vp3.c 103.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/**
 * @file vp3.c
 * On2 VP3 Video Decoder
23 24 25 26 27 28
 *
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 * For more information about the VP3 coding process, visit:
 *   http://multimedia.cx/
 *
 * Theora decoder by Alex Beregszaszi
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "common.h"
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"

#include "vp3data.h"

#define FRAGMENT_PIXELS 8

45
/*
46
 * Debugging Variables
47
 *
48 49 50
 * Define one or more of the following compile-time variables to 1 to obtain
 * elaborate information about certain aspects of the decoding process.
 *
51
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52 53 54 55 56 57 58 59 60 61 62 63
 * DEBUG_VP3: high-level decoding flow
 * DEBUG_INIT: initialization parameters
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
 * DEBUG_MODES: unpacking the coding modes for individual fragments
 * DEBUG_VECTORS: display the motion vectors
 * DEBUG_TOKEN: display exhaustive information about each DCT token
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
 * DEBUG_DC_PRED: display the process of reversing DC prediction
 * DEBUG_IDCT: show every detail of the IDCT process
 */

64 65
#define KEYFRAMES_ONLY 0

A
Alex Beregszaszi 已提交
66
#define DEBUG_VP3 0
67 68 69 70 71 72 73 74 75 76 77
#define DEBUG_INIT 0
#define DEBUG_DEQUANTIZERS 0
#define DEBUG_BLOCK_CODING 0
#define DEBUG_MODES 0
#define DEBUG_VECTORS 0
#define DEBUG_TOKEN 0
#define DEBUG_VLC 0
#define DEBUG_DC_PRED 0
#define DEBUG_IDCT 0

#if DEBUG_VP3
A
Alex Beregszaszi 已提交
78
#define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
79 80 81 82 83
#else
static inline void debug_vp3(const char *format, ...) { }
#endif

#if DEBUG_INIT
A
Alex Beregszaszi 已提交
84
#define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
85 86 87 88 89
#else
static inline void debug_init(const char *format, ...) { }
#endif

#if DEBUG_DEQUANTIZERS
A
Alex Beregszaszi 已提交
90
#define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
91
#else
92
static inline void debug_dequantizers(const char *format, ...) { }
93 94 95
#endif

#if DEBUG_BLOCK_CODING
A
Alex Beregszaszi 已提交
96
#define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
97
#else
98
static inline void debug_block_coding(const char *format, ...) { }
99 100 101
#endif

#if DEBUG_MODES
102
#define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
103
#else
104
static inline void debug_modes(const char *format, ...) { }
105 106 107
#endif

#if DEBUG_VECTORS
A
Alex Beregszaszi 已提交
108
#define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
109
#else
110
static inline void debug_vectors(const char *format, ...) { }
111 112
#endif

113
#if DEBUG_TOKEN
A
Alex Beregszaszi 已提交
114
#define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
115
#else
116
static inline void debug_token(const char *format, ...) { }
117 118 119
#endif

#if DEBUG_VLC
A
Alex Beregszaszi 已提交
120
#define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
121
#else
122
static inline void debug_vlc(const char *format, ...) { }
123 124 125
#endif

#if DEBUG_DC_PRED
A
Alex Beregszaszi 已提交
126
#define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
127
#else
128
static inline void debug_dc_pred(const char *format, ...) { }
129 130 131
#endif

#if DEBUG_IDCT
A
Alex Beregszaszi 已提交
132
#define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
133
#else
134
static inline void debug_idct(const char *format, ...) { }
135 136
#endif

137 138 139 140 141 142 143
typedef struct Coeff {
    struct Coeff *next;
    DCTELEM coeff;
    uint8_t index;
} Coeff;

//FIXME split things out into their own arrays
144
typedef struct Vp3Fragment {
145
    Coeff *next_coeff;
146 147 148 149
    /* address of first pixel taking into account which plane the fragment
     * lives on as well as the plane stride */
    int first_pixel;
    /* this is the macroblock that the fragment belongs to */
150 151 152 153 154
    uint16_t macroblock;
    uint8_t coding_method;
    uint8_t coeff_count;
    int8_t motion_x;
    int8_t motion_y;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
} Vp3Fragment;

