vp3.c 103.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/**
 * @file vp3.c
 * On2 VP3 Video Decoder
23 24 25 26 27 28
 *
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 * For more information about the VP3 coding process, visit:
 *   http://multimedia.cx/
 *
 * Theora decoder by Alex Beregszaszi
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "common.h"
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"

#include "vp3data.h"

#define FRAGMENT_PIXELS 8

/* 
 * Debugging Variables
 * 
 * Define one or more of the following compile-time variables to 1 to obtain
 * elaborate information about certain aspects of the decoding process.
 *
51
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52 53 54 55 56 57 58 59 60 61 62 63
 * DEBUG_VP3: high-level decoding flow
 * DEBUG_INIT: initialization parameters
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
 * DEBUG_MODES: unpacking the coding modes for individual fragments
 * DEBUG_VECTORS: display the motion vectors
 * DEBUG_TOKEN: display exhaustive information about each DCT token
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
 * DEBUG_DC_PRED: display the process of reversing DC prediction
 * DEBUG_IDCT: show every detail of the IDCT process
 */

64 65
#define KEYFRAMES_ONLY 0

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#define DEBUG_VP3 0
#define DEBUG_INIT 0
#define DEBUG_DEQUANTIZERS 0
#define DEBUG_BLOCK_CODING 0
#define DEBUG_MODES 0
#define DEBUG_VECTORS 0
#define DEBUG_TOKEN 0
#define DEBUG_VLC 0
#define DEBUG_DC_PRED 0
#define DEBUG_IDCT 0

#if DEBUG_VP3
#define debug_vp3 printf
#else
static inline void debug_vp3(const char *format, ...) { }
#endif

#if DEBUG_INIT
#define debug_init printf
#else
static inline void debug_init(const char *format, ...) { }
#endif

#if DEBUG_DEQUANTIZERS
#define debug_dequantizers printf 
#else
static inline void debug_dequantizers(const char *format, ...) { } 
#endif

#if DEBUG_BLOCK_CODING
#define debug_block_coding printf 
#else
static inline void debug_block_coding(const char *format, ...) { } 
#endif

#if DEBUG_MODES
#define debug_modes printf 
#else
static inline void debug_modes(const char *format, ...) { } 
#endif

#if DEBUG_VECTORS
#define debug_vectors printf 
#else
static inline void debug_vectors(const char *format, ...) { } 
#endif

#if DEBUG_TOKEN 
#define debug_token printf 
#else
static inline void debug_token(const char *format, ...) { } 
#endif

#if DEBUG_VLC
#define debug_vlc printf 
#else
static inline void debug_vlc(const char *format, ...) { } 
#endif

#if DEBUG_DC_PRED
#define debug_dc_pred printf 
#else
static inline void debug_dc_pred(const char *format, ...) { } 
#endif

#if DEBUG_IDCT
#define debug_idct printf 
#else
static inline void debug_idct(const char *format, ...) { } 
#endif

typedef struct Vp3Fragment {
138
    DCTELEM *coeffs;
139 140 141 142
    /* address of first pixel taking into account which plane the fragment
     * lives on as well as the plane stride */
    int first_pixel;
    /* this is the macroblock that the fragment belongs to */
143 144 145 146 147 148
    uint16_t macroblock;
    uint8_t coding_method;
    uint8_t coeff_count;
    int8_t last_coeff;
    int8_t motion_x;
    int8_t motion_y;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
} Vp3Fragment;

#define SB_NOT_CODED        0
#define SB_PARTIALLY_CODED  1
#define SB_FULLY_CODED      2

#define MODE_INTER_NO_MV      0
#define MODE_INTRA            1
#define MODE_INTER_PLUS_MV    2
#define MODE_INTER_LAST_MV    3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN     5
#define MODE_GOLDEN_MV        6
#define MODE_INTER_FOURMV     7
#define CODING_MODE_COUNT     8

/* special internal mode */
#define MODE_COPY             8

/* There are 6 preset schemes, plus a free-form scheme */
static int ModeAlphabet[7][CODING_MODE_COUNT] =
{
    /* this is the custom scheme */
    { 0, 0, 0, 0, 0, 0, 0, 0 },

    /* scheme 1: Last motion vector dominates */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 2 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 3 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 4 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 5: No motion vector dominates */
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,     
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 6 */
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,      
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
         MODE_INTER_PLUS_MV,    MODE_INTRA,             
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

};

#define MIN_DEQUANT_VAL 2

typedef struct Vp3DecodeContext {
    AVCodecContext *avctx;
216
    int theora, theora_tables;
A
Alex Beregszaszi 已提交
217
    int version;
218 219 220 221 222 223
    int width, height;
    AVFrame golden_frame;
    AVFrame last_frame;
    AVFrame current_frame;
    int keyframe;
    DSPContext dsp;
224
    int flipped_image;
225 226 227 228 229 230 231

    int quality_index;
    int last_quality_index;

    int superblock_count;
    int superblock_width;
    int superblock_height;
232 233 234 235
    int y_superblock_width;
    int y_superblock_height;
    int c_superblock_width;
    int c_superblock_height;
236 237 238 239 240 241 242 243 244 245 246 247 248
    int u_superblock_start;
    int v_superblock_start;
    unsigned char *superblock_coding;

    int macroblock_count;
    int macroblock_width;
    int macroblock_height;

    int fragment_count;
    int fragment_width;
    int fragment_height;

    Vp3Fragment *all_fragments;
249
    DCTELEM *coeffs;
250 251
    int u_fragment_start;
    int v_fragment_start;
252
    
M
Michael Niedermayer 已提交
253 254
    ScanTable scantable;
    
255 256
    /* tables */
    uint16_t coded_dc_scale_factor[64];
257
    uint32_t coded_ac_scale_factor[64];
258 259 260
    uint16_t coded_intra_y_dequant[64];
    uint16_t coded_intra_c_dequant[64];
    uint16_t coded_inter_dequant[64];
261 262 263 264 265 266 267 268 269 270 271 272 273

    /* this is a list of indices into the all_fragments array indicating
     * which of the fragments are coded */
    int *coded_fragment_list;
    int coded_fragment_list_index;
    int pixel_addresses_inited;

    VLC dc_vlc[16];
    VLC ac_vlc_1[16];
    VLC ac_vlc_2[16];
    VLC ac_vlc_3[16];
    VLC ac_vlc_4[16];

274 275 276 277 278
    VLC superblock_run_length_vlc;
    VLC fragment_run_length_vlc;
    VLC mode_code_vlc;
    VLC motion_vector_vlc;

279 280 281 282 283
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
     * index into them */
    int16_t __align16 intra_y_dequant[64];
    int16_t __align16 intra_c_dequant[64];
    int16_t __align16 inter_dequant[64];
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

    /* This table contains superblock_count * 16 entries. Each set of 16
     * numbers corresponds to the fragment indices 0..15 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_fragments;

    /* This table contains superblock_count * 4 entries. Each set of 4
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_macroblocks;

    /* This table contains macroblock_count * 6 entries. Each set of 6
     * numbers corresponds to the fragment indices 0..5 which comprise
     * the macroblock (4 Y fragments and 2 C fragments). */
    int *macroblock_fragments;
301 302
    /* This is an array that indicates how a particular macroblock 
     * is coded. */
303
    unsigned char *macroblock_coding;
304

305 306 307 308 309
    int first_coded_y_fragment;
    int first_coded_c_fragment;
    int last_coded_y_fragment;
    int last_coded_c_fragment;

M
Michael Niedermayer 已提交
310
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
M
Michael Niedermayer 已提交
311
    uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
312 313
} Vp3DecodeContext;

A
Alex Beregszaszi 已提交
314 315 316
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb);
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb);

317 318 319 320 321 322 323 324
/************************************************************************
 * VP3 specific functions
 ************************************************************************/

/*
 * This function sets up all of the various blocks mappings:
 * superblocks <-> fragments, macroblocks <-> fragments,
 * superblocks <-> macroblocks
325 326
 *
 * Returns 0 is successful; returns 1 if *anything* went wrong.
327
 */
328
static int init_block_mapping(Vp3DecodeContext *s) 
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
{
    int i, j;
    signed int hilbert_walk_y[16];
    signed int hilbert_walk_c[16];
    signed int hilbert_walk_mb[4];

    int current_fragment = 0;
    int current_width = 0;
    int current_height = 0;
    int right_edge = 0;
    int bottom_edge = 0;
    int superblock_row_inc = 0;
    int *hilbert = NULL;
    int mapping_index = 0;

    int current_macroblock;
    int c_fragment;

    signed char travel_width[16] = {
         1,  1,  0, -1, 
         0,  0,  1,  0,
         1,  0,  1,  0,
         0, -1,  0,  1
    };

    signed char travel_height[16] = {
         0,  0,  1,  0,
         1,  1,  0, -1,
         0,  1,  0, -1,
        -1,  0, -1,  0
    };

    signed char travel_width_mb[4] = {
         1,  0,  1,  0
    };

    signed char travel_height_mb[4] = {
         0,  1,  0, -1
    };

    debug_vp3("  vp3: initialize block mapping tables\n");

    /* figure out hilbert pattern per these frame dimensions */
    hilbert_walk_y[0]  = 1;
    hilbert_walk_y[1]  = 1;
    hilbert_walk_y[2]  = s->fragment_width;
    hilbert_walk_y[3]  = -1;
    hilbert_walk_y[4]  = s->fragment_width;
    hilbert_walk_y[5]  = s->fragment_width;
    hilbert_walk_y[6]  = 1;
    hilbert_walk_y[7]  = -s->fragment_width;
    hilbert_walk_y[8]  = 1;
    hilbert_walk_y[9]  = s->fragment_width;
    hilbert_walk_y[10]  = 1;
    hilbert_walk_y[11] = -s->fragment_width;
    hilbert_walk_y[12] = -s->fragment_width;
    hilbert_walk_y[13] = -1;
    hilbert_walk_y[14] = -s->fragment_width;
    hilbert_walk_y[15] = 1;

    hilbert_walk_c[0]  = 1;
    hilbert_walk_c[1]  = 1;
    hilbert_walk_c[2]  = s->fragment_width / 2;
    hilbert_walk_c[3]  = -1;
    hilbert_walk_c[4]  = s->fragment_width / 2;
    hilbert_walk_c[5]  = s->fragment_width / 2;
    hilbert_walk_c[6]  = 1;
    hilbert_walk_c[7]  = -s->fragment_width / 2;
    hilbert_walk_c[8]  = 1;
    hilbert_walk_c[9]  = s->fragment_width / 2;
    hilbert_walk_c[10]  = 1;
    hilbert_walk_c[11] = -s->fragment_width / 2;
    hilbert_walk_c[12] = -s->fragment_width / 2;
    hilbert_walk_c[13] = -1;
    hilbert_walk_c[14] = -s->fragment_width / 2;
    hilbert_walk_c[15] = 1;

    hilbert_walk_mb[0] = 1;
    hilbert_walk_mb[1] = s->macroblock_width;
    hilbert_walk_mb[2] = 1;
    hilbert_walk_mb[3] = -s->macroblock_width;

