED        0
#define SB_PARTIALLY_CODED  1
#define SB_FULLY_CODED      2

#define MODE_INTER_NO_MV      0
#define MODE_INTRA            1
#define MODE_INTER_PLUS_MV    2
#define MODE_INTER_LAST_MV    3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN     5
#define MODE_GOLDEN_MV        6
#define MODE_INTER_FOURMV     7
#define CODING_MODE_COUNT     8

/* special internal mode */
#define MODE_COPY             8

/* There are 6 preset schemes, plus a free-form scheme */
static int ModeAlphabet[7][CODING_MODE_COUNT] =
{
    /* this is the custom scheme */
    { 0, 0, 0, 0, 0, 0, 0, 0 },

    /* scheme 1: Last motion vector dominates */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 2 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 3 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 4 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 5: No motion vector dominates */
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,     
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 6 */
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,      
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
         MODE_INTER_PLUS_MV,    MODE_INTRA,             
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

};

#define MIN_DEQUANT_VAL 2

typedef struct Vp3DecodeContext {
    AVCodecContext *avctx;
    int width, height;
    AVFrame golden_frame;
    AVFrame last_frame;
    AVFrame current_frame;
    int keyframe;
    DSPContext dsp;

    int quality_index;
    int last_quality_index;

    int superblock_count;
    int superblock_width;
    int superblock_height;
231 232 233 234
    int y_superblock_width;
    int y_superblock_height;
    int c_superblock_width;
    int c_superblock_height;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    int u_superblock_start;
    int v_superblock_start;
    unsigned char *superblock_coding;

    int macroblock_count;
    int macroblock_width;
    int macroblock_height;

    int fragment_count;
    int fragment_width;
    int fragment_height;

    Vp3Fragment *all_fragments;
    int u_fragment_start;
    int v_fragment_start;

    /* this is a list of indices into the all_fragments array indicating
     * which of the fragments are coded */
    int *coded_fragment_list;
    int coded_fragment_list_index;
    int pixel_addresses_inited;

    VLC dc_vlc[16];
    VLC ac_vlc_1[16];
    VLC ac_vlc_2[16];
    VLC ac_vlc_3[16];
    VLC ac_vlc_4[16];

    int16_t intra_y_dequant[64];
    int16_t intra_c_dequant[64];
    int16_t inter_dequant[64];

    /* This table contains superblock_count * 16 entries. Each set of 16
     * numbers corresponds to the fragment indices 0..15 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_fragments;

    /* This table contains superblock_count * 4 entries. Each set of 4
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_macroblocks;

    /* This table contains macroblock_count * 6 entries. Each set of 6
     * numbers corresponds to the fragment indices 0..5 which comprise
     * the macroblock (4 Y fragments and 2 C fragments). */
    int *macroblock_fragments;
283 284
    /* This is an array that indicates how a particular macroblock 
     * is coded. */
285
    unsigned char *macroblock_coding;
286

287 288 289 290 291
    int first_coded_y_fragment;
    int first_coded_c_fragment;
    int last_coded_y_fragment;
    int last_coded_c_fragment;

292 293 294 295 296 297 298 299 300 301
} Vp3DecodeContext;

/************************************************************************
 * VP3 specific functions
 ************************************************************************/

/*
 * This function sets up all of the various blocks mappings:
 * superblocks <-> fragments, macroblocks <-> fragments,
 * superblocks <-> macroblocks
302 303
 *
 * Returns 0 is successful; returns 1 if *anything* went wrong.
304
 */
305
static int init_block_mapping(Vp3DecodeContext *s) 
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
    int i, j;
    signed int hilbert_walk_y[16];
    signed int hilbert_walk_c[16];
    signed int hilbert_walk_mb[4];

    int current_fragment = 0;
    int current_width = 0;
    int current_height = 0;
    int right_edge = 0;
    int bottom_edge = 0;
    int superblock_row_inc = 0;
    int *hilbert = NULL;
    int mapping_index = 0;

    int current_macroblock;
    int c_fragment;

    signed char travel_width[16] = {
         1,  1,  0, -1, 
         0,  0,  1,  0,
         1,  0,  1,  0,
         0, -1,  0,  1
    };

    signed char travel_height[16] = {
         0,  0,  1,  0,
         1,  1,  0, -1,
         0,  1,  0, -1,
        -1,  0, -1,  0
    };

    signed char travel_width_mb[4] = {
         1,  0,  1,  0
    };

    signed char travel_height_mb[4] = {
         0,  1,  0, -1
    };

    debug_vp3("  vp3: initialize block mapping tables\n");

    /* figure out hilbert pattern per these frame dimensions */
    hilbert_walk_y[0]  = 1;
    hilbert_walk_y[1]  = 1;
    hilbert_walk_y[2]  = s->fragment_width;
    hilbert_walk_y[3]  = -1;
    hilbert_walk_y[4]  = s->fragment_width;
    hilbert_walk_y[5]  = s->fragment_width;
    hilbert_walk_y[6]  = 1;
    hilbert_walk_y[7]  = -s->fragment_width;
    hilbert_walk_y[8]  = 1;
    hilbert_walk_y[9]  = s->fragment_width;
    hilbert_walk_y[10]  = 1;
    hilbert_walk_y[11] = -s->fragment_width;
    hilbert_walk_y[12] = -s->fragment_width;
    hilbert_walk_y[13] = -1;
    hilbert_walk_y[14] = -s->fragment_width;
    hilbert_walk_y[15] = 1;

    hilbert_walk_c[0]  = 1;
    hilbert_walk_c[1]  = 1;
    hilbert_walk_c[2]  = s->fragment_width / 2;
    hilbert_walk_c[3]  = -1;
    hilbert_walk_c[4]  = s->fragment_width / 2;
    hilbert_walk_c[5]  = s->fragment_width / 2;
    hilbert_walk_c[6]  = 1;
    hilbert_walk_c[7]  = -s->fragment_width / 2;
    hilbert_walk_c[8]  = 1;
    hilbert_walk_c[9]  = s->fragment_width / 2;
    hilbert_walk_c[10]  = 1;
    hilbert_walk_c[11] = -s->fragment_width / 2;
    hilbert_walk_c[12] = -s->fragment_width / 2;
    hilbert_walk_c[13] = -1;
    hilbert_walk_c[14] = -s->fragment_width / 2;
    hilbert_walk_c[15] = 1;

    hilbert_walk_mb[0] = 1;
    hilbert_walk_mb[1] = s->macroblock_width;
    hilbert_walk_mb[2] = 1;
    hilbert_walk_mb[3] = -s->macroblock_width;

    /* iterate through each superblock (all planes) and map the fragments */
    for (i = 0; i < s->superblock_count; i++) {
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
            i, s->u_superblock_start, s->v_superblock_start);

        /* time to re-assign the limits? */
        if (i == 0) {

            /* start of Y superblocks */
            right_edge = s->fragment_width;
            bottom_edge = s->fragment_height;
399
            current_width = -1;
400
            current_height = 0;
401 402
            superblock_row_inc = 3 * s->fragment_width - 
                (s->y_superblock_width * 4 - s->fragment_width);
403 404 405 406 407 408 409 410 411 412
            hilbert = hilbert_walk_y;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = -1;

        } else if (i == s->u_superblock_start) {

            /* start of U superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
413
            current_width = -1;
414
            current_height = 0;
415 416
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
                (s->c_superblock_width * 4 - s->fragment_width / 2);
417 418 419 420 421 422 423 424 425 426
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->u_fragment_start - 1;

        } else if (i == s->v_superblock_start) {

            /* start of V superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
427
            current_width = -1;
428
            current_height = 0;
429 430
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
                (s->c_superblock_width * 4 - s->fragment_width / 2);
431 432 433 434 435 436 437
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->v_fragment_start - 1;