#define SB_NOT_CODED        0
#define SB_PARTIALLY_CODED  1
#define SB_FULLY_CODED      2

#define MODE_INTER_NO_MV      0
#define MODE_INTRA            1
#define MODE_INTER_PLUS_MV    2
#define MODE_INTER_LAST_MV    3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN     5
#define MODE_GOLDEN_MV        6
#define MODE_INTER_FOURMV     7
#define CODING_MODE_COUNT     8

/* special internal mode */
#define MODE_COPY             8

/* There are 6 preset schemes, plus a free-form scheme */
static int ModeAlphabet[7][CODING_MODE_COUNT] =
{
    /* this is the custom scheme */
    { 0, 0, 0, 0, 0, 0, 0, 0 },

    /* scheme 1: Last motion vector dominates */
181
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
182
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
183
         MODE_INTRA,            MODE_USING_GOLDEN,
184 185 186
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 2 */
187
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
188
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
189
         MODE_INTRA,            MODE_USING_GOLDEN,
190 191 192
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 3 */
193
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
194
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
195
         MODE_INTRA,            MODE_USING_GOLDEN,
196 197 198
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 4 */
199
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
200
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
201
         MODE_INTRA,            MODE_USING_GOLDEN,
202 203 204
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 5: No motion vector dominates */
205
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
206
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
207
         MODE_INTRA,            MODE_USING_GOLDEN,
208 209 210
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 6 */
211
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
212
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
213
         MODE_INTER_PLUS_MV,    MODE_INTRA,
214 215 216 217 218 219 220 221
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

};

#define MIN_DEQUANT_VAL 2

typedef struct Vp3DecodeContext {
    AVCodecContext *avctx;
222
    int theora, theora_tables;
A
Alex Beregszaszi 已提交
223
    int version;
224 225 226 227 228 229
    int width, height;
    AVFrame golden_frame;
    AVFrame last_frame;
    AVFrame current_frame;
    int keyframe;
    DSPContext dsp;
230
    int flipped_image;
231 232 233 234 235 236 237

    int quality_index;
    int last_quality_index;

    int superblock_count;
    int superblock_width;
    int superblock_height;
238 239 240 241
    int y_superblock_width;
    int y_superblock_height;
    int c_superblock_width;
    int c_superblock_height;
242 243 244 245 246 247 248 249 250 251 252 253 254
    int u_superblock_start;
    int v_superblock_start;
    unsigned char *superblock_coding;

    int macroblock_count;
    int macroblock_width;
    int macroblock_height;

    int fragment_count;
    int fragment_width;
    int fragment_height;

    Vp3Fragment *all_fragments;
255 256
    Coeff *coeffs;
    Coeff *next_coeff;
257 258
    int u_fragment_start;
    int v_fragment_start;
259

M
Michael Niedermayer 已提交
260
    ScanTable scantable;
261

262 263
    /* tables */
    uint16_t coded_dc_scale_factor[64];
264
    uint32_t coded_ac_scale_factor[64];
265 266 267
    uint16_t coded_intra_y_dequant[64];
    uint16_t coded_intra_c_dequant[64];
    uint16_t coded_inter_dequant[64];
268 269 270 271 272 273 274 275 276 277 278 279 280

    /* this is a list of indices into the all_fragments array indicating
     * which of the fragments are coded */
    int *coded_fragment_list;
    int coded_fragment_list_index;
    int pixel_addresses_inited;

    VLC dc_vlc[16];
    VLC ac_vlc_1[16];
    VLC ac_vlc_2[16];
    VLC ac_vlc_3[16];
    VLC ac_vlc_4[16];

281 282 283 284 285
    VLC superblock_run_length_vlc;
    VLC fragment_run_length_vlc;
    VLC mode_code_vlc;
    VLC motion_vector_vlc;