    /* iterate through each superblock (all planes) and map the fragments */
    for (i = 0; i < s->superblock_count; i++) {
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
            i, s->u_superblock_start, s->v_superblock_start);

        /* time to re-assign the limits? */
        if (i == 0) {

            /* start of Y superblocks */
            right_edge = s->fragment_width;
            bottom_edge = s->fragment_height;
422
            current_width = -1;
423
            current_height = 0;
424 425
            superblock_row_inc = 3 * s->fragment_width - 
                (s->y_superblock_width * 4 - s->fragment_width);
426 427 428 429 430 431 432 433 434 435
            hilbert = hilbert_walk_y;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = -1;

        } else if (i == s->u_superblock_start) {

            /* start of U superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
436
            current_width = -1;
437
            current_height = 0;
438 439
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
                (s->c_superblock_width * 4 - s->fragment_width / 2);
440 441 442 443 444 445 446 447 448 449
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->u_fragment_start - 1;

        } else if (i == s->v_superblock_start) {

            /* start of V superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
450
            current_width = -1;
451
            current_height = 0;
452 453
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
                (s->c_superblock_width * 4 - s->fragment_width / 2);
454 455 456 457 458 459 460
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->v_fragment_start - 1;

        }

461
        if (current_width >= right_edge - 1) {
462
            /* reset width and move to next superblock row */
463
            current_width = -1;
464 465 466 467 468 469 470 471 472
            current_height += 4;

            /* fragment is now at the start of a new superblock row */
            current_fragment += superblock_row_inc;
        }

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {
            current_fragment += hilbert[j];
473
            current_width += travel_width[j];
474 475 476
            current_height += travel_height[j];

            /* check if the fragment is in bounds */
477
            if ((current_width < right_edge) &&
478 479
                (current_height < bottom_edge)) {
                s->superblock_fragments[mapping_index] = current_fragment;
480 481 482
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n", 
                    s->superblock_fragments[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
483 484
            } else {
                s->superblock_fragments[mapping_index] = -1;
485 486 487
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n", 
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
488 489 490 491 492 493 494 495 496 497
            }

            mapping_index++;
        }
    }

    /* initialize the superblock <-> macroblock mapping; iterate through
     * all of the Y plane superblocks to build this mapping */
    right_edge = s->macroblock_width;
    bottom_edge = s->macroblock_height;
498
    current_width = -1;
499
    current_height = 0;
500 501
    superblock_row_inc = s->macroblock_width -
        (s->y_superblock_width * 2 - s->macroblock_width);;
502 503 504 505 506
    hilbert = hilbert_walk_mb;
    mapping_index = 0;
    current_macroblock = -1;
    for (i = 0; i < s->u_superblock_start; i++) {

507
        if (current_width >= right_edge - 1) {
508
            /* reset width and move to next superblock row */
509
            current_width = -1;
510 511 512 513 514 515 516 517 518
            current_height += 2;

            /* macroblock is now at the start of a new superblock row */
            current_macroblock += superblock_row_inc;
        }

        /* iterate through each potential macroblock in the superblock */
        for (j = 0; j < 4; j++) {
            current_macroblock += hilbert_walk_mb[j];
519
            current_width += travel_width_mb[j];
520 521 522
            current_height += travel_height_mb[j];

            /* check if the macroblock is in bounds */
523
            if ((current_width < right_edge) &&
524 525
                (current_height < bottom_edge)) {
                s->superblock_macroblocks[mapping_index] = current_macroblock;
526 527 528
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
                    s->superblock_macroblocks[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
529 530
            } else {
                s->superblock_macroblocks[mapping_index] = -1;
531 532 533
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
            }

            mapping_index++;
        }
    }

    /* initialize the macroblock <-> fragment mapping */
    current_fragment = 0;
    current_macroblock = 0;
    mapping_index = 0;
    for (i = 0; i < s->fragment_height; i += 2) {

        for (j = 0; j < s->fragment_width; j += 2) {

            debug_init("    macroblock %d contains fragments: ", current_macroblock);
            s->all_fragments[current_fragment].macroblock = current_macroblock;
            s->macroblock_fragments[mapping_index++] = current_fragment;
            debug_init("%d ", current_fragment);

            if (j + 1 < s->fragment_width) {
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
                debug_init("%d ", current_fragment + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if (i + 1 < s->fragment_height) {
                s->all_fragments[current_fragment + s->fragment_width].macroblock = 
                    current_macroblock;
                s->macroblock_fragments[mapping_index++] = 
                    current_fragment + s->fragment_width;
                debug_init("%d ", current_fragment + s->fragment_width);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = 
                    current_macroblock;
                s->macroblock_fragments[mapping_index++] = 
                    current_fragment + s->fragment_width + 1;
                debug_init("%d ", current_fragment + s->fragment_width + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            /* C planes */
            c_fragment = s->u_fragment_start + 
                (i * s->fragment_width / 4) + (j / 2);
581
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
582 583 584 585 586
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            c_fragment = s->v_fragment_start + 
                (i * s->fragment_width / 4) + (j / 2);
587
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
588 589 590 591 592 593 594 595 596 597 598 599 600 601
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            debug_init("\n");

            if (j + 2 <= s->fragment_width)
                current_fragment += 2;
            else 
                current_fragment++;
            current_macroblock++;
        }

        current_fragment += s->fragment_width;
    }
602 603

    return 0;  /* successful path out */
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
}

/*
 * This function unpacks a single token (which should be in the range 0..31)
 * and returns a zero run (number of zero coefficients in current DCT matrix
 * before next non-zero coefficient), the next DCT coefficient, and the
 * number of consecutive, non-EOB'd DCT blocks to EOB.
 */
static void unpack_token(GetBitContext *gb, int token, int *zero_run,
                         DCTELEM *coeff, int *eob_run) 
{
    int sign;

    *zero_run = 0;
    *eob_run = 0;
    *coeff = 0;

    debug_token("    vp3 token %d: ", token);
    switch (token) {

    case 0:
        debug_token("DCT_EOB_TOKEN, EOB next block\n");
        *eob_run = 1;
        break;

    case 1:
        debug_token("DCT_EOB_PAIR_TOKEN, EOB next 2 blocks\n");
        *eob_run = 2;
        break;

    case 2:
        debug_token("DCT_EOB_TRIPLE_TOKEN, EOB next 3 blocks\n");
        *eob_run = 3;
        break;

    case 3:
        debug_token("DCT_REPEAT_RUN_TOKEN, ");
        *eob_run = get_bits(gb, 2) + 4;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 4:
        debug_token("DCT_REPEAT_RUN2_TOKEN, ");
        *eob_run = get_bits(gb, 3) + 8;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 5:
        debug_token("DCT_REPEAT_RUN3_TOKEN, ");
        *eob_run = get_bits(gb, 4) + 16;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 6:
        debug_token("DCT_REPEAT_RUN4_TOKEN, ");
        *eob_run = get_bits(gb, 12);
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 7:
        debug_token("DCT_SHORT_ZRL_TOKEN, ");
        /* note that this token actually indicates that (3 extra bits) + 1 0s
         * should be output; this case specifies a run of (3 EBs) 0s and a
         * coefficient of 0. */
        *zero_run = get_bits(gb, 3);
        *coeff = 0;
        debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
        break;

    case 8:
        debug_token("DCT_ZRL_TOKEN, ");
        /* note that this token actually indicates that (6 extra bits) + 1 0s
         * should be output; this case specifies a run of (6 EBs) 0s and a
         * coefficient of 0. */
        *zero_run = get_bits(gb, 6);
        *coeff = 0;
        debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
        break;

    case 9:
        debug_token("ONE_TOKEN, output 1\n");
        *coeff = 1;
        break;

    case 10:
        debug_token("MINUS_ONE_TOKEN, output -1\n");
        *coeff = -1;
        break;

    case 11:
        debug_token("TWO_TOKEN, output 2\n");
        *coeff = 2;
        break;

    case 12:
        debug_token("MINUS_TWO_TOKEN, output -2\n");
        *coeff = -2;
        break;

    case 13:
    case 14:
    case 15:
    case 16:
        debug_token("LOW_VAL_TOKENS, ");
        if (get_bits(gb, 1))
            *coeff = -(3 + (token - 13));
        else
            *coeff = 3 + (token - 13);
        debug_token("output %d\n", *coeff);
        break;

    case 17:
        debug_token("DCT_VAL_CATEGORY3, ");
        sign = get_bits(gb, 1);
        *coeff = 7 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 18:
        debug_token("DCT_VAL_CATEGORY4, ");
        sign = get_bits(gb, 1);
        *coeff = 9 + get_bits(gb, 2);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 19:
        debug_token("DCT_VAL_CATEGORY5, ");
        sign = get_bits(gb, 1);
        *coeff = 13 + get_bits(gb, 3);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 20:
        debug_token("DCT_VAL_CATEGORY6, ");
        sign = get_bits(gb, 1);
        *coeff = 21 + get_bits(gb, 4);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 21:
        debug_token("DCT_VAL_CATEGORY7, ");
        sign = get_bits(gb, 1);
        *coeff = 37 + get_bits(gb, 5);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 22:
        debug_token("DCT_VAL_CATEGORY8, ");
        sign = get_bits(gb, 1);
        *coeff = 69 + get_bits(gb, 9);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 23:
    case 24:
    case 25:
    case 26:
    case 27:
        debug_token("DCT_RUN_CATEGORY1, ");
        *zero_run = token - 22;
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 28:
        debug_token("DCT_RUN_CATEGORY1B, ");
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        *zero_run = 6 + get_bits(gb, 2);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 29:
        debug_token("DCT_RUN_CATEGORY1C, ");
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        *zero_run = 10 + get_bits(gb, 3);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 30:
        debug_token("DCT_RUN_CATEGORY2, ");
        sign = get_bits(gb, 1);
        *coeff = 2 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        *zero_run = 1;
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 31:
        debug_token("DCT_RUN_CATEGORY2, ");
        sign = get_bits(gb, 1);
        *coeff = 2 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        *zero_run = 2 + get_bits(gb, 1);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    default:
824
        av_log(NULL, AV_LOG_ERROR, "  vp3: help! Got a bad token: %d > 31\n", token);
825 826 827 828 829 830 831 832 833 834 835
        break;