        }

438
        if (current_width >= right_edge - 1) {
439
            /* reset width and move to next superblock row */
440
            current_width = -1;
441 442 443 444 445 446 447 448 449
            current_height += 4;

            /* fragment is now at the start of a new superblock row */
            current_fragment += superblock_row_inc;
        }

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {
            current_fragment += hilbert[j];
450
            current_width += travel_width[j];
451 452 453
            current_height += travel_height[j];

            /* check if the fragment is in bounds */
454
            if ((current_width < right_edge) &&
455 456
                (current_height < bottom_edge)) {
                s->superblock_fragments[mapping_index] = current_fragment;
457 458 459
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n", 
                    s->superblock_fragments[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
460 461
            } else {
                s->superblock_fragments[mapping_index] = -1;
462 463 464
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n", 
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
465 466 467 468 469 470 471 472 473 474
            }

            mapping_index++;
        }
    }

    /* initialize the superblock <-> macroblock mapping; iterate through
     * all of the Y plane superblocks to build this mapping */
    right_edge = s->macroblock_width;
    bottom_edge = s->macroblock_height;
475
    current_width = -1;
476
    current_height = 0;
477 478
    superblock_row_inc = s->macroblock_width -
        (s->y_superblock_width * 2 - s->macroblock_width);;
479 480 481 482 483
    hilbert = hilbert_walk_mb;
    mapping_index = 0;
    current_macroblock = -1;
    for (i = 0; i < s->u_superblock_start; i++) {

484
        if (current_width >= right_edge - 1) {
485
            /* reset width and move to next superblock row */
486
            current_width = -1;
487 488 489 490 491 492 493 494 495
            current_height += 2;

            /* macroblock is now at the start of a new superblock row */
            current_macroblock += superblock_row_inc;
        }

        /* iterate through each potential macroblock in the superblock */
        for (j = 0; j < 4; j++) {
            current_macroblock += hilbert_walk_mb[j];
496
            current_width += travel_width_mb[j];
497 498 499
            current_height += travel_height_mb[j];

            /* check if the macroblock is in bounds */
500
            if ((current_width < right_edge) &&
501 502
                (current_height < bottom_edge)) {
                s->superblock_macroblocks[mapping_index] = current_macroblock;
503 504 505
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
                    s->superblock_macroblocks[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
506 507
            } else {
                s->superblock_macroblocks[mapping_index] = -1;
508 509 510
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
            }

            mapping_index++;
        }
    }

    /* initialize the macroblock <-> fragment mapping */
    current_fragment = 0;
    current_macroblock = 0;
    mapping_index = 0;
    for (i = 0; i < s->fragment_height; i += 2) {

        for (j = 0; j < s->fragment_width; j += 2) {

            debug_init("    macroblock %d contains fragments: ", current_macroblock);
            s->all_fragments[current_fragment].macroblock = current_macroblock;
            s->macroblock_fragments[mapping_index++] = current_fragment;
            debug_init("%d ", current_fragment);

            if (j + 1 < s->fragment_width) {
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
                debug_init("%d ", current_fragment + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if (i + 1 < s->fragment_height) {
                s->all_fragments[current_fragment + s->fragment_width].macroblock = 
                    current_macroblock;
                s->macroblock_fragments[mapping_index++] = 
                    current_fragment + s->fragment_width;
                debug_init("%d ", current_fragment + s->fragment_width);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = 
                    current_macroblock;
                s->macroblock_fragments[mapping_index++] = 
                    current_fragment + s->fragment_width + 1;
                debug_init("%d ", current_fragment + s->fragment_width + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            /* C planes */
            c_fragment = s->u_fragment_start + 
                (i * s->fragment_width / 4) + (j / 2);
558
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
559 560 561 562 563
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            c_fragment = s->v_fragment_start + 
                (i * s->fragment_width / 4) + (j / 2);
564
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
565 566 567 568 569 570 571 572 573 574 575 576 577 578
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            debug_init("\n");

            if (j + 2 <= s->fragment_width)
                current_fragment += 2;
            else 
                current_fragment++;
            current_macroblock++;
        }

        current_fragment += s->fragment_width;
    }
579 580

    return 0;  /* successful path out */
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
}

/*
 * This function unpacks a single token (which should be in the range 0..31)
 * and returns a zero run (number of zero coefficients in current DCT matrix
 * before next non-zero coefficient), the next DCT coefficient, and the
 * number of consecutive, non-EOB'd DCT blocks to EOB.
 */
static void unpack_token(GetBitContext *gb, int token, int *zero_run,
                         DCTELEM *coeff, int *eob_run) 
{
    int sign;

    *zero_run = 0;
    *eob_run = 0;
    *coeff = 0;

    debug_token("    vp3 token %d: ", token);
    switch (token) {

    case 0:
        debug_token("DCT_EOB_TOKEN, EOB next block\n");
        *eob_run = 1;
        break;

    case 1:
        debug_token("DCT_EOB_PAIR_TOKEN, EOB next 2 blocks\n");
        *eob_run = 2;
        break;

    case 2:
        debug_token("DCT_EOB_TRIPLE_TOKEN, EOB next 3 blocks\n");
        *eob_run = 3;
        break;

    case 3:
        debug_token("DCT_REPEAT_RUN_TOKEN, ");
        *eob_run = get_bits(gb, 2) + 4;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 4:
        debug_token("DCT_REPEAT_RUN2_TOKEN, ");
        *eob_run = get_bits(gb, 3) + 8;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 5:
        debug_token("DCT_REPEAT_RUN3_TOKEN, ");
        *eob_run = get_bits(gb, 4) + 16;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 6:
        debug_token("DCT_REPEAT_RUN4_TOKEN, ");
        *eob_run = get_bits(gb, 12);
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 7:
        debug_token("DCT_SHORT_ZRL_TOKEN, ");
        /* note that this token actually indicates that (3 extra bits) + 1 0s
         * should be output; this case specifies a run of (3 EBs) 0s and a
         * coefficient of 0. */
        *zero_run = get_bits(gb, 3);
        *coeff = 0;
        debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
        break;

    case 8:
        debug_token("DCT_ZRL_TOKEN, ");
        /* note that this token actually indicates that (6 extra bits) + 1 0s
         * should be output; this case specifies a run of (6 EBs) 0s and a
         * coefficient of 0. */
        *zero_run = get_bits(gb, 6);
        *coeff = 0;
        debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
        break;

    case 9:
        debug_token("ONE_TOKEN, output 1\n");
        *coeff = 1;
        break;

    case 10:
        debug_token("MINUS_ONE_TOKEN, output -1\n");
        *coeff = -1;
        break;

    case 11:
        debug_token("TWO_TOKEN, output 2\n");
        *coeff = 2;
        break;

    case 12:
        debug_token("MINUS_TWO_TOKEN, output -2\n");
        *coeff = -2;
        break;

    case 13:
    case 14:
    case 15:
    case 16:
        debug_token("LOW_VAL_TOKENS, ");
        if (get_bits(gb, 1))
            *coeff = -(3 + (token - 13));
        else
            *coeff = 3 + (token - 13);
        debug_token("output %d\n", *coeff);
        break;