286 287 288 289 290
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
     * index into them */
    int16_t __align16 intra_y_dequant[64];
    int16_t __align16 intra_c_dequant[64];
    int16_t __align16 inter_dequant[64];
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

    /* This table contains superblock_count * 16 entries. Each set of 16
     * numbers corresponds to the fragment indices 0..15 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_fragments;

    /* This table contains superblock_count * 4 entries. Each set of 4
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_macroblocks;

    /* This table contains macroblock_count * 6 entries. Each set of 6
     * numbers corresponds to the fragment indices 0..5 which comprise
     * the macroblock (4 Y fragments and 2 C fragments). */
    int *macroblock_fragments;
308
    /* This is an array that indicates how a particular macroblock
309
     * is coded. */
310
    unsigned char *macroblock_coding;
311

312 313 314 315 316
    int first_coded_y_fragment;
    int first_coded_c_fragment;
    int last_coded_y_fragment;
    int last_coded_c_fragment;

M
Michael Niedermayer 已提交
317
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
M
Michael Niedermayer 已提交
318
    uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
319

320 321 322 323 324 325 326 327 328
    /* Huffman decode */
    int hti;
    unsigned int hbits;
    int entries;
    int huff_code_size;
    uint16_t huffman_table[80][32][2];

    uint32_t filter_limit_values[64];
    int bounding_values_array[256];
329 330
} Vp3DecodeContext;

A
Alex Beregszaszi 已提交
331 332 333
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb);
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb);

334 335 336 337 338 339 340 341
/************************************************************************
 * VP3 specific functions
 ************************************************************************/

/*
 * This function sets up all of the various blocks mappings:
 * superblocks <-> fragments, macroblocks <-> fragments,
 * superblocks <-> macroblocks
342 343
 *
 * Returns 0 is successful; returns 1 if *anything* went wrong.
344
 */
345
static int init_block_mapping(Vp3DecodeContext *s)
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
{
    int i, j;
    signed int hilbert_walk_y[16];
    signed int hilbert_walk_c[16];
    signed int hilbert_walk_mb[4];

    int current_fragment = 0;
    int current_width = 0;
    int current_height = 0;
    int right_edge = 0;
    int bottom_edge = 0;
    int superblock_row_inc = 0;
    int *hilbert = NULL;
    int mapping_index = 0;

    int current_macroblock;
    int c_fragment;

    signed char travel_width[16] = {
365
         1,  1,  0, -1,
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
         0,  0,  1,  0,
         1,  0,  1,  0,
         0, -1,  0,  1
    };

    signed char travel_height[16] = {
         0,  0,  1,  0,
         1,  1,  0, -1,
         0,  1,  0, -1,
        -1,  0, -1,  0
    };

    signed char travel_width_mb[4] = {
         1,  0,  1,  0
    };

    signed char travel_height_mb[4] = {
         0,  1,  0, -1
    };

    debug_vp3("  vp3: initialize block mapping tables\n");

    /* figure out hilbert pattern per these frame dimensions */
    hilbert_walk_y[0]  = 1;
    hilbert_walk_y[1]  = 1;
    hilbert_walk_y[2]  = s->fragment_width;
    hilbert_walk_y[3]  = -1;
    hilbert_walk_y[4]  = s->fragment_width;
    hilbert_walk_y[5]  = s->fragment_width;
    hilbert_walk_y[6]  = 1;
    hilbert_walk_y[7]  = -s->fragment_width;
    hilbert_walk_y[8]  = 1;
    hilbert_walk_y[9]  = s->fragment_width;
    hilbert_walk_y[10]  = 1;
    hilbert_walk_y[11] = -s->fragment_width;
    hilbert_walk_y[12] = -s->fragment_width;
    hilbert_walk_y[13] = -1;
    hilbert_walk_y[14] = -s->fragment_width;
    hilbert_walk_y[15] = 1;