  }
}

/*
 * This function wipes out all of the fragment data.
 */
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i;
836
    static const DCTELEM zero_block[64];
837 838 839 840

    /* zero out all of the fragment information */
    s->coded_fragment_list_index = 0;
    for (i = 0; i < s->fragment_count; i++) {
841
        s->all_fragments[i].coeffs = zero_block;
842
        s->all_fragments[i].coeff_count = 0;
M
Michael Niedermayer 已提交
843
        s->all_fragments[i].last_coeff = -1;
844 845
s->all_fragments[i].motion_x = 0xbeef;
s->all_fragments[i].motion_y = 0xbeef;
846 847 848 849 850 851 852 853 854 855
    }
}

/*
 * This function sets of the dequantization tables used for a particular
 * frame.
 */
static void init_dequantizer(Vp3DecodeContext *s)
{

856
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
857
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
858 859 860 861 862 863 864 865 866 867 868 869
    int i, j;

    debug_vp3("  vp3: initializing dequantization tables\n");

    /* 
     * Scale dequantizers:
     *
     *   quantizer * sf
     *   --------------
     *        100
     *
     * where sf = dc_scale_factor for DC quantizer
870
     *         or ac_scale_factor for AC quantizer
871 872 873
     *
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
     */
874
#define SCALER 4
875 876

    /* scale DC quantizers */
877
    s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
878 879 880 881
    if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_y_dequant[0] *= SCALER;

882
    s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
883 884 885 886
    if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_c_dequant[0] *= SCALER;

887
    s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
888 889 890 891 892 893 894
    if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
        s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
    s->inter_dequant[0] *= SCALER;

    /* scale AC quantizers, zigzag at the same time in preparation for
     * the dequantization phase */
    for (i = 1; i < 64; i++) {
M
Michael Niedermayer 已提交
895 896
        int k= s->scantable.scantable[i];
        j = s->scantable.permutated[i];
897

M
Michael Niedermayer 已提交
898
        s->intra_y_dequant[j] = s->coded_intra_y_dequant[k] * ac_scale_factor / 100;
899 900 901 902
        if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_y_dequant[j] *= SCALER;

M
Michael Niedermayer 已提交
903
        s->intra_c_dequant[j] = s->coded_intra_c_dequant[k] * ac_scale_factor / 100;
904 905 906 907
        if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_c_dequant[j] *= SCALER;

M
Michael Niedermayer 已提交
908
        s->inter_dequant[j] = s->coded_inter_dequant[k] * ac_scale_factor / 100;
909 910 911 912
        if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
            s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
        s->inter_dequant[j] *= SCALER;
    }
M
Michael Niedermayer 已提交
913 914
    
    memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

    /* print debug information as requested */
    debug_dequantizers("intra Y dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("intra C dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("interframe dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->inter_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");
}

/*
 * This function is used to fetch runs of 1s or 0s from the bitstream for
 * use in determining which superblocks are fully and partially coded.
 *
 *  Codeword                RunLength
 *  0                       1
 *  10x                     2-3
 *  110x                    4-5
 *  1110xx                  6-9
 *  11110xxx                10-17
 *  111110xxxx              18-33
 *  111111xxxxxxxxxxxx      34-4129
 */
static int get_superblock_run_length(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return 1;

    else if (get_bits(gb, 1) == 0)
        return (2 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (4 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (6 + get_bits(gb, 2));

    else if (get_bits(gb, 1) == 0)
        return (10 + get_bits(gb, 3));

    else if (get_bits(gb, 1) == 0)
        return (18 + get_bits(gb, 4));

    else
        return (34 + get_bits(gb, 12));

}

/*
 * This function is used to fetch runs of 1s or 0s from the bitstream for
 * use in determining which particular fragments are coded.
 *
 * Codeword                RunLength
 * 0x                      1-2
 * 10x                     3-4
 * 110x                    5-6
 * 1110xx                  7-10
 * 11110xx                 11-14
 * 11111xxxx               15-30
 */
static int get_fragment_run_length(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return (1 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (3 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (5 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (7 + get_bits(gb, 2));

    else if (get_bits(gb, 1) == 0)
        return (11 + get_bits(gb, 2));

    else
        return (15 + get_bits(gb, 4));

}

/*
 * This function decodes a VLC from the bitstream and returns a number
 * that ranges from 0..7. The number indicates which of the 8 coding
 * modes to use.
 *
 *  VLC       Number
 *  0            0
 *  10           1
 *  110          2
 *  1110         3
 *  11110        4
 *  111110       5
 *  1111110      6
 *  1111111      7
 *
 */
static int get_mode_code(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return 0;

    else if (get_bits(gb, 1) == 0)
        return 1;

    else if (get_bits(gb, 1) == 0)
        return 2;

    else if (get_bits(gb, 1) == 0)
        return 3;

    else if (get_bits(gb, 1) == 0)
        return 4;

    else if (get_bits(gb, 1) == 0)
        return 5;

    else if (get_bits(gb, 1) == 0)
        return 6;

    else
        return 7;

}

/*
 * This function extracts a motion vector from the bitstream using a VLC
 * scheme. 3 bits are fetched from the bitstream and 1 of 8 actions is
 * taken depending on the value on those 3 bits:
 *
 *  0: return 0
 *  1: return 1
 *  2: return -1
 *  3: if (next bit is 1) return -2, else return 2
 *  4: if (next bit is 1) return -3, else return 3
 *  5: return 4 + (next 2 bits), next bit is sign
 *  6: return 8 + (next 3 bits), next bit is sign
 *  7: return 16 + (next 4 bits), next bit is sign
 */
static int get_motion_vector_vlc(GetBitContext *gb)
{
    int bits;

    bits = get_bits(gb, 3);

    switch(bits) {

    case 0:
        bits = 0;
        break;

    case 1:
        bits = 1;
        break;

    case 2:
        bits = -1;
        break;

    case 3:
        if (get_bits(gb, 1) == 0)
            bits = 2;
        else
            bits = -2;
        break;

    case 4:
        if (get_bits(gb, 1) == 0)
            bits = 3;
        else
            bits = -3;
        break;

    case 5:
        bits = 4 + get_bits(gb, 2);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    case 6:
        bits = 8 + get_bits(gb, 3);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    case 7:
        bits = 16 + get_bits(gb, 4);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    }

    return bits;
}

/*
 * This function fetches a 5-bit number from the stream followed by
 * a sign and calls it a motion vector.
 */
static int get_motion_vector_fixed(GetBitContext *gb)
{

    int bits;

    bits = get_bits(gb, 5);

    if (get_bits(gb, 1) == 1)
        bits = -bits;

    return bits;
}

/*
 * This function unpacks all of the superblock/macroblock/fragment coding 
 * information from the bitstream.
 */
1156
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
1157 1158 1159 1160 1161 1162
{
    int bit = 0;
    int current_superblock = 0;
    int current_run = 0;
    int decode_fully_flags = 0;
    int decode_partial_blocks = 0;
1163
    int first_c_fragment_seen;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

    int i, j;
    int current_fragment;

    debug_vp3("  vp3: unpacking superblock coding\n");

    if (s->keyframe) {

        debug_vp3("    keyframe-- all superblocks are fully coded\n");
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);

    } else {

        /* unpack the list of partially-coded superblocks */
        bit = get_bits(gb, 1);
        /* toggle the bit because as soon as the first run length is 
         * fetched the bit will be toggled again */
        bit ^= 1;
        while (current_superblock < s->superblock_count) {
1183
            if (current_run-- == 0) {
1184
                bit ^= 1;
1185 1186
#if 1
                current_run = get_vlc2(gb, 
1187 1188
                    s->superblock_run_length_vlc.table, 6, 2);
                if (current_run == 33)
1189 1190
                    current_run += get_bits(gb, 12);
#else
1191
                current_run = get_superblock_run_length(gb);
1192
#endif
1193 1194 1195 1196 1197 1198 1199
                debug_block_coding("      setting superblocks %d..%d to %s\n",
                    current_superblock,
                    current_superblock + current_run - 1,
                    (bit) ? "partially coded" : "not coded");

                /* if any of the superblocks are not partially coded, flag
                 * a boolean to decode the list of fully-coded superblocks */
1200
                if (bit == 0) {
1201
                    decode_fully_flags = 1;
1202
                } else {
1203

1204 1205 1206 1207
                    /* make a note of the fact that there are partially coded
                     * superblocks */
                    decode_partial_blocks = 1;
                }
1208
            }
1209
            s->superblock_coding[current_superblock++] = bit;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        }

        /* unpack the list of fully coded superblocks if any of the blocks were
         * not marked as partially coded in the previous step */
        if (decode_fully_flags) {

            current_superblock = 0;
            current_run = 0;
            bit = get_bits(gb, 1);
            /* toggle the bit because as soon as the first run length is 
             * fetched the bit will be toggled again */
            bit ^= 1;
            while (current_superblock < s->superblock_count) {

                /* skip any superblocks already marked as partially coded */
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {

1227
                    if (current_run-- == 0) {
1228
                        bit ^= 1;
1229 1230
#if 1
                        current_run = get_vlc2(gb, 
1231 1232
                            s->superblock_run_length_vlc.table, 6, 2);
                        if (current_run == 33)
1233 1234
                            current_run += get_bits(gb, 12);
#else
1235
                        current_run = get_superblock_run_length(gb);
1236
#endif
1237 1238 1239 1240 1241
                    }

                    debug_block_coding("      setting superblock %d to %s\n",
                        current_superblock,
                        (bit) ? "fully coded" : "not coded");
1242
                    s->superblock_coding[current_superblock] = 2*bit;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
                }
                current_superblock++;
            }
        }

        /* if there were partial blocks, initialize bitstream for
         * unpacking fragment codings */
        if (decode_partial_blocks) {

            current_run = 0;
            bit = get_bits(gb, 1);
            /* toggle the bit because as soon as the first run length is 
             * fetched the bit will be toggled again */
            bit ^= 1;
        }
    }

    /* figure out which fragments are coded; iterate through each
     * superblock (all planes) */
    s->coded_fragment_list_index = 0;
1263 1264
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
1265
    first_c_fragment_seen = 0;
1266
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
1267 1268 1269 1270 1271 1272 1273
    for (i = 0; i < s->superblock_count; i++) {