    case 17:
        debug_token("DCT_VAL_CATEGORY3, ");
        sign = get_bits(gb, 1);
        *coeff = 7 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 18:
        debug_token("DCT_VAL_CATEGORY4, ");
        sign = get_bits(gb, 1);
        *coeff = 9 + get_bits(gb, 2);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 19:
        debug_token("DCT_VAL_CATEGORY5, ");
        sign = get_bits(gb, 1);
        *coeff = 13 + get_bits(gb, 3);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 20:
        debug_token("DCT_VAL_CATEGORY6, ");
        sign = get_bits(gb, 1);
        *coeff = 21 + get_bits(gb, 4);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 21:
        debug_token("DCT_VAL_CATEGORY7, ");
        sign = get_bits(gb, 1);
        *coeff = 37 + get_bits(gb, 5);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 22:
        debug_token("DCT_VAL_CATEGORY8, ");
        sign = get_bits(gb, 1);
        *coeff = 69 + get_bits(gb, 9);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 23:
    case 24:
    case 25:
    case 26:
    case 27:
        debug_token("DCT_RUN_CATEGORY1, ");
        *zero_run = token - 22;
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 28:
        debug_token("DCT_RUN_CATEGORY1B, ");
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        *zero_run = 6 + get_bits(gb, 2);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 29:
        debug_token("DCT_RUN_CATEGORY1C, ");
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        *zero_run = 10 + get_bits(gb, 3);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 30:
        debug_token("DCT_RUN_CATEGORY2, ");
        sign = get_bits(gb, 1);
        *coeff = 2 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        *zero_run = 1;
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 31:
        debug_token("DCT_RUN_CATEGORY2, ");
        sign = get_bits(gb, 1);
        *coeff = 2 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        *zero_run = 2 + get_bits(gb, 1);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    default:
        printf ("  vp3: help! Got a bad token: %d > 31\n", token);
        break;

  }
}

/*
 * This function wipes out all of the fragment data.
 */
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i;

    /* zero out all of the fragment information */
    s->coded_fragment_list_index = 0;
    for (i = 0; i < s->fragment_count; i++) {
        memset(s->all_fragments[i].coeffs, 0, 64 * sizeof(DCTELEM));
        s->all_fragments[i].coeff_count = 0;
        s->all_fragments[i].last_coeff = 0;
    }
}

/*
 * This function sets of the dequantization tables used for a particular
 * frame.
 */
static void init_dequantizer(Vp3DecodeContext *s)
{

    int quality_scale = vp31_quality_threshold[s->quality_index];
    int dc_scale_factor = vp31_dc_scale_factor[s->quality_index];
    int i, j;

    debug_vp3("  vp3: initializing dequantization tables\n");

    /* 
     * Scale dequantizers:
     *
     *   quantizer * sf
     *   --------------
     *        100
     *
     * where sf = dc_scale_factor for DC quantizer
     *           or quality_scale for AC quantizer
     *
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
     */
#define SCALER 1

    /* scale DC quantizers */
    s->intra_y_dequant[0] = vp31_intra_y_dequant[0] * dc_scale_factor / 100;
    if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_y_dequant[0] *= SCALER;

    s->intra_c_dequant[0] = vp31_intra_c_dequant[0] * dc_scale_factor / 100;
    if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_c_dequant[0] *= SCALER;

    s->inter_dequant[0] = vp31_inter_dequant[0] * dc_scale_factor / 100;
    if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
        s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
    s->inter_dequant[0] *= SCALER;

    /* scale AC quantizers, zigzag at the same time in preparation for
     * the dequantization phase */
    for (i = 1; i < 64; i++) {

M
Mike Melanson 已提交
870
        j = zigzag_index[i];
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

        s->intra_y_dequant[j] = vp31_intra_y_dequant[i] * quality_scale / 100;
        if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_y_dequant[j] *= SCALER;

        s->intra_c_dequant[j] = vp31_intra_c_dequant[i] * quality_scale / 100;
        if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_c_dequant[j] *= SCALER;

        s->inter_dequant[j] = vp31_inter_dequant[i] * quality_scale / 100;
        if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
            s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
        s->inter_dequant[j] *= SCALER;
    }

    /* print debug information as requested */
    debug_dequantizers("intra Y dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("intra C dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("interframe dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->inter_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");
}

/*
 * This function is used to fetch runs of 1s or 0s from the bitstream for
 * use in determining which superblocks are fully and partially coded.
 *
 *  Codeword                RunLength
 *  0                       1
 *  10x                     2-3
 *  110x                    4-5
 *  1110xx                  6-9
 *  11110xxx                10-17
 *  111110xxxx              18-33
 *  111111xxxxxxxxxxxx      34-4129
 */
static int get_superblock_run_length(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return 1;

    else if (get_bits(gb, 1) == 0)
        return (2 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (4 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (6 + get_bits(gb, 2));

    else if (get_bits(gb, 1) == 0)
        return (10 + get_bits(gb, 3));

    else if (get_bits(gb, 1) == 0)
        return (18 + get_bits(gb, 4));

    else
        return (34 + get_bits(gb, 12));

}

/*
 * This function is used to fetch runs of 1s or 0s from the bitstream for
 * use in determining which particular fragments are coded.
 *
 * Codeword                RunLength
 * 0x                      1-2
 * 10x                     3-4
 * 110x                    5-6
 * 1110xx                  7-10
 * 11110xx                 11-14
 * 11111xxxx               15-30
 */
static int get_fragment_run_length(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return (1 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (3 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (5 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (7 + get_bits(gb, 2));

    else if (get_bits(gb, 1) == 0)
        return (11 + get_bits(gb, 2));

    else
        return (15 + get_bits(gb, 4));

}

/*
 * This function decodes a VLC from the bitstream and returns a number
 * that ranges from 0..7. The number indicates which of the 8 coding
 * modes to use.
 *
 *  VLC       Number
 *  0            0
 *  10           1
 *  110          2
 *  1110         3
 *  11110        4
 *  111110       5
 *  1111110      6
 *  1111111      7
 *
 */
static int get_mode_code(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return 0;

    else if (get_bits(gb, 1) == 0)
        return 1;

    else if (get_bits(gb, 1) == 0)
        return 2;

    else if (get_bits(gb, 1) == 0)
        return 3;

    else if (get_bits(gb, 1) == 0)
        return 4;

    else if (get_bits(gb, 1) == 0)
        return 5;

    else if (get_bits(gb, 1) == 0)
        return 6;

    else
        return 7;

}

/*
 * This function extracts a motion vector from the bitstream using a VLC
 * scheme. 3 bits are fetched from the bitstream and 1 of 8 actions is
 * taken depending on the value on those 3 bits:
 *
 *  0: return 0
 *  1: return 1
 *  2: return -1
 *  3: if (next bit is 1) return -2, else return 2
 *  4: if (next bit is 1) return -3, else return 3
 *  5: return 4 + (next 2 bits), next bit is sign
 *  6: return 8 + (next 3 bits), next bit is sign
 *  7: return 16 + (next 4 bits), next bit is sign
 */
static int get_motion_vector_vlc(GetBitContext *gb)
{
    int bits;

    bits = get_bits(gb, 3);

    switch(bits) {

    case 0:
        bits = 0;
        break;

    case 1:
        bits = 1;
        break;

    case 2:
        bits = -1;
        break;

    case 3:
        if (get_bits(gb, 1) == 0)
            bits = 2;
        else
            bits = -2;
        break;

    case 4:
        if (get_bits(gb, 1) == 0)
            bits = 3;
        else
            bits = -3;
        break;

    case 5:
        bits = 4 + get_bits(gb, 2);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    case 6:
        bits = 8 + get_bits(gb, 3);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    case 7:
        bits = 16 + get_bits(gb, 4);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    }

    return bits;
}

/*
 * This function fetches a 5-bit number from the stream followed by
 * a sign and calls it a motion vector.
 */
static int get_motion_vector_fixed(GetBitContext *gb)
{

    int bits;

    bits = get_bits(gb, 5);

    if (get_bits(gb, 1) == 1)
        bits = -bits;

    return bits;
}

/*
 * This function unpacks all of the superblock/macroblock/fragment coding 
 * information from the bitstream.
 */
1128
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
{
    int bit = 0;
    int current_superblock = 0;
    int current_run = 0;
    int decode_fully_flags = 0;
    int decode_partial_blocks = 0;

    int i, j;
    int current_fragment;

    debug_vp3("  vp3: unpacking superblock coding\n");

    if (s->keyframe) {

        debug_vp3("    keyframe-- all superblocks are fully coded\n");
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);