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {

            /* if the fragment is in bounds, check its coding status */
            current_fragment = s->superblock_fragments[i * 16 + j];
1274
            if (current_fragment >= s->fragment_count) {
1275
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
1276 1277 1278
                    current_fragment, s->fragment_count);
                return 1;
            }
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
            if (current_fragment != -1) {
                if (s->superblock_coding[i] == SB_NOT_CODED) {

                    /* copy all the fragments from the prior frame */
                    s->all_fragments[current_fragment].coding_method = 
                        MODE_COPY;

                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {

                    /* fragment may or may not be coded; this is the case
                     * that cares about the fragment coding runs */
1290
                    if (current_run-- == 0) {
1291
                        bit ^= 1;
1292 1293
#if 1
                        current_run = get_vlc2(gb, 
1294
                            s->fragment_run_length_vlc.table, 5, 2);
1295
#else
1296
                        current_run = get_fragment_run_length(gb);
1297
#endif
1298 1299 1300
                    }

                    if (bit) {
1301 1302
                        /* default mode; actual mode will be decoded in 
                         * the next phase */
1303 1304
                        s->all_fragments[current_fragment].coding_method = 
                            MODE_INTER_NO_MV;
1305
                        s->all_fragments[current_fragment].coeffs= s->coeffs + 64*s->coded_fragment_list_index;
1306
                        s->coded_fragment_list[s->coded_fragment_list_index] = 
1307
                            current_fragment;
1308
                        if ((current_fragment >= s->u_fragment_start) &&
1309 1310
                            (s->last_coded_y_fragment == -1) &&
                            (!first_c_fragment_seen)) {
1311 1312
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
1313
                            first_c_fragment_seen = 1;
1314 1315
                        }
                        s->coded_fragment_list_index++;
1316
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
                            i, current_fragment);
                    } else {
                        /* not coded; copy this fragment from the prior frame */
                        s->all_fragments[current_fragment].coding_method =
                            MODE_COPY;
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
                            i, current_fragment);
                    }

                } else {

                    /* fragments are fully coded in this superblock; actual
                     * coding will be determined in next step */
                    s->all_fragments[current_fragment].coding_method = 
                        MODE_INTER_NO_MV;
1333
                    s->all_fragments[current_fragment].coeffs= s->coeffs + 64*s->coded_fragment_list_index;
1334
                    s->coded_fragment_list[s->coded_fragment_list_index] = 
1335
                        current_fragment;
1336
                    if ((current_fragment >= s->u_fragment_start) &&
1337 1338
                        (s->last_coded_y_fragment == -1) &&
                        (!first_c_fragment_seen)) {
1339 1340
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
1341
                        first_c_fragment_seen = 1;
1342 1343
                    }
                    s->coded_fragment_list_index++;
1344
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
1345 1346 1347 1348 1349 1350
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
                        i, current_fragment);
                }
            }
        }
    }
1351

1352 1353
    if (!first_c_fragment_seen)
        /* only Y fragments coded in this frame */
1354
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
1355
    else 
1356
        /* end the list of coded C fragments */
1357
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
1358

1359 1360 1361 1362 1363 1364
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
        s->coded_fragment_list_index,
        s->first_coded_y_fragment,
        s->last_coded_y_fragment,
        s->first_coded_c_fragment,
        s->last_coded_c_fragment);
1365 1366

    return 0;
1367 1368 1369 1370 1371 1372
}

/*
 * This function unpacks all the coding mode data for individual macroblocks
 * from the bitstream.
 */
1373
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
{
    int i, j, k;
    int scheme;
    int current_macroblock;
    int current_fragment;
    int coding_mode;

    debug_vp3("  vp3: unpacking encoding modes\n");

    if (s->keyframe) {
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");

        for (i = 0; i < s->fragment_count; i++)
            s->all_fragments[i].coding_method = MODE_INTRA;

    } else {

        /* fetch the mode coding scheme for this frame */
        scheme = get_bits(gb, 3);
        debug_modes("    using mode alphabet %d\n", scheme);

        /* is it a custom coding scheme? */
        if (scheme == 0) {
            debug_modes("    custom mode alphabet ahead:\n");
            for (i = 0; i < 8; i++)
1399
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        }

        for (i = 0; i < 8; i++)
            debug_modes("      mode[%d][%d] = %d\n", scheme, i, 
                ModeAlphabet[scheme][i]);

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1413
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1414
                    continue;
1415
                if (current_macroblock >= s->macroblock_count) {
1416
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1417 1418 1419
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1420 1421 1422 1423 1424

                /* mode 7 means get 3 bits for each coding mode */
                if (scheme == 7)
                    coding_mode = get_bits(gb, 3);
                else
1425 1426 1427 1428 1429
{
#if 1
                    coding_mode = ModeAlphabet[scheme]
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
#else
1430
                    coding_mode = ModeAlphabet[scheme][get_mode_code(gb)];
1431 1432
#endif
}
1433

1434
                s->macroblock_coding[current_macroblock] = coding_mode;
1435 1436 1437
                for (k = 0; k < 6; k++) {
                    current_fragment = 
                        s->macroblock_fragments[current_macroblock * 6 + k];
1438 1439 1440
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1441
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1442 1443 1444
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
                    if (s->all_fragments[current_fragment].coding_method != 
                        MODE_COPY)
                        s->all_fragments[current_fragment].coding_method =
                            coding_mode;
                }

                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
            }
        }
    }
1456 1457

    return 0;
1458 1459
}

1460 1461 1462 1463
/*
 * This function unpacks all the motion vectors for the individual
 * macroblocks from the bitstream.
 */
1464
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
{
    int i, j, k;
    int coding_mode;
    int motion_x[6];
    int motion_y[6];
    int last_motion_x = 0;
    int last_motion_y = 0;
    int prior_last_motion_x = 0;
    int prior_last_motion_y = 0;
    int current_macroblock;
    int current_fragment;

    debug_vp3("  vp3: unpacking motion vectors\n");
    if (s->keyframe) {

        debug_vp3("    keyframe-- there are no motion vectors\n");

    } else {

        memset(motion_x, 0, 6 * sizeof(int));
        memset(motion_y, 0, 6 * sizeof(int));

        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
        coding_mode = get_bits(gb, 1);
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
            (coding_mode == 0) ? "VLC" : "fixed-length");

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1499
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1500
                    continue;
1501
                if (current_macroblock >= s->macroblock_count) {
1502
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1503 1504 1505
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1506 1507

                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1508
                if (current_fragment >= s->fragment_count) {
1509
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1510 1511 1512
                        current_fragment, s->fragment_count);
                    return 1;
                }
1513
                switch (s->macroblock_coding[current_macroblock]) {
1514 1515 1516 1517 1518

                case MODE_INTER_PLUS_MV:
                case MODE_GOLDEN_MV:
                    /* all 6 fragments use the same motion vector */
                    if (coding_mode == 0) {
1519
#if 1
1520 1521 1522
                        motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
                        motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
#else
1523 1524
                        motion_x[0] = get_motion_vector_vlc(gb);
                        motion_y[0] = get_motion_vector_vlc(gb);
1525
#endif
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
                    } else {
                        motion_x[0] = get_motion_vector_fixed(gb);
                        motion_y[0] = get_motion_vector_fixed(gb);
                    }
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1536
                    if (s->macroblock_coding[current_macroblock] ==
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
                        MODE_INTER_PLUS_MV) {
                        prior_last_motion_x = last_motion_x;
                        prior_last_motion_y = last_motion_y;
                        last_motion_x = motion_x[0];
                        last_motion_y = motion_y[0];
                    }
                    break;

                case MODE_INTER_FOURMV:
                    /* fetch 4 vectors from the bitstream, one for each
                     * Y fragment, then average for the C fragment vectors */
                    motion_x[4] = motion_y[4] = 0;
                    for (k = 0; k < 4; k++) {
                        if (coding_mode == 0) {
1551 1552 1553
#if 1
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1554
#else
1555 1556
                            motion_x[k] = get_motion_vector_vlc(gb);
                            motion_y[k] = get_motion_vector_vlc(gb);
1557
#endif
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
                        } else {
                            motion_x[k] = get_motion_vector_fixed(gb);
                            motion_y[k] = get_motion_vector_fixed(gb);
                        }
                        motion_x[4] += motion_x[k];
                        motion_y[4] += motion_y[k];
                    }

                    if (motion_x[4] >= 0) 
                        motion_x[4] = (motion_x[4] + 2) / 4;
                    else
                        motion_x[4] = (motion_x[4] - 2) / 4;
                    motion_x[5] = motion_x[4];

                    if (motion_y[4] >= 0) 
                        motion_y[4] = (motion_y[4] + 2) / 4;
                    else
                        motion_y[4] = (motion_y[4] - 2) / 4;
                    motion_y[5] = motion_y[4];

                    /* vector maintenance; vector[3] is treated as the
                     * last vector in this case */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[3];
                    last_motion_y = motion_y[3];
                    break;

                case MODE_INTER_LAST_MV:
                    /* all 6 fragments use the last motion vector */
                    motion_x[0] = last_motion_x;
                    motion_y[0] = last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* no vector maintenance (last vector remains the
                     * last vector) */
                    break;

                case MODE_INTER_PRIOR_LAST:
                    /* all 6 fragments use the motion vector prior to the
                     * last motion vector */
                    motion_x[0] = prior_last_motion_x;
                    motion_y[0] = prior_last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[0];
                    last_motion_y = motion_y[0];
                    break;
1615 1616 1617 1618 1619 1620 1621 1622

                default:
                    /* covers intra, inter without MV, golden without MV */
                    memset(motion_x, 0, 6 * sizeof(int));
                    memset(motion_y, 0, 6 * sizeof(int));

                    /* no vector maintenance */
                    break;
1623 1624 1625 1626 1627
                }

                /* assign the motion vectors to the correct fragments */
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
                    current_fragment,
1628
                    s->macroblock_coding[current_macroblock]);
1629 1630 1631
                for (k = 0; k < 6; k++) {
                    current_fragment = 
                        s->macroblock_fragments[current_macroblock * 6 + k];
1632 1633 1634
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1635
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1636 1637 1638
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1639
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1640
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1641 1642
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
                        k, current_fragment, motion_x[k], motion_y[k]);
1643 1644 1645 1646
                }
            }
        }
    }
1647 1648

    return 0;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}

/* 
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 * data. This function unpacks all the VLCs for either the Y plane or both
 * C planes, and is called for DC coefficients or different AC coefficient
 * levels (since different coefficient types require different VLC tables.
 *
 * This function returns a residual eob run. E.g, if a particular token gave
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 * left in the current fragment range, 3 would be returned so that it could
 * be passed into the next call to this same function.
 */
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                        VLC *table, int coeff_index,
                        int first_fragment, int last_fragment,
                        int eob_run)
{
    int i;
    int token;
    int zero_run;
    DCTELEM coeff;
    Vp3Fragment *fragment;
M
Michael Niedermayer 已提交
1673
    uint8_t *perm= s->scantable.permutated;
1674