    } else {

        /* unpack the list of partially-coded superblocks */
        bit = get_bits(gb, 1);
        /* toggle the bit because as soon as the first run length is 
         * fetched the bit will be toggled again */
        bit ^= 1;
        while (current_superblock < s->superblock_count) {
            if (current_run == 0) {
                bit ^= 1;
                current_run = get_superblock_run_length(gb);
                debug_block_coding("      setting superblocks %d..%d to %s\n",
                    current_superblock,
                    current_superblock + current_run - 1,
                    (bit) ? "partially coded" : "not coded");

                /* if any of the superblocks are not partially coded, flag
                 * a boolean to decode the list of fully-coded superblocks */
                if (bit == 0)
                    decode_fully_flags = 1;
            } else {

                /* make a note of the fact that there are partially coded
                 * superblocks */
                decode_partial_blocks = 1;

            }
            s->superblock_coding[current_superblock++] = 
                (bit) ? SB_PARTIALLY_CODED : SB_NOT_CODED;
            current_run--;
        }

        /* unpack the list of fully coded superblocks if any of the blocks were
         * not marked as partially coded in the previous step */
        if (decode_fully_flags) {

            current_superblock = 0;
            current_run = 0;
            bit = get_bits(gb, 1);
            /* toggle the bit because as soon as the first run length is 
             * fetched the bit will be toggled again */
            bit ^= 1;
            while (current_superblock < s->superblock_count) {

                /* skip any superblocks already marked as partially coded */
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {

                    if (current_run == 0) {
                        bit ^= 1;
                        current_run = get_superblock_run_length(gb);
                    }

                    debug_block_coding("      setting superblock %d to %s\n",
                        current_superblock,
                        (bit) ? "fully coded" : "not coded");
                    s->superblock_coding[current_superblock] = 
                        (bit) ? SB_FULLY_CODED : SB_NOT_CODED;
                    current_run--;
                }
                current_superblock++;
            }
        }

        /* if there were partial blocks, initialize bitstream for
         * unpacking fragment codings */
        if (decode_partial_blocks) {

            current_run = 0;
            bit = get_bits(gb, 1);
            /* toggle the bit because as soon as the first run length is 
             * fetched the bit will be toggled again */
            bit ^= 1;
        }
    }

    /* figure out which fragments are coded; iterate through each
     * superblock (all planes) */
    s->coded_fragment_list_index = 0;
1224 1225
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
1226
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
1227 1228 1229 1230 1231 1232 1233
    for (i = 0; i < s->superblock_count; i++) {

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {

            /* if the fragment is in bounds, check its coding status */
            current_fragment = s->superblock_fragments[i * 16 + j];
1234 1235 1236 1237 1238
            if (current_fragment >= s->fragment_count) {
                printf ("  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
                    current_fragment, s->fragment_count);
                return 1;
            }
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
            if (current_fragment != -1) {
                if (s->superblock_coding[i] == SB_NOT_CODED) {

                    /* copy all the fragments from the prior frame */
                    s->all_fragments[current_fragment].coding_method = 
                        MODE_COPY;

                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {

                    /* fragment may or may not be coded; this is the case
                     * that cares about the fragment coding runs */
                    if (current_run == 0) {
                        bit ^= 1;
                        current_run = get_fragment_run_length(gb);
                    }

                    if (bit) {
                        /* mode will be decoded in the next phase */
                        s->all_fragments[current_fragment].coding_method = 
                            MODE_INTER_NO_MV;
1259
                        s->coded_fragment_list[s->coded_fragment_list_index] = 
1260
                            current_fragment;
1261 1262 1263 1264 1265 1266
                        if ((current_fragment >= s->u_fragment_start) &&
                            (s->last_coded_y_fragment == -1)) {
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
                        }
                        s->coded_fragment_list_index++;
1267
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
                            i, current_fragment);
                    } else {
                        /* not coded; copy this fragment from the prior frame */
                        s->all_fragments[current_fragment].coding_method =
                            MODE_COPY;
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
                            i, current_fragment);
                    }

                    current_run--;

                } else {

                    /* fragments are fully coded in this superblock; actual
                     * coding will be determined in next step */
                    s->all_fragments[current_fragment].coding_method = 
                        MODE_INTER_NO_MV;
1286
                    s->coded_fragment_list[s->coded_fragment_list_index] = 
1287
                        current_fragment;
1288 1289 1290 1291 1292 1293
                    if ((current_fragment >= s->u_fragment_start) &&
                        (s->last_coded_y_fragment == -1)) {
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
                    }
                    s->coded_fragment_list_index++;
1294
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
1295 1296 1297 1298 1299 1300
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
                        i, current_fragment);
                }
            }
        }
    }
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

    if (s->first_coded_c_fragment == 0)
        /* no C fragments coded */
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
    else
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
        s->coded_fragment_list_index,
        s->first_coded_y_fragment,
        s->last_coded_y_fragment,
        s->first_coded_c_fragment,
        s->last_coded_c_fragment);
1313 1314

    return 0;
1315 1316 1317 1318 1319 1320
}

/*
 * This function unpacks all the coding mode data for individual macroblocks
 * from the bitstream.
 */
1321
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
{
    int i, j, k;
    int scheme;
    int current_macroblock;
    int current_fragment;
    int coding_mode;

    debug_vp3("  vp3: unpacking encoding modes\n");

    if (s->keyframe) {
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");

        for (i = 0; i < s->fragment_count; i++)
            s->all_fragments[i].coding_method = MODE_INTRA;

    } else {

        /* fetch the mode coding scheme for this frame */
        scheme = get_bits(gb, 3);
        debug_modes("    using mode alphabet %d\n", scheme);

        /* is it a custom coding scheme? */
        if (scheme == 0) {
            debug_modes("    custom mode alphabet ahead:\n");
            for (i = 0; i < 8; i++)
1347
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        }

        for (i = 0; i < 8; i++)
            debug_modes("      mode[%d][%d] = %d\n", scheme, i, 
                ModeAlphabet[scheme][i]);

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1361
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1362
                    continue;
1363 1364 1365 1366 1367
                if (current_macroblock >= s->macroblock_count) {
                    printf ("  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1368 1369 1370 1371 1372 1373 1374

                /* mode 7 means get 3 bits for each coding mode */
                if (scheme == 7)
                    coding_mode = get_bits(gb, 3);
                else
                    coding_mode = ModeAlphabet[scheme][get_mode_code(gb)];

1375
                s->macroblock_coding[current_macroblock] = coding_mode;
1376 1377 1378
                for (k = 0; k < 6; k++) {
                    current_fragment = 
                        s->macroblock_fragments[current_macroblock * 6 + k];
1379 1380 1381 1382 1383 1384 1385
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
                        printf ("  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
                    if (s->all_fragments[current_fragment].coding_method != 
                        MODE_COPY)
                        s->all_fragments[current_fragment].coding_method =
                            coding_mode;
                }

                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
            }
        }
    }
1397 1398

    return 0;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
}

/*
 * This function adjusts the components of a motion vector for the halfpel
 * motion grid. c_plane indicates whether the vector applies to the U or V
 * plane. The function returns the halfpel function index to be used in
 * ffmpeg's put_pixels[]() array of functions.
 */
static inline int adjust_vector(int *x, int *y, int c_plane)
{
    int motion_halfpel_index = 0;
    int x_halfpel;
    int y_halfpel;

    if (!c_plane) {

        x_halfpel = *x & 1;
        motion_halfpel_index |= x_halfpel;
        if (*x >= 0)
            *x >>= 1;
        else
            *x = -( (-(*x) >> 1) + x_halfpel);

        y_halfpel = *y & 1;
        motion_halfpel_index |= (y_halfpel << 1);
        if (*y >= 0)
            *y >>= 1;
        else
            *y = -( (-(*y) >> 1) + y_halfpel);