1675
    if ((first_fragment >= s->fragment_count) ||
1676 1677
        (last_fragment >= s->fragment_count)) {

1678
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1679
            first_fragment, last_fragment);
1680
        return 0;
1681 1682
    }

1683
    for (i = first_fragment; i <= last_fragment; i++) {
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

        fragment = &s->all_fragments[s->coded_fragment_list[i]];
        if (fragment->coeff_count > coeff_index)
            continue;

        if (!eob_run) {
            /* decode a VLC into a token */
            token = get_vlc2(gb, table->table, 5, 3);
            debug_vlc(" token = %2d, ", token);
            /* use the token to get a zero run, a coefficient, and an eob run */
            unpack_token(gb, token, &zero_run, &coeff, &eob_run);
        }

        if (!eob_run) {
            fragment->coeff_count += zero_run;
            if (fragment->coeff_count < 64)
M
Michael Niedermayer 已提交
1700
                fragment->coeffs[perm[fragment->coeff_count++]] = coeff;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
            debug_vlc(" fragment %d coeff = %d\n",
                s->coded_fragment_list[i], fragment->coeffs[coeff_index]);
        } else {
            fragment->last_coeff = fragment->coeff_count;
            fragment->coeff_count = 64;
            debug_vlc(" fragment %d eob with %d coefficients\n", 
                s->coded_fragment_list[i], fragment->last_coeff);
            eob_run--;
        }
    }

    return eob_run;
}

/*
 * This function unpacks all of the DCT coefficient data from the
 * bitstream.
 */
1719
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
{
    int i;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    int residual_eob_run = 0;

    /* fetch the DC table indices */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    /* unpack the Y plane DC coefficients */
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
        dc_y_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, 
1736
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1737 1738 1739 1740 1741

    /* unpack the C plane DC coefficients */
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
        dc_c_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1742
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1743

1744
    /* fetch the AC table indices */
1745 1746 1747
    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

1748
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1749 1750 1751 1752 1753
    for (i = 1; i <= 5; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, 
1754
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1755 1756 1757 1758

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, 
1759
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1760 1761
    }

1762
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1763 1764 1765 1766 1767
    for (i = 6; i <= 14; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, 
1768
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1769 1770 1771 1772

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, 
1773
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1774 1775
    }

1776
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1777 1778 1779 1780 1781
    for (i = 15; i <= 27; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, 
1782
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1783 1784 1785 1786

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, 
1787
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1788 1789
    }

1790
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1791 1792 1793 1794 1795
    for (i = 28; i <= 63; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, 
1796
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1797 1798 1799 1800

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, 
1801
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1802
    }
1803 1804

    return 0;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
}

/*
 * This function reverses the DC prediction for each coded fragment in
 * the frame. Much of this function is adapted directly from the original 
 * VP3 source code.
 */
#define COMPATIBLE_FRAME(x) \
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
static inline int iabs (int x) { return ((x < 0) ? -x : x); }

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
                                  int fragment_height) 
{

#define PUL 8
#define PU 4
#define PUR 2
#define PL 1

    int x, y;
    int i = first_fragment;

    /*
     * Fragment prediction groups:
     *
     * 32222222226
     * 10000000004
     * 10000000004
     * 10000000004
     * 10000000004
     *
     * Note: Groups 5 and 7 do not exist as it would mean that the 
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
     */
    int predictor_group;
    short predicted_dc;

    /* validity flags for the left, up-left, up, and up-right fragments */
    int fl, ful, fu, fur;

    /* DC values for the left, up-left, up, and up-right fragments */
    int vl, vul, vu, vur;

    /* indices for the left, up-left, up, and up-right fragments */
    int l, ul, u, ur;

    /* 
     * The 6 fields mean:
     *   0: up-left multiplier
     *   1: up multiplier
     *   2: up-right multiplier
     *   3: left multiplier
     *   4: mask
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
     */
    int predictor_transform[16][6] = {
        {  0,  0,  0,  0,   0,  0 },
        {  0,  0,  0,  1,   0,  0 },        // PL
        {  0,  0,  1,  0,   0,  0 },        // PUR
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PU
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
        {  1,  0,  0,  0,   0,  0 },        // PUL
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
    };

    /* This table shows which types of blocks can use other blocks for
     * prediction. For example, INTRA is the only mode in this table to
     * have a frame number of 0. That means INTRA blocks can only predict
     * from other INTRA blocks. There are 2 golden frame coding types; 
     * blocks encoding in these modes can only predict from other blocks
     * that were encoded with these 1 of these 2 modes. */
    unsigned char compatible_frame[8] = {
        1,    /* MODE_INTER_NO_MV */
        0,    /* MODE_INTRA */
        1,    /* MODE_INTER_PLUS_MV */
        1,    /* MODE_INTER_LAST_MV */
        1,    /* MODE_INTER_PRIOR_MV */
        2,    /* MODE_USING_GOLDEN */
        2,    /* MODE_GOLDEN_MV */
        1     /* MODE_INTER_FOUR_MV */
    };
    int current_frame_type;

    /* there is a last DC predictor for each of the 3 frame types */
    short last_dc[3];

    int transform = 0;

    debug_vp3("  vp3: reversing DC prediction\n");

    vul = vu = vur = vl = 0;
    last_dc[0] = last_dc[1] = last_dc[2] = 0;

    /* for each fragment row... */
    for (y = 0; y < fragment_height; y++) {

        /* for each fragment in a row... */
        for (x = 0; x < fragment_width; x++, i++) {

            /* reverse prediction if this block was coded */
            if (s->all_fragments[i].coding_method != MODE_COPY) {

                current_frame_type = 
                    compatible_frame[s->all_fragments[i].coding_method];
                predictor_group = (x == 0) + ((y == 0) << 1) +
                    ((x + 1 == fragment_width) << 2);
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
                    i, predictor_group, s->all_fragments[i].coeffs[0]);

                switch (predictor_group) {

                case 0:
                    /* main body of fragments; consider all 4 possible
                     * fragments for prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vul = s->all_fragments[ul].coeffs[0];
                    vu = s->all_fragments[u].coeffs[0];
                    vur = s->all_fragments[ur].coeffs[0];
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);

                    break;

                case 1:
                    /* left column of fragments, not including top corner;
                     * only consider up and up-right fragments */

                    /* calculate the indices of the predicting fragments */
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;

                    /* fetch the DC values for the predicting fragments */
                    vu = s->all_fragments[u].coeffs[0];
                    vur = s->all_fragments[ur].coeffs[0];

                    /* figure out which fragments are valid */
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);

                    /* decide which predictor transform to use */
                    transform = (fu*PU) | (fur*PUR);

                    break;

                case 2:
                case 6:
                    /* top row of fragments, not including top-left frag;
                     * only consider the left fragment for prediction */

                    /* calculate the indices of the predicting fragments */
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL);

                    break;

                case 3:
                    /* top-left fragment */

                    /* nothing to predict from in this case */
                    transform = 0;

                    break;

                case 4:
                    /* right column of fragments, not including top corner;
                     * consider up-left, up, and left fragments for
                     * prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vul = s->all_fragments[ul].coeffs[0];
                    vu = s->all_fragments[u].coeffs[0];
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);

                    break;

                }

                debug_dc_pred("transform = %d, ", transform);

                if (transform == 0) {

                    /* if there were no fragments to predict from, use last
                     * DC saved */
                    s->all_fragments[i].coeffs[0] += last_dc[current_frame_type];
                    debug_dc_pred("from last DC (%d) = %d\n", 
                        current_frame_type, s->all_fragments[i].coeffs[0]);

                } else {

                    /* apply the appropriate predictor transform */
                    predicted_dc =
                        (predictor_transform[transform][0] * vul) +
                        (predictor_transform[transform][1] * vu) +
                        (predictor_transform[transform][2] * vur) +
                        (predictor_transform[transform][3] * vl);

                    /* if there is a shift value in the transform, add
                     * the sign bit before the shift */
                    if (predictor_transform[transform][5] != 0) {
                        predicted_dc += ((predicted_dc >> 15) & 
                            predictor_transform[transform][4]);
                        predicted_dc >>= predictor_transform[transform][5];
                    }

                    /* check for outranging on the [ul u l] and
                     * [ul u ur l] predictors */
                    if ((transform == 13) || (transform == 15)) {
                        if (iabs(predicted_dc - vu) > 128)
                            predicted_dc = vu;
                        else if (iabs(predicted_dc - vl) > 128)
                            predicted_dc = vl;
                        else if (iabs(predicted_dc - vul) > 128)
                            predicted_dc = vul;
                    }

                    /* at long last, apply the predictor */
                    s->all_fragments[i].coeffs[0] += predicted_dc;
                    debug_dc_pred("from pred DC = %d\n", 
                    s->all_fragments[i].coeffs[0]);
                }

                /* save the DC */
                last_dc[current_frame_type] = s->all_fragments[i].coeffs[0];
M
Michael Niedermayer 已提交
2077 2078
                if(s->all_fragments[i].coeffs[0] && s->all_fragments[i].last_coeff<0)
                    s->all_fragments[i].last_coeff= 0;
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
            }
        }
    }
}

/*
 * This function performs the final rendering of each fragment's data
 * onto the output frame.
 */
static void render_fragments(Vp3DecodeContext *s,
                             int first_fragment,
2090 2091
                             int width,
                             int height,
2092 2093
                             int plane /* 0 = Y, 1 = U, 2 = V */) 
{
2094
    int x, y, j;
2095 2096 2097
    int m, n;
    int i = first_fragment;
    int16_t *dequantizer;
2098
    DCTELEM __align16 output_samples[64];
2099 2100 2101 2102
    unsigned char *output_plane;
    unsigned char *last_plane;
    unsigned char *golden_plane;
    int stride;
2103
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
2104
    int upper_motion_limit, lower_motion_limit;
2105
    int motion_halfpel_index;
M
Michael Niedermayer 已提交
2106
    uint8_t *motion_source;
2107 2108 2109 2110 2111 2112 2113

    debug_vp3("  vp3: rendering final fragments for %s\n",
        (plane == 0) ? "Y plane" : (plane == 1) ? "U plane" : "V plane");

    /* set up plane-specific parameters */
    if (plane == 0) {
        output_plane = s->current_frame.data[0];
2114 2115
        last_plane = s->last_frame.data[0];
        golden_plane = s->golden_frame.data[0];
2116 2117
        stride = s->current_frame.linesize[0];
	if (!s->flipped_image) stride = -stride;
2118 2119
        upper_motion_limit = 7 * s->current_frame.linesize[0];
        lower_motion_limit = height * s->current_frame.linesize[0] + width - 8;
2120 2121
    } else if (plane == 1) {
        output_plane = s->current_frame.data[1];
2122 2123
        last_plane = s->last_frame.data[1];
        golden_plane = s->golden_frame.data[1];
2124 2125
        stride = s->current_frame.linesize[1];
	if (!s->flipped_image) stride = -stride;
2126 2127
        upper_motion_limit = 7 * s->current_frame.linesize[1];
        lower_motion_limit = height * s->current_frame.linesize[1] + width - 8;
2128 2129
    } else {
        output_plane = s->current_frame.data[2];
2130 2131
        last_plane = s->last_frame.data[2];
        golden_plane = s->golden_frame.data[2];
2132 2133
        stride = s->current_frame.linesize[2];
	if (!s->flipped_image) stride = -stride;
2134 2135
        upper_motion_limit = 7 * s->current_frame.linesize[2];
        lower_motion_limit = height * s->current_frame.linesize[2] + width - 8;
2136
    }
2137
    
M
Michael Niedermayer 已提交
2138
    if(ABS(stride) > 2048)
2139
        return; //various tables are fixed size
2140 2141

    /* for each fragment row... */
2142
    for (y = 0; y < height; y += 8) {
2143 2144

        /* for each fragment in a row... */
2145
        for (x = 0; x < width; x += 8, i++) {
2146

2147
            if ((i < 0) || (i >= s->fragment_count)) {
2148
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_fragments(): bad fragment number (%d)\n", i);
2149 2150 2151
                return;
            }

2152
            /* transform if this block was coded */
2153 2154
            if ((s->all_fragments[i].coding_method != MODE_COPY) &&
		!((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
2155

M
Michael Niedermayer 已提交
2156 2157 2158 2159 2160 2161 2162
                if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
                    (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
                    motion_source= golden_plane;
                else 
                    motion_source= last_plane;

                motion_source += s->all_fragments[i].first_pixel;
2163 2164 2165 2166 2167 2168
                motion_halfpel_index = 0;

                /* sort out the motion vector if this fragment is coded
                 * using a motion vector method */
                if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
                    (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
M
Michael Niedermayer 已提交
2169
                    int src_x, src_y;
2170 2171
                    motion_x = s->all_fragments[i].motion_x;
                    motion_y = s->all_fragments[i].motion_y;
M
Michael Niedermayer 已提交
2172 2173 2174 2175 2176
                    if(plane){
                        motion_x= (motion_x>>1) | (motion_x&1);
                        motion_y= (motion_y>>1) | (motion_y&1);
                    }

M
Michael Niedermayer 已提交
2177 2178
                    src_x= (motion_x>>1) + x;
                    src_y= (motion_y>>1) + y;
2179
if ((motion_x == 0xbeef) || (motion_y == 0xbeef))
2180
av_log(s->avctx, AV_LOG_ERROR, " help! got beefy vector! (%X, %X)\n", motion_x, motion_y);
2181

M
Michael Niedermayer 已提交
2182 2183
                    motion_halfpel_index = motion_x & 0x01;
                    motion_source += (motion_x >> 1);
2184 2185

//                    motion_y = -motion_y;
M
Michael Niedermayer 已提交
2186 2187
                    motion_halfpel_index |= (motion_y & 0x01) << 1;
                    motion_source += ((motion_y >> 1) * stride);
2188

M
Michael Niedermayer 已提交
2189 2190 2191
                    if(src_x<0 || src_y<0 || src_x + 9 >= width || src_y + 9 >= height){
                        uint8_t *temp= s->edge_emu_buffer;
                        if(stride<0) temp -= 9*stride;
2192
			else temp += 9*stride;
M
Michael Niedermayer 已提交
2193 2194 2195

                        ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, width, height);
                        motion_source= temp;
2196
                    }
2197
                }
2198
                
2199

2200 2201 2202
                /* first, take care of copying a block from either the
                 * previous or the golden frame */
                if (s->all_fragments[i].coding_method != MODE_INTRA) {
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
                    //Note, it is possible to implement all MC cases with put_no_rnd_pixels_l2 which would look more like the VP3 source but this would be slower as put_no_rnd_pixels_tab is better optimzed
                    if(motion_halfpel_index != 3){
                        s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
                            output_plane + s->all_fragments[i].first_pixel,
                            motion_source, stride, 8);
                    }else{
                        int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
                        s->dsp.put_no_rnd_pixels_l2[1](
                            output_plane + s->all_fragments[i].first_pixel,
                            motion_source - d, 
                            motion_source + stride + 1 + d, 
                            stride, 8);
                    }
M
Michael Niedermayer 已提交
2216 2217 2218 2219 2220 2221
                    dequantizer = s->inter_dequant;
                }else{
                    if (plane == 0)
                        dequantizer = s->intra_y_dequant;
                    else
                        dequantizer = s->intra_c_dequant;
2222 2223
                }

2224
                /* dequantize the DCT coefficients */
2225 2226 2227
                debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n", 
                    i, s->all_fragments[i].coding_method, 
                    s->all_fragments[i].coeffs[0], dequantizer[0]);
2228

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
                if(s->avctx->idct_algo==FF_IDCT_VP3){
                    for (j = 0; j < 64; j++) {
                        s->all_fragments[i].coeffs[j] *= dequantizer[j];
                    }
                }else{
                    for (j = 0; j < 64; j++) {
                        s->all_fragments[i].coeffs[j]= (dequantizer[j] * s->all_fragments[i].coeffs[j] + 2) >> 2;
                    }
                }

2239
                /* invert DCT and place (or add) in final output */
2240
                
2241
                if (s->all_fragments[i].coding_method == MODE_INTRA) {
2242 2243 2244
                    if(s->avctx->idct_algo!=FF_IDCT_VP3)
                        s->all_fragments[i].coeffs[0] += 128<<3;
                    s->dsp.idct_put(
2245
                        output_plane + s->all_fragments[i].first_pixel,
2246 2247
                        stride,
                        s->all_fragments[i].coeffs);
2248
                } else {
2249
                    s->dsp.idct_add(
2250
                        output_plane + s->all_fragments[i].first_pixel,
2251 2252
                        stride,
                        s->all_fragments[i].coeffs);
2253
                }
2254
                memset(s->all_fragments[i].coeffs, 0, 64*sizeof(DCTELEM));
2255 2256 2257 2258

                debug_idct("block after idct_%s():\n",
                    (s->all_fragments[i].coding_method == MODE_INTRA)?
                    "put" : "add");
2259 2260
                for (m = 0; m < 8; m++) {
                    for (n = 0; n < 8; n++) {
2261 2262
                        debug_idct(" %3d", *(output_plane + 
                            s->all_fragments[i].first_pixel + (m * stride + n)));
2263 2264 2265 2266 2267 2268 2269
                    }
                    debug_idct("\n");
                }
                debug_idct("\n");

            } else {

2270 2271 2272 2273 2274
                /* copy directly from the previous frame */
                s->dsp.put_pixels_tab[1][0](
                    output_plane + s->all_fragments[i].first_pixel,
                    last_plane + s->all_fragments[i].first_pixel,
                    stride, 8);
2275 2276 2277 2278 2279 2280

            }
        }
    }

    emms_c();
2281 2282 2283 2284 2285
}

static void horizontal_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
2286
    unsigned char *end;
2287 2288
    int filter_value;

2289
    for (end= first_pixel + 8*stride; first_pixel < end; first_pixel += stride) {
2290
        filter_value = 
2291 2292
            (first_pixel[-2] - first_pixel[ 1])
         +3*(first_pixel[ 0] - first_pixel[-1]);
2293
        filter_value = bounding_values[(filter_value + 4) >> 3];
2294 2295
        first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
        first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
2296 2297 2298 2299 2300 2301
    }
}

static void vertical_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
2302
    unsigned char *end;
2303
    int filter_value;
2304
    const int nstride= -stride;
2305

2306
    for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
2307
        filter_value = 
2308 2309
            (first_pixel[2 * nstride] - first_pixel[ stride])
         +3*(first_pixel[0          ] - first_pixel[nstride]);
2310
        filter_value = bounding_values[(filter_value + 4) >> 3];
2311
        first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
2312
        first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
    }
}

static void apply_loop_filter(Vp3DecodeContext *s)
{
    int x, y, plane;
    int width, height;
    int fragment;
    int stride;
    unsigned char *plane_data;
2323 2324 2325

    int bounding_values_array[256];
    int *bounding_values= bounding_values_array+127;
2326 2327 2328 2329 2330 2331 2332
    int filter_limit;

    /* find the right loop limit value */
    for (x = 63; x >= 0; x--) {
        if (vp31_ac_scale_factor[x] >= s->quality_index)
            break;
    }
2333
    filter_limit = vp31_filter_limit_values[s->quality_index];
2334 2335

    /* set up the bounding values */
2336
    memset(bounding_values_array, 0, 256 * sizeof(int));
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
    for (x = 0; x < filter_limit; x++) {
        bounding_values[-x - filter_limit] = -filter_limit + x;
        bounding_values[-x] = -x;
        bounding_values[x] = x;
        bounding_values[x + filter_limit] = filter_limit - x;
    }

    for (plane = 0; plane < 3; plane++) {

        if (plane == 0) {
            /* Y plane parameters */
            fragment = 0;
            width = s->fragment_width;
            height = s->fragment_height;
            stride = s->current_frame.linesize[0];
            plane_data = s->current_frame.data[0];
        } else if (plane == 1) {
            /* U plane parameters */
            fragment = s->u_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[1];
            plane_data = s->current_frame.data[1];
        } else {
            /* V plane parameters */
            fragment = s->v_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[2];
            plane_data = s->current_frame.data[2];
        }

        for (y = 0; y < height; y++) {
2370

2371
            for (x = 0; x < width; x++) {
M
Michael Niedermayer 已提交
2372
START_TIMER
2373 2374 2375 2376
                /* do not perform left edge filter for left columns frags */
                if ((x > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    horizontal_filter(
2377
                        plane_data + s->all_fragments[fragment].first_pixel - 7*stride, 
2378 2379 2380 2381 2382 2383 2384
                        stride, bounding_values);
                }