    } else {

        x_halfpel = ((*x & 0x03) != 0);
        motion_halfpel_index |= x_halfpel;
        if (*x >= 0)
            *x >>= 2;
        else
            *x = -( (-(*x) >> 2) + x_halfpel);

        y_halfpel = ((*y & 0x03) != 0);
        motion_halfpel_index |= (y_halfpel << 1);
        if (*y >= 0)
            *y >>= 2;
        else
            *y = -( (-(*y) >> 2) + y_halfpel);

    }
1446

1447
    return motion_halfpel_index;
1448 1449 1450 1451 1452 1453
}

/*
 * This function unpacks all the motion vectors for the individual
 * macroblocks from the bitstream.
 */
1454
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
{
    int i, j, k;
    int coding_mode;
    int motion_x[6];
    int motion_y[6];
    int last_motion_x = 0;
    int last_motion_y = 0;
    int prior_last_motion_x = 0;
    int prior_last_motion_y = 0;
    int current_macroblock;
    int current_fragment;

    debug_vp3("  vp3: unpacking motion vectors\n");

    if (s->keyframe) {

        debug_vp3("    keyframe-- there are no motion vectors\n");

    } else {

        memset(motion_x, 0, 6 * sizeof(int));
        memset(motion_y, 0, 6 * sizeof(int));

        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
        coding_mode = get_bits(gb, 1);
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
            (coding_mode == 0) ? "VLC" : "fixed-length");

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1490
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1491
                    continue;
1492 1493 1494 1495 1496
                if (current_macroblock >= s->macroblock_count) {
                    printf ("  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1497 1498

                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1499 1500 1501 1502 1503
                if (current_fragment >= s->fragment_count) {
                    printf ("  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
                        current_fragment, s->fragment_count);
                    return 1;
                }
1504
                switch (s->macroblock_coding[current_macroblock]) {
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

                case MODE_INTER_PLUS_MV:
                case MODE_GOLDEN_MV:
                    /* all 6 fragments use the same motion vector */
                    if (coding_mode == 0) {
                        motion_x[0] = get_motion_vector_vlc(gb);
                        motion_y[0] = get_motion_vector_vlc(gb);
                    } else {
                        motion_x[0] = get_motion_vector_fixed(gb);
                        motion_y[0] = get_motion_vector_fixed(gb);
                    }
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
                    if (s->all_fragments[current_fragment].coding_method ==
                        MODE_INTER_PLUS_MV) {
                        prior_last_motion_x = last_motion_x;
                        prior_last_motion_y = last_motion_y;
                        last_motion_x = motion_x[0];
                        last_motion_y = motion_y[0];
                    }
                    break;

                case MODE_INTER_FOURMV:
                    /* fetch 4 vectors from the bitstream, one for each
                     * Y fragment, then average for the C fragment vectors */
                    motion_x[4] = motion_y[4] = 0;
                    for (k = 0; k < 4; k++) {
                        if (coding_mode == 0) {
                            motion_x[k] = get_motion_vector_vlc(gb);
                            motion_y[k] = get_motion_vector_vlc(gb);
                        } else {
                            motion_x[k] = get_motion_vector_fixed(gb);
                            motion_y[k] = get_motion_vector_fixed(gb);
                        }
                        motion_x[4] += motion_x[k];
                        motion_y[4] += motion_y[k];
                    }

                    if (motion_x[4] >= 0) 
                        motion_x[4] = (motion_x[4] + 2) / 4;
                    else
                        motion_x[4] = (motion_x[4] - 2) / 4;
                    motion_x[5] = motion_x[4];

                    if (motion_y[4] >= 0) 
                        motion_y[4] = (motion_y[4] + 2) / 4;
                    else
                        motion_y[4] = (motion_y[4] - 2) / 4;
                    motion_y[5] = motion_y[4];

                    /* vector maintenance; vector[3] is treated as the
                     * last vector in this case */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[3];
                    last_motion_y = motion_y[3];
                    break;

                case MODE_INTER_LAST_MV:
                    /* all 6 fragments use the last motion vector */
                    motion_x[0] = last_motion_x;
                    motion_y[0] = last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* no vector maintenance (last vector remains the
                     * last vector) */
                    break;

                case MODE_INTER_PRIOR_LAST:
                    /* all 6 fragments use the motion vector prior to the
                     * last motion vector */
                    motion_x[0] = prior_last_motion_x;
                    motion_y[0] = prior_last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[0];
                    last_motion_y = motion_y[0];
                    break;
1596 1597 1598 1599 1600 1601 1602 1603

                default:
                    /* covers intra, inter without MV, golden without MV */
                    memset(motion_x, 0, 6 * sizeof(int));
                    memset(motion_y, 0, 6 * sizeof(int));

                    /* no vector maintenance */
                    break;
1604 1605 1606 1607 1608 1609 1610 1611 1612
                }

                /* assign the motion vectors to the correct fragments */
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
                    current_fragment,
                    s->all_fragments[current_fragment].coding_method);
                for (k = 0; k < 6; k++) {
                    current_fragment = 
                        s->macroblock_fragments[current_macroblock * 6 + k];
1613 1614 1615 1616 1617 1618 1619
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
                        printf ("  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1620 1621 1622
                    s->all_fragments[current_fragment].motion_halfpel_index =
                        adjust_vector(&motion_x[k], &motion_y[k],
                        ((k == 4) || (k == 5)));
1623
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1624 1625 1626 1627
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
                    debug_vectors("    vector %d: fragment %d = (%d, %d), index %d\n",
                        k, current_fragment, motion_x[k], motion_y[k],
                        s->all_fragments[current_fragment].motion_halfpel_index);
1628 1629 1630 1631
                }
            }
        }
    }
1632 1633

    return 0;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
}

/* 
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 * data. This function unpacks all the VLCs for either the Y plane or both
 * C planes, and is called for DC coefficients or different AC coefficient
 * levels (since different coefficient types require different VLC tables.
 *
 * This function returns a residual eob run. E.g, if a particular token gave
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 * left in the current fragment range, 3 would be returned so that it could
 * be passed into the next call to this same function.
 */
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                        VLC *table, int coeff_index,
                        int first_fragment, int last_fragment,
                        int eob_run)
{
    int i;
    int token;
    int zero_run;
    DCTELEM coeff;
    Vp3Fragment *fragment;

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
    if ((first_fragment < 0) ||
        (first_fragment >= s->fragment_count) ||
        (last_fragment < 0) ||
        (last_fragment >= s->fragment_count)) {

        printf ("  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
            first_fragment, last_fragment);
        return 1;
    }

1669
    for (i = first_fragment; i <= last_fragment; i++) {
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

        fragment = &s->all_fragments[s->coded_fragment_list[i]];
        if (fragment->coeff_count > coeff_index)
            continue;

        if (!eob_run) {
            /* decode a VLC into a token */
            token = get_vlc2(gb, table->table, 5, 3);
            debug_vlc(" token = %2d, ", token);
            /* use the token to get a zero run, a coefficient, and an eob run */
            unpack_token(gb, token, &zero_run, &coeff, &eob_run);
        }

        if (!eob_run) {
            fragment->coeff_count += zero_run;
            if (fragment->coeff_count < 64)
                fragment->coeffs[fragment->coeff_count++] = coeff;
            debug_vlc(" fragment %d coeff = %d\n",
                s->coded_fragment_list[i], fragment->coeffs[coeff_index]);
        } else {
            fragment->last_coeff = fragment->coeff_count;
            fragment->coeff_count = 64;
            debug_vlc(" fragment %d eob with %d coefficients\n", 
                s->coded_fragment_list[i], fragment->last_coeff);
            eob_run--;
        }
    }

    return eob_run;
}

/*
 * This function unpacks all of the DCT coefficient data from the
 * bitstream.
 */
1705
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
{
    int i;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    int residual_eob_run = 0;

    /* fetch the DC table indices */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    /* unpack the Y plane DC coefficients */
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
        dc_y_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, 
1722
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1723 1724 1725 1726 1727

    /* unpack the C plane DC coefficients */
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
        dc_c_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1728
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1729

1730
    /* fetch the AC table indices */
1731 1732 1733
    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

1734
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1735 1736 1737 1738 1739
    for (i = 1; i <= 5; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, 
1740
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1741 1742 1743 1744

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, 
1745
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1746 1747
    }

1748
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1749 1750 1751 1752 1753
    for (i = 6; i <= 14; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, 
1754
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1755 1756 1757 1758

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, 
1759
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1760 1761
    }

1762
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1763 1764 1765 1766 1767
    for (i = 15; i <= 27; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, 
1768
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1769 1770 1771 1772

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, 
1773
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1774 1775
    }

1776
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1777 1778 1779 1780 1781
    for (i = 28; i <= 63; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, 
1782
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1783 1784 1785 1786

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, 
1787
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1788
    }
1789 1790

    return 0;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
}

/*
 * This function reverses the DC prediction for each coded fragment in
 * the frame. Much of this function is adapted directly from the original 
 * VP3 source code.
 */
#define COMPATIBLE_FRAME(x) \
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
static inline int iabs (int x) { return ((x < 0) ? -x : x); }

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
                                  int fragment_height) 
{

#define PUL 8
#define PU 4
#define PUR 2
#define PL 1

    int x, y;
    int i = first_fragment;

    /*
     * Fragment prediction groups:
     *
     * 32222222226
     * 10000000004
     * 10000000004
     * 10000000004
     * 10000000004
     *
     * Note: Groups 5 and 7 do not exist as it would mean that the 
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
     */
    int predictor_group;
    short predicted_dc;

    /* validity flags for the left, up-left, up, and up-right fragments */
    int fl, ful, fu, fur;

    /* DC values for the left, up-left, up, and up-right fragments */
    int vl, vul, vu, vur;

    /* indices for the left, up-left, up, and up-right fragments */
    int l, ul, u, ur;

    /* 
     * The 6 fields mean:
     *   0: up-left multiplier
     *   1: up multiplier
     *   2: up-right multiplier
     *   3: left multiplier
     *   4: mask
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
     */
    int predictor_transform[16][6] = {
        {  0,  0,  0,  0,   0,  0 },
        {  0,  0,  0,  1,   0,  0 },        // PL
        {  0,  0,  1,  0,   0,  0 },        // PUR
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PU
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
        {  1,  0,  0,  0,   0,  0 },        // PUL
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
    };

    /* This table shows which types of blocks can use other blocks for
     * prediction. For example, INTRA is the only mode in this table to
     * have a frame number of 0. That means INTRA blocks can only predict
     * from other INTRA blocks. There are 2 golden frame coding types; 
     * blocks encoding in these modes can only predict from other blocks
     * that were encoded with these 1 of these 2 modes. */
    unsigned char compatible_frame[8] = {
        1,    /* MODE_INTER_NO_MV */
        0,    /* MODE_INTRA */
        1,    /* MODE_INTER_PLUS_MV */
        1,    /* MODE_INTER_LAST_MV */
        1,    /* MODE_INTER_PRIOR_MV */
        2,    /* MODE_USING_GOLDEN */
        2,    /* MODE_GOLDEN_MV */
        1     /* MODE_INTER_FOUR_MV */
    };
    int current_frame_type;

    /* there is a last DC predictor for each of the 3 frame types */
    short last_dc[3];

    int transform = 0;

    debug_vp3("  vp3: reversing DC prediction\n");

    vul = vu = vur = vl = 0;
    last_dc[0] = last_dc[1] = last_dc[2] = 0;

    /* for each fragment row... */
    for (y = 0; y < fragment_height; y++) {

        /* for each fragment in a row... */
        for (x = 0; x < fragment_width; x++, i++) {

            /* reverse prediction if this block was coded */
            if (s->all_fragments[i].coding_method != MODE_COPY) {

                current_frame_type = 
                    compatible_frame[s->all_fragments[i].coding_method];
                predictor_group = (x == 0) + ((y == 0) << 1) +
                    ((x + 1 == fragment_width) << 2);
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
                    i, predictor_group, s->all_fragments[i].coeffs[0]);

                switch (predictor_group) {

                case 0:
                    /* main body of fragments; consider all 4 possible
                     * fragments for prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vul = s->all_fragments[ul].coeffs[0];
                    vu = s->all_fragments[u].coeffs[0];
                    vur = s->all_fragments[ur].coeffs[0];
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);

                    break;

                case 1:
                    /* left column of fragments, not including top corner;
                     * only consider up and up-right fragments */

                    /* calculate the indices of the predicting fragments */
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;

                    /* fetch the DC values for the predicting fragments */
                    vu = s->all_fragments[u].coeffs[0];
                    vur = s->all_fragments[ur].coeffs[0];

                    /* figure out which fragments are valid */
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);

                    /* decide which predictor transform to use */
                    transform = (fu*PU) | (fur*PUR);

                    break;

                case 2:
                case 6:
                    /* top row of fragments, not including top-left frag;
                     * only consider the left fragment for prediction */

                    /* calculate the indices of the predicting fragments */
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL);

                    break;

                case 3:
                    /* top-left fragment */

                    /* nothing to predict from in this case */
                    transform = 0;

                    break;

                case 4:
                    /* right column of fragments, not including top corner;
                     * consider up-left, up, and left fragments for
                     * prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vul = s->all_fragments[ul].coeffs[0];
                    vu = s->all_fragments[u].coeffs[0];
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);

                    break;

                }

                debug_dc_pred("transform = %d, ", transform);

                if (transform == 0) {

                    /* if there were no fragments to predict from, use last
                     * DC saved */
                    s->all_fragments[i].coeffs[0] += last_dc[current_frame_type];
                    debug_dc_pred("from last DC (%d) = %d\n", 
                        current_frame_type, s->all_fragments[i].coeffs[0]);

                } else {

                    /* apply the appropriate predictor transform */
                    predicted_dc =
                        (predictor_transform[transform][0] * vul) +
                        (predictor_transform[transform][1] * vu) +
                        (predictor_transform[transform][2] * vur) +
                        (predictor_transform[transform][3] * vl);

                    /* if there is a shift value in the transform, add
                     * the sign bit before the shift */
                    if (predictor_transform[transform][5] != 0) {
                        predicted_dc += ((predicted_dc >> 15) & 
                            predictor_transform[transform][4]);
                        predicted_dc >>= predictor_transform[transform][5];
                    }

                    /* check for outranging on the [ul u l] and
                     * [ul u ur l] predictors */
                    if ((transform == 13) || (transform == 15)) {
                        if (iabs(predicted_dc - vu) > 128)
                            predicted_dc = vu;
                        else if (iabs(predicted_dc - vl) > 128)
                            predicted_dc = vl;
                        else if (iabs(predicted_dc - vul) > 128)
                            predicted_dc = vul;
                    }

                    /* at long last, apply the predictor */
                    s->all_fragments[i].coeffs[0] += predicted_dc;
                    debug_dc_pred("from pred DC = %d\n", 
                    s->all_fragments[i].coeffs[0]);
                }

                /* save the DC */
                last_dc[current_frame_type] = s->all_fragments[i].coeffs[0];
            }
        }
    }
}