                /* do not perform top edge filter for top row fragments */
                if ((y > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    vertical_filter(
2385
                        plane_data + s->all_fragments[fragment].first_pixel + stride, 
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
                        stride, bounding_values);
                }

                /* do not perform right edge filter for right column
                 * fragments or if right fragment neighbor is also coded
                 * in this frame (it will be filtered in next iteration) */
                if ((x < width - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
                    horizontal_filter(
2396
                        plane_data + s->all_fragments[fragment + 1].first_pixel - 7*stride, 
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
                        stride, bounding_values);
                }

                /* do not perform bottom edge filter for bottom row
                 * fragments or if bottom fragment neighbor is also coded
                 * in this frame (it will be filtered in the next row) */
                if ((y < height - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
                    vertical_filter(
2407
                        plane_data + s->all_fragments[fragment + width].first_pixel + stride, 
2408 2409 2410 2411
                        stride, bounding_values);
                }

                fragment++;
M
Michael Niedermayer 已提交
2412
STOP_TIMER("loop filter")
2413 2414 2415
            }
        }
    }
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
}

/* 
 * This function computes the first pixel addresses for each fragment.
 * This function needs to be invoked after the first frame is allocated
 * so that it has access to the plane strides.
 */
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) 
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = s->fragment_height; y > 0; y--) {
        for (x = 0; x < s->fragment_width; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/* FIXME: this should be merged with the above! */
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s) 
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = 1; y <= s->fragment_height; y++) {
        for (x = 0; x < s->fragment_width; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2516 2517 2518 2519 2520 2521 2522
/*
 * This is the ffmpeg/libavcodec API init function.
 */
static int vp3_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i;
2523 2524 2525 2526
    int c_width;
    int c_height;
    int y_superblock_count;
    int c_superblock_count;
2527

A
Alex Beregszaszi 已提交
2528 2529 2530 2531 2532
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
	s->version = 0;
    else
	s->version = 1;

2533
    s->avctx = avctx;
2534 2535
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
2536 2537
    avctx->pix_fmt = PIX_FMT_YUV420P;
    avctx->has_b_frames = 0;
2538 2539
    if(avctx->idct_algo==FF_IDCT_AUTO)
        avctx->idct_algo=FF_IDCT_VP3;
2540
    dsputil_init(&s->dsp, avctx);
M
Michael Niedermayer 已提交
2541 2542
    
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
2543 2544 2545 2546 2547

    /* initialize to an impossible value which will force a recalculation
     * in the first frame decode */
    s->quality_index = -1;

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
    s->y_superblock_width = (s->width + 31) / 32;
    s->y_superblock_height = (s->height + 31) / 32;
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;

    /* work out the dimensions for the C planes */
    c_width = s->width / 2;
    c_height = s->height / 2;
    s->c_superblock_width = (c_width + 31) / 32;
    s->c_superblock_height = (c_height + 31) / 32;
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;

    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
    s->u_superblock_start = y_superblock_count;
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
    s->superblock_coding = av_malloc(s->superblock_count);

    s->macroblock_width = (s->width + 15) / 16;
    s->macroblock_height = (s->height + 15) / 16;
    s->macroblock_count = s->macroblock_width * s->macroblock_height;

    s->fragment_width = s->width / FRAGMENT_PIXELS;
    s->fragment_height = s->height / FRAGMENT_PIXELS;

    /* fragment count covers all 8x8 blocks for all 3 planes */
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
    s->u_fragment_start = s->fragment_width * s->fragment_height;
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;

2576 2577 2578 2579 2580 2581 2582 2583
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
    debug_init("  C plane: %d x %d\n", c_width, c_height);
    debug_init("  Y superblocks: %d x %d, %d total\n",
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
    debug_init("  C superblocks: %d x %d, %d total\n",
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n", 
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
    debug_init("  macroblocks: %d x %d, %d total\n",
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
        s->fragment_count,
        s->fragment_width,
        s->fragment_height,
        s->u_fragment_start,
        s->v_fragment_start);

    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2594
    s->coeffs = av_malloc(s->fragment_count * sizeof(DCTELEM) * 64);
2595 2596 2597
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
    s->pixel_addresses_inited = 0;

2598 2599 2600 2601 2602
    if (!s->theora_tables)
    {
	for (i = 0; i < 64; i++)
	    s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
	for (i = 0; i < 64; i++)
2603
	    s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
2604 2605 2606 2607 2608 2609 2610 2611
	for (i = 0; i < 64; i++)
	    s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
	for (i = 0; i < 64; i++)
	    s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
	for (i = 0; i < 64; i++)
	    s->coded_inter_dequant[i] = vp31_inter_dequant[i];
    }

2612 2613 2614
    /* init VLC tables */
    for (i = 0; i < 16; i++) {

2615
        /* DC histograms */
2616 2617
        init_vlc(&s->dc_vlc[i], 5, 32,
            &dc_bias[i][0][1], 4, 2,
2618
            &dc_bias[i][0][0], 4, 2, 0);
2619

2620
        /* group 1 AC histograms */
2621 2622
        init_vlc(&s->ac_vlc_1[i], 5, 32,
            &ac_bias_0[i][0][1], 4, 2,
2623
            &ac_bias_0[i][0][0], 4, 2, 0);
2624

2625
        /* group 2 AC histograms */
2626 2627
        init_vlc(&s->ac_vlc_2[i], 5, 32,
            &ac_bias_1[i][0][1], 4, 2,
2628
            &ac_bias_1[i][0][0], 4, 2, 0);
2629

2630
        /* group 3 AC histograms */
2631 2632
        init_vlc(&s->ac_vlc_3[i], 5, 32,
            &ac_bias_2[i][0][1], 4, 2,
2633
            &ac_bias_2[i][0][0], 4, 2, 0);
2634

2635
        /* group 4 AC histograms */
2636 2637
        init_vlc(&s->ac_vlc_4[i], 5, 32,
            &ac_bias_3[i][0][1], 4, 2,
2638
            &ac_bias_3[i][0][0], 4, 2, 0);
2639 2640
    }

2641 2642 2643 2644
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
        &superblock_run_length_vlc_table[0][1], 4, 2,
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
    init_vlc(&s->fragment_run_length_vlc, 5, 31,
        &fragment_run_length_vlc_table[0][1], 4, 2,
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);

    init_vlc(&s->mode_code_vlc, 3, 8,
        &mode_code_vlc_table[0][1], 2, 1,
        &mode_code_vlc_table[0][0], 2, 1, 0);

    init_vlc(&s->motion_vector_vlc, 6, 63,
        &motion_vector_vlc_table[0][1], 2, 1,
        &motion_vector_vlc_table[0][0], 2, 1, 0);

2657 2658 2659 2660
    /* work out the block mapping tables */
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2661
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2662 2663
    init_block_mapping(s);

2664 2665 2666 2667
    for (i = 0; i < 3; i++) {
        s->current_frame.data[i] = NULL;
        s->last_frame.data[i] = NULL;
        s->golden_frame.data[i] = NULL;
2668 2669
    }

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
    return 0;
}

/*
 * This is the ffmpeg/libavcodec API frame decode function.
 */
static int vp3_decode_frame(AVCodecContext *avctx, 
                            void *data, int *data_size,
                            uint8_t *buf, int buf_size)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    static int counter = 0;

    init_get_bits(&gb, buf, buf_size * 8);
2685 2686 2687
    
    if (s->theora && get_bits1(&gb))
    {
A
Alex Beregszaszi 已提交
2688
	int ptype = get_bits(&gb, 7);
2689

A
Alex Beregszaszi 已提交
2690 2691 2692
	skip_bits(&gb, 6*8); /* "theora" */
	
	switch(ptype)
2693
	{
A
Alex Beregszaszi 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702
	    case 1:
		theora_decode_comments(avctx, gb);
		break;
	    case 2:
		theora_decode_tables(avctx, gb);
    		init_dequantizer(s);
		break;
	    default:
		av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
2703
	}
A
Alex Beregszaszi 已提交
2704
	return buf_size;
2705
    }
A
Alex Beregszaszi 已提交
2706 2707 2708

    s->keyframe = !get_bits1(&gb);
    if (!s->theora)
2709
	skip_bits(&gb, 1);
A
Alex Beregszaszi 已提交
2710 2711
    s->last_quality_index = s->quality_index;
    s->quality_index = get_bits(&gb, 6);
M
Matthieu Castet 已提交
2712
    if (s->theora >= 0x030200)
A
Alex Beregszaszi 已提交
2713
        skip_bits1(&gb);
2714

2715 2716 2717
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
	av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
	    s->keyframe?"key":"", counter, s->quality_index);
2718 2719
    counter++;

2720 2721 2722
    if (s->quality_index != s->last_quality_index)
        init_dequantizer(s);

2723
    if (s->keyframe) {
A
Alex Beregszaszi 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	if (!s->theora)
	{
	    skip_bits(&gb, 4); /* width code */
	    skip_bits(&gb, 4); /* height code */
	    if (s->version)
	    {
		s->version = get_bits(&gb, 5);
		if (counter == 1)
		    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
	    }
	}
	if (s->version || s->theora)
	{
    	    if (get_bits1(&gb))
    	        av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
	    skip_bits(&gb, 2); /* reserved? */
	}

2742 2743 2744
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
2745
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2746 2747 2748 2749 2750 2751
        } else {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
            if (s->last_frame.data[0])
                avctx->release_buffer(avctx, &s->last_frame);
        }
2752

2753
        s->golden_frame.reference = 3;
2754
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2755
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2756 2757 2758 2759
            return -1;
        }

        /* golden frame is also the current frame */
2760
        memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
2761 2762 2763

        /* time to figure out pixel addresses? */
        if (!s->pixel_addresses_inited)
2764 2765 2766 2767 2768 2769
	{
	    if (!s->flipped_image)
        	vp3_calculate_pixel_addresses(s);
	    else
		theora_calculate_pixel_addresses(s);
	}
2770 2771
    } else {
        /* allocate a new current frame */
2772
        s->current_frame.reference = 3;
2773
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2774
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2775 2776 2777 2778
            return -1;
        }
    }

M
Michael Niedermayer 已提交
2779 2780 2781
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
    s->current_frame.qstride= 0;

M
Michael Niedermayer 已提交
2782
    {START_TIMER
2783
    init_frame(s, &gb);
M
Michael Niedermayer 已提交
2784
    STOP_TIMER("init_frame")}
2785