/*
 * This function performs the final rendering of each fragment's data
 * onto the output frame.
 */
static void render_fragments(Vp3DecodeContext *s,
                             int first_fragment,
2074 2075
                             int width,
                             int height,
2076 2077 2078 2079 2080 2081 2082 2083
                             int plane /* 0 = Y, 1 = U, 2 = V */) 
{
    int x, y;
    int m, n;
    int i = first_fragment;
    int j;
    int16_t *dequantizer;
    DCTELEM dequant_block[64];
M
Mike Melanson 已提交
2084
    DCTELEM dequant_block_permuted[64];
2085 2086 2087 2088
    unsigned char *output_plane;
    unsigned char *last_plane;
    unsigned char *golden_plane;
    int stride;
2089
    int motion_x, motion_y;
2090
    int upper_motion_limit, lower_motion_limit;
2091
    int motion_halfpel_index;
2092
    unsigned int motion_source;
2093 2094 2095 2096 2097 2098 2099 2100

    debug_vp3("  vp3: rendering final fragments for %s\n",
        (plane == 0) ? "Y plane" : (plane == 1) ? "U plane" : "V plane");

    /* set up plane-specific parameters */
    if (plane == 0) {
        dequantizer = s->intra_y_dequant;
        output_plane = s->current_frame.data[0];
2101 2102
        last_plane = s->last_frame.data[0];
        golden_plane = s->golden_frame.data[0];
2103
        stride = -s->current_frame.linesize[0];
2104 2105
        upper_motion_limit = 7 * s->current_frame.linesize[0];
        lower_motion_limit = height * s->current_frame.linesize[0] + width - 8;
2106 2107 2108
    } else if (plane == 1) {
        dequantizer = s->intra_c_dequant;
        output_plane = s->current_frame.data[1];
2109 2110
        last_plane = s->last_frame.data[1];
        golden_plane = s->golden_frame.data[1];
2111
        stride = -s->current_frame.linesize[1];
2112 2113
        upper_motion_limit = 7 * s->current_frame.linesize[1];
        lower_motion_limit = height * s->current_frame.linesize[1] + width - 8;
2114 2115 2116
    } else {
        dequantizer = s->intra_c_dequant;
        output_plane = s->current_frame.data[2];
2117 2118
        last_plane = s->last_frame.data[2];
        golden_plane = s->golden_frame.data[2];
2119
        stride = -s->current_frame.linesize[2];
2120 2121
        upper_motion_limit = 7 * s->current_frame.linesize[2];
        lower_motion_limit = height * s->current_frame.linesize[2] + width - 8;
2122 2123 2124
    }

    /* for each fragment row... */
2125
    for (y = 0; y < height; y += 8) {
2126 2127

        /* for each fragment in a row... */
2128
        for (x = 0; x < width; x += 8, i++) {
2129

2130 2131 2132 2133 2134
            if ((i < 0) || (i >= s->fragment_count)) {
                printf ("  vp3:render_fragments(): bad fragment number (%d)\n", i);
                return;
            }

2135
            /* transform if this block was coded */
2136 2137 2138
            if (s->all_fragments[i].coding_method != MODE_COPY) {

                /* sort out the motion vector */
2139 2140
                motion_x = s->all_fragments[i].motion_x;
                motion_y = s->all_fragments[i].motion_y;
2141 2142
                motion_halfpel_index = s->all_fragments[i].motion_halfpel_index;

2143 2144 2145
                motion_source = s->all_fragments[i].first_pixel;
                motion_source += motion_x;
                motion_source += (motion_y * stride);
2146

2147 2148 2149 2150 2151 2152
                /* if the are any problems with a motion vector, refuse
                 * to render the block */
                if ((motion_source < upper_motion_limit) ||
                    (motion_source > lower_motion_limit)) {
//                    printf ("  vp3: help! motion source (%d) out of range (%d..%d)\n",
//                        motion_source, upper_motion_limit, lower_motion_limit);
2153
                    continue;
2154 2155
                }

2156 2157 2158 2159 2160 2161 2162
                /* first, take care of copying a block from either the
                 * previous or the golden frame */
                if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
                    (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) {

                    s->dsp.put_pixels_tab[1][motion_halfpel_index](
                        output_plane + s->all_fragments[i].first_pixel,
2163
                        golden_plane + motion_source,
2164 2165 2166 2167 2168 2169 2170
                        stride, 8);

                } else 
                if (s->all_fragments[i].coding_method != MODE_INTRA) {

                    s->dsp.put_pixels_tab[1][motion_halfpel_index](
                        output_plane + s->all_fragments[i].first_pixel,
2171
                        last_plane + motion_source,
2172 2173 2174
                        stride, 8);
                }

2175
                /* dequantize the DCT coefficients */
2176 2177 2178
                debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n", 
                    i, s->all_fragments[i].coding_method, 
                    s->all_fragments[i].coeffs[0], dequantizer[0]);
2179
                for (j = 0; j < 64; j++)
M
Mike Melanson 已提交
2180
                    dequant_block[dezigzag_index[j]] =
2181 2182
                        s->all_fragments[i].coeffs[j] *
                        dequantizer[j];
M
Mike Melanson 已提交
2183 2184 2185
                for (j = 0; j < 64; j++)
                    dequant_block_permuted[s->dsp.idct_permutation[j]] =
                        dequant_block[j];
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

                debug_idct("dequantized block:\n");
                for (m = 0; m < 8; m++) {
                    for (n = 0; n < 8; n++) {
                        debug_idct(" %5d", dequant_block[m * 8 + n]);
                    }
                    debug_idct("\n");
                }
                debug_idct("\n");

2196
                /* invert DCT and place (or add) in final output */
2197

2198
                if (s->all_fragments[i].coding_method == MODE_INTRA) {
M
Mike Melanson 已提交
2199
                    dequant_block_permuted[0] += 1024;
2200 2201
                    s->dsp.idct_put(
                        output_plane + s->all_fragments[i].first_pixel,
M
Mike Melanson 已提交
2202
                        stride, dequant_block_permuted);
2203 2204
                } else {
                    s->dsp.idct_add(
2205
                        output_plane + s->all_fragments[i].first_pixel,
M
Mike Melanson 已提交
2206
                        stride, dequant_block_permuted);
2207
                }
2208 2209 2210 2211

                debug_idct("block after idct_%s():\n",
                    (s->all_fragments[i].coding_method == MODE_INTRA)?
                    "put" : "add");
2212 2213
                for (m = 0; m < 8; m++) {
                    for (n = 0; n < 8; n++) {
2214 2215
                        debug_idct(" %3d", *(output_plane + 
                            s->all_fragments[i].first_pixel + (m * stride + n)));
2216 2217 2218 2219 2220 2221 2222
                    }
                    debug_idct("\n");
                }
                debug_idct("\n");

            } else {

2223 2224 2225 2226 2227
                /* copy directly from the previous frame */
                s->dsp.put_pixels_tab[1][0](
                    output_plane + s->all_fragments[i].first_pixel,
                    last_plane + s->all_fragments[i].first_pixel,
                    stride, 8);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

            }
        }
    }

    emms_c();

}

/* 
 * This function computes the first pixel addresses for each fragment.
 * This function needs to be invoked after the first frame is allocated
 * so that it has access to the plane strides.
 */
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) 
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = s->fragment_height; y > 0; y--) {
        for (x = 0; x < s->fragment_width; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

/*
 * This is the ffmpeg/libavcodec API init function.
 */
static int vp3_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i;
2295 2296 2297 2298
    int c_width;
    int c_height;
    int y_superblock_count;
    int c_superblock_count;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

    s->avctx = avctx;
    s->width = avctx->width;
    s->height = avctx->height;
    avctx->pix_fmt = PIX_FMT_YUV420P;
    avctx->has_b_frames = 0;
    dsputil_init(&s->dsp, avctx);

    /* initialize to an impossible value which will force a recalculation
     * in the first frame decode */
    s->quality_index = -1;

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
    s->y_superblock_width = (s->width + 31) / 32;
    s->y_superblock_height = (s->height + 31) / 32;
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;

    /* work out the dimensions for the C planes */
    c_width = s->width / 2;
    c_height = s->height / 2;
    s->c_superblock_width = (c_width + 31) / 32;
    s->c_superblock_height = (c_height + 31) / 32;
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;

    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
    s->u_superblock_start = y_superblock_count;
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    s->superblock_coding = av_malloc(s->superblock_count);

    s->macroblock_width = (s->width + 15) / 16;
    s->macroblock_height = (s->height + 15) / 16;
    s->macroblock_count = s->macroblock_width * s->macroblock_height;

    s->fragment_width = s->width / FRAGMENT_PIXELS;
    s->fragment_height = s->height / FRAGMENT_PIXELS;

    /* fragment count covers all 8x8 blocks for all 3 planes */
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
    s->u_fragment_start = s->fragment_width * s->fragment_height;
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;

2339 2340 2341 2342 2343 2344 2345 2346
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
    debug_init("  C plane: %d x %d\n", c_width, c_height);
    debug_init("  Y superblocks: %d x %d, %d total\n",
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
    debug_init("  C superblocks: %d x %d, %d total\n",
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n", 
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
    debug_init("  macroblocks: %d x %d, %d total\n",
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
        s->fragment_count,
        s->fragment_width,
        s->fragment_height,
        s->u_fragment_start,
        s->v_fragment_start);

    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
    s->pixel_addresses_inited = 0;

    /* init VLC tables */
    for (i = 0; i < 16; i++) {

2363
        /* DC histograms */
2364 2365 2366 2367
        init_vlc(&s->dc_vlc[i], 5, 32,
            &dc_bias[i][0][1], 4, 2,
            &dc_bias[i][0][0], 4, 2);

2368
        /* group 1 AC histograms */
2369 2370 2371 2372
        init_vlc(&s->ac_vlc_1[i], 5, 32,
            &ac_bias_0[i][0][1], 4, 2,
            &ac_bias_0[i][0][0], 4, 2);

2373
        /* group 2 AC histograms */
2374 2375 2376 2377
        init_vlc(&s->ac_vlc_2[i], 5, 32,
            &ac_bias_1[i][0][1], 4, 2,
            &ac_bias_1[i][0][0], 4, 2);

2378
        /* group 3 AC histograms */
2379 2380 2381 2382
        init_vlc(&s->ac_vlc_3[i], 5, 32,
            &ac_bias_2[i][0][1], 4, 2,
            &ac_bias_2[i][0][0], 4, 2);

2383
        /* group 4 AC histograms */
2384 2385 2386 2387 2388
        init_vlc(&s->ac_vlc_4[i], 5, 32,
            &ac_bias_3[i][0][1], 4, 2,
            &ac_bias_3[i][0][0], 4, 2);
    }

2389
    /* build quantization zigzag table */
2390
    for (i = 0; i < 64; i++)
M
Mike Melanson 已提交
2391
        zigzag_index[dezigzag_index[i]] = i;
2392 2393 2394 2395 2396

    /* work out the block mapping tables */
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2397
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2398 2399
    init_block_mapping(s);

2400 2401 2402 2403
    for (i = 0; i < 3; i++) {
        s->current_frame.data[i] = NULL;
        s->last_frame.data[i] = NULL;
        s->golden_frame.data[i] = NULL;
2404 2405
    }

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
    return 0;
}

/*
 * This is the ffmpeg/libavcodec API frame decode function.
 */
static int vp3_decode_frame(AVCodecContext *avctx, 
                            void *data, int *data_size,
                            uint8_t *buf, int buf_size)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    static int counter = 0;

    *data_size = 0;

    init_get_bits(&gb, buf, buf_size * 8);

    s->keyframe = get_bits(&gb, 1);
    s->keyframe ^= 1;
    skip_bits(&gb, 1);
    s->last_quality_index = s->quality_index;
    s->quality_index = get_bits(&gb, 6);
    if (s->quality_index != s->last_quality_index)
        init_dequantizer(s);

    debug_vp3(" VP3 frame #%d: Q index = %d", counter, s->quality_index);
    counter++;

    if (s->keyframe) {
2436 2437 2438 2439 2440 2441 2442 2443 2444
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
        } else {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
            if (s->last_frame.data[0])
                avctx->release_buffer(avctx, &s->last_frame);
        }
2445 2446 2447 2448 2449 2450 2451 2452

        s->golden_frame.reference = 0;
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
            printf("vp3: get_buffer() failed\n");
            return -1;
        }

        /* golden frame is also the current frame */
2453
        memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

        /* time to figure out pixel addresses? */
        if (!s->pixel_addresses_inited)
            vp3_calculate_pixel_addresses(s);

    } else {

        /* allocate a new current frame */
        s->current_frame.reference = 0;
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
            printf("vp3: get_buffer() failed\n");
            return -1;
        }

    }

    if (s->keyframe) {
      debug_vp3(", keyframe\n");
      /* skip the other 2 header bytes for now */
      skip_bits(&gb, 16);
    } else
      debug_vp3("\n");

    init_frame(s, &gb);

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
#if KEYFRAMES_ONLY
if (!s->keyframe) {

    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
        s->current_frame.linesize[0] * s->height);
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
        s->current_frame.linesize[1] * s->height / 2);
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
        s->current_frame.linesize[2] * s->height / 2);

} else {
#endif

    if (unpack_superblocks(s, &gb) ||
        unpack_modes(s, &gb) ||
        unpack_vectors(s, &gb) ||
        unpack_dct_coeffs(s, &gb)) {

        printf("  vp3: could not decode frame\n");
        return -1;
    }
2500 2501 2502 2503 2504 2505 2506

    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
    reverse_dc_prediction(s, s->u_fragment_start,
        s->fragment_width / 2, s->fragment_height / 2);
    reverse_dc_prediction(s, s->v_fragment_start,
        s->fragment_width / 2, s->fragment_height / 2);

2507 2508 2509
    render_fragments(s, 0, s->width, s->height, 0);
    render_fragments(s, s->u_fragment_start, s->width / 2, s->height / 2, 1);
    render_fragments(s, s->v_fragment_start, s->width / 2, s->height / 2, 2);
2510

2511 2512 2513 2514
#if KEYFRAMES_ONLY
}
#endif

2515 2516 2517
    *data_size=sizeof(AVFrame);
    *(AVFrame*)data= s->current_frame;

2518 2519 2520 2521 2522
    /* release the last frame, if it is allocated and if it is not the
     * golden frame */
    if ((s->last_frame.data[0]) &&
        (s->last_frame.data[0] != s->golden_frame.data[0]))
        avctx->release_buffer(avctx, &s->last_frame);
2523

2524 2525
    /* shuffle frames (last = current) */
    memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

    return buf_size;
}

/*
 * This is the ffmpeg/libavcodec API module cleanup function.
 */
static int vp3_decode_end(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    av_free(s->all_fragments);
    av_free(s->coded_fragment_list);
    av_free(s->superblock_fragments);
    av_free(s->superblock_macroblocks);
    av_free(s->macroblock_fragments);
2542
    av_free(s->macroblock_coding);
2543 2544

    /* release all frames */
2545 2546 2547 2548 2549 2550
    if (s->golden_frame.data[0])
        avctx->release_buffer(avctx, &s->golden_frame);
    if (s->last_frame.data[0])
        avctx->release_buffer(avctx, &s->last_frame);
    /* no need to release the current_frame since it will always be pointing
     * to the same frame as either the golden or last frame */
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

    return 0;
}

AVCodec vp3_decoder = {
    "vp3",
    CODEC_TYPE_VIDEO,
    CODEC_ID_VP3,
    sizeof(Vp3DecodeContext),
    vp3_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};