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
#if KEYFRAMES_ONLY
if (!s->keyframe) {

    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
        s->current_frame.linesize[0] * s->height);
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
        s->current_frame.linesize[1] * s->height / 2);
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
        s->current_frame.linesize[2] * s->height / 2);

} else {
#endif

M
Michael Niedermayer 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    {START_TIMER
    if (unpack_superblocks(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
        return -1;
    }
    STOP_TIMER("unpack_superblocks")}
    {START_TIMER
    if (unpack_modes(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
        return -1;
    }
    STOP_TIMER("unpack_modes")}
    {START_TIMER
    if (unpack_vectors(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
        return -1;
    }
    STOP_TIMER("unpack_vectors")}
    {START_TIMER
    if (unpack_dct_coeffs(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2820 2821
        return -1;
    }
M
Michael Niedermayer 已提交
2822 2823
    STOP_TIMER("unpack_dct_coeffs")}
    {START_TIMER
2824 2825

    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
M
Michael Niedermayer 已提交
2826 2827
    STOP_TIMER("reverse_dc_prediction")}
    {START_TIMER
2828
    render_fragments(s, 0, s->width, s->height, 0);
M
Michael Niedermayer 已提交
2829
    STOP_TIMER("render_fragments")}
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
        reverse_dc_prediction(s, s->u_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        reverse_dc_prediction(s, s->v_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        render_fragments(s, s->u_fragment_start, s->width / 2, s->height / 2, 1);
        render_fragments(s, s->v_fragment_start, s->width / 2, s->height / 2, 2);
    } else {
        memset(s->current_frame.data[1], 0x80, s->width * s->height / 4);
        memset(s->current_frame.data[2], 0x80, s->width * s->height / 4);
    }
2842

M
Michael Niedermayer 已提交
2843
    {START_TIMER
2844
    apply_loop_filter(s);
M
Michael Niedermayer 已提交
2845
    STOP_TIMER("apply_loop_filter")}
2846 2847 2848 2849
#if KEYFRAMES_ONLY
}
#endif

2850 2851 2852
    *data_size=sizeof(AVFrame);
    *(AVFrame*)data= s->current_frame;

2853 2854 2855 2856 2857
    /* release the last frame, if it is allocated and if it is not the
     * golden frame */
    if ((s->last_frame.data[0]) &&
        (s->last_frame.data[0] != s->golden_frame.data[0]))
        avctx->release_buffer(avctx, &s->last_frame);
2858

2859 2860
    /* shuffle frames (last = current) */
    memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
2861
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873

    return buf_size;
}

/*
 * This is the ffmpeg/libavcodec API module cleanup function.
 */
static int vp3_decode_end(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    av_free(s->all_fragments);
2874
    av_free(s->coeffs);
2875 2876 2877 2878
    av_free(s->coded_fragment_list);
    av_free(s->superblock_fragments);
    av_free(s->superblock_macroblocks);
    av_free(s->macroblock_fragments);
2879
    av_free(s->macroblock_coding);
2880
    
2881
    /* release all frames */
2882
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2883 2884 2885 2886 2887
        avctx->release_buffer(avctx, &s->golden_frame);
    if (s->last_frame.data[0])
        avctx->release_buffer(avctx, &s->last_frame);
    /* no need to release the current_frame since it will always be pointing
     * to the same frame as either the golden or last frame */
2888 2889 2890 2891

    return 0;
}

2892 2893 2894
static int theora_decode_header(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
2895 2896 2897 2898 2899 2900 2901 2902
    int major, minor, micro;

    major = get_bits(&gb, 8); /* version major */
    minor = get_bits(&gb, 8); /* version minor */
    micro = get_bits(&gb, 8); /* version micro */
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %d.%d.%d\n",
	major, minor, micro);

2903 2904 2905
    /* FIXME: endianess? */
    s->theora = (major << 16) | (minor << 8) | micro;

M
Matthieu Castet 已提交
2906
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2907
    /* but previous versions have the image flipped relative to vp3 */
M
Matthieu Castet 已提交
2908
    if (s->theora < 0x030200)
2909 2910 2911 2912
    {
	s->flipped_image = 1;
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
    }
2913 2914 2915 2916

    s->width = get_bits(&gb, 16) << 4;
    s->height = get_bits(&gb, 16) << 4;
    
2917 2918 2919 2920 2921
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
        s->width= s->height= 0;
        return -1;
    }
    
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    skip_bits(&gb, 24); /* frame width */
    skip_bits(&gb, 24); /* frame height */

    skip_bits(&gb, 8); /* offset x */
    skip_bits(&gb, 8); /* offset y */

    skip_bits(&gb, 32); /* fps numerator */
    skip_bits(&gb, 32); /* fps denumerator */
    skip_bits(&gb, 24); /* aspect numerator */
    skip_bits(&gb, 24); /* aspect denumerator */
    
M
Matthieu Castet 已提交
2933
    if (s->theora < 0x030200)
2934
	skip_bits(&gb, 5); /* keyframe frequency force */
2935 2936 2937 2938 2939
    skip_bits(&gb, 8); /* colorspace */
    skip_bits(&gb, 24); /* bitrate */

    skip_bits(&gb, 6); /* last(?) quality index */
    
M
Matthieu Castet 已提交
2940
    if (s->theora >= 0x030200)
2941 2942 2943 2944 2945
    {
	skip_bits(&gb, 5); /* keyframe frequency force */
	skip_bits(&gb, 5); /* spare bits */
    }
    
2946 2947 2948 2949 2950 2951 2952 2953
//    align_get_bits(&gb);
    
    avctx->width = s->width;
    avctx->height = s->height;

    return 0;
}

A
Alex Beregszaszi 已提交
2954 2955 2956 2957
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb)
{
    int nb_comments, i, tmp;

M
Michael Niedermayer 已提交
2958
    tmp = get_bits_long(&gb, 32);
A
Alex Beregszaszi 已提交
2959 2960 2961
    tmp = be2me_32(tmp);
    while(tmp--)
	    skip_bits(&gb, 8);
A
Alex Beregszaszi 已提交
2962

M
Michael Niedermayer 已提交
2963
    nb_comments = get_bits_long(&gb, 32);
A
Alex Beregszaszi 已提交
2964
    nb_comments = be2me_32(nb_comments);
A
Alex Beregszaszi 已提交
2965 2966
    for (i = 0; i < nb_comments; i++)
    {
M
Michael Niedermayer 已提交
2967
	tmp = get_bits_long(&gb, 32);
A
Alex Beregszaszi 已提交
2968 2969
	tmp = be2me_32(tmp);
	while(tmp--)
A
Alex Beregszaszi 已提交
2970 2971 2972 2973 2974 2975
	    skip_bits(&gb, 8);
    }
    
    return 0;
}

2976 2977 2978
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
M
Matthieu Castet 已提交
2979 2980 2981 2982 2983 2984 2985 2986
    int i, n;

    if (s->theora >= 0x030200) {
        n = get_bits(&gb, 3);
        /* loop filter table */
        for (i = 0; i < 64; i++)
            skip_bits(&gb, n);
    }
2987
    
M
Matthieu Castet 已提交
2988 2989 2990 2991
    if (s->theora >= 0x030200)
        n = get_bits(&gb, 4) + 1;
    else
        n = 16;
2992 2993
    /* quality threshold table */
    for (i = 0; i < 64; i++)
M
Matthieu Castet 已提交
2994
	s->coded_ac_scale_factor[i] = get_bits(&gb, n);
2995

M
Matthieu Castet 已提交
2996 2997 2998 2999
    if (s->theora >= 0x030200)
        n = get_bits(&gb, 4) + 1;
    else
        n = 16;
3000 3001
    /* dc scale factor table */
    for (i = 0; i < 64; i++)
M
Matthieu Castet 已提交
3002
	s->coded_dc_scale_factor[i] = get_bits(&gb, n);
3003

M
Matthieu Castet 已提交
3004 3005 3006 3007 3008 3009 3010 3011
    if (s->theora >= 0x030200)
        n = get_bits(&gb, 9) + 1;
    else
        n = 3;
    if (n != 3) {
        av_log(NULL,AV_LOG_ERROR, "unsupported nbms : %d\n", n);
        return -1;
    }
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    /* y coeffs */
    for (i = 0; i < 64; i++)
	s->coded_intra_y_dequant[i] = get_bits(&gb, 8);

    /* uv coeffs */
    for (i = 0; i < 64; i++)
	s->coded_intra_c_dequant[i] = get_bits(&gb, 8);

    /* inter coeffs */
    for (i = 0; i < 64; i++)
	s->coded_inter_dequant[i] = get_bits(&gb, 8);
A
Alex Beregszaszi 已提交
3023 3024

    /* FIXME: read huffmann tree.. */
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
    
    s->theora_tables = 1;
    
    return 0;
}

static int theora_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    int ptype;
3036 3037
    uint8_t *p= avctx->extradata;
    int op_bytes, i;
3038 3039 3040 3041 3042 3043
    
    s->theora = 1;

    if (!avctx->extradata_size)
	return -1;

3044 3045 3046 3047 3048 3049
  for(i=0;i<3;i++) {
    op_bytes = *(p++)<<8;
    op_bytes += *(p++);

    init_get_bits(&gb, p, op_bytes);
    p += op_bytes;
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064

    ptype = get_bits(&gb, 8);
    debug_vp3("Theora headerpacket type: %x\n", ptype);
	    
    if (!(ptype & 0x80))
	return -1;
	
    skip_bits(&gb, 6*8); /* "theora" */
	
    switch(ptype)
    {
        case 0x80:
            theora_decode_header(avctx, gb);
    	    break;
	case 0x81:
A
Alex Beregszaszi 已提交
3065
	    theora_decode_comments(avctx, gb);
3066 3067 3068 3069 3070
	    break;
	case 0x82:
	    theora_decode_tables(avctx, gb);
	    break;
    }
3071
  }
3072

M
Matthieu Castet 已提交
3073
    vp3_decode_init(avctx);
3074 3075 3076
    return 0;
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
AVCodec vp3_decoder = {
    "vp3",
    CODEC_TYPE_VIDEO,
    CODEC_ID_VP3,
    sizeof(Vp3DecodeContext),
    vp3_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
3089

3090
#ifndef CONFIG_LIBTHEORA
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
AVCodec theora_decoder = {
    "theora",
    CODEC_TYPE_VIDEO,
    CODEC_ID_THEORA,
    sizeof(Vp3DecodeContext),
    theora_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
3103
#endif