    hilbert_walk_c[0]  = 1;
    hilbert_walk_c[1]  = 1;
    hilbert_walk_c[2]  = s->fragment_width / 2;
    hilbert_walk_c[3]  = -1;
    hilbert_walk_c[4]  = s->fragment_width / 2;
    hilbert_walk_c[5]  = s->fragment_width / 2;
    hilbert_walk_c[6]  = 1;
    hilbert_walk_c[7]  = -s->fragment_width / 2;
    hilbert_walk_c[8]  = 1;
    hilbert_walk_c[9]  = s->fragment_width / 2;
    hilbert_walk_c[10]  = 1;
    hilbert_walk_c[11] = -s->fragment_width / 2;
    hilbert_walk_c[12] = -s->fragment_width / 2;
    hilbert_walk_c[13] = -1;
    hilbert_walk_c[14] = -s->fragment_width / 2;
    hilbert_walk_c[15] = 1;

    hilbert_walk_mb[0] = 1;
    hilbert_walk_mb[1] = s->macroblock_width;
    hilbert_walk_mb[2] = 1;
    hilbert_walk_mb[3] = -s->macroblock_width;

    /* iterate through each superblock (all planes) and map the fragments */
    for (i = 0; i < s->superblock_count; i++) {
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
            i, s->u_superblock_start, s->v_superblock_start);

        /* time to re-assign the limits? */
        if (i == 0) {

            /* start of Y superblocks */
            right_edge = s->fragment_width;
            bottom_edge = s->fragment_height;
439
            current_width = -1;
440
            current_height = 0;
441
            superblock_row_inc = 3 * s->fragment_width -
442
                (s->y_superblock_width * 4 - s->fragment_width);
443 444 445 446 447 448 449 450 451 452
            hilbert = hilbert_walk_y;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = -1;

        } else if (i == s->u_superblock_start) {

            /* start of U superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
453
            current_width = -1;
454
            current_height = 0;
455
            superblock_row_inc = 3 * (s->fragment_width / 2) -
456
                (s->c_superblock_width * 4 - s->fragment_width / 2);
457 458 459 460 461 462 463 464 465 466
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->u_fragment_start - 1;

        } else if (i == s->v_superblock_start) {

            /* start of V superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
467
            current_width = -1;
468
            current_height = 0;
469
            superblock_row_inc = 3 * (s->fragment_width / 2) -
470
                (s->c_superblock_width * 4 - s->fragment_width / 2);
471 472 473 474 475 476 477
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->v_fragment_start - 1;

        }

478
        if (current_width >= right_edge - 1) {
479
            /* reset width and move to next superblock row */
480
            current_width = -1;
481 482 483 484 485 486 487 488 489
            current_height += 4;

            /* fragment is now at the start of a new superblock row */
            current_fragment += superblock_row_inc;
        }

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {
            current_fragment += hilbert[j];
490
            current_width += travel_width[j];
491 492 493
            current_height += travel_height[j];

            /* check if the fragment is in bounds */
494
            if ((current_width < right_edge) &&
495 496
                (current_height < bottom_edge)) {
                s->superblock_fragments[mapping_index] = current_fragment;
497
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
498 499
                    s->superblock_fragments[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
500 501
            } else {
                s->superblock_fragments[mapping_index] = -1;
502
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
503 504
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
505 506 507 508 509 510 511 512 513 514
            }

            mapping_index++;
        }
    }

    /* initialize the superblock <-> macroblock mapping; iterate through
     * all of the Y plane superblocks to build this mapping */
    right_edge = s->macroblock_width;
    bottom_edge = s->macroblock_height;
515
    current_width = -1;
516
    current_height = 0;
517 518
    superblock_row_inc = s->macroblock_width -
        (s->y_superblock_width * 2 - s->macroblock_width);;
519 520 521 522 523
    hilbert = hilbert_walk_mb;
    mapping_index = 0;
    current_macroblock = -1;
    for (i = 0; i < s->u_superblock_start; i++) {

524
        if (current_width >= right_edge - 1) {
525
            /* reset width and move to next superblock row */
526
            current_width = -1;
527 528 529 530 531 532 533 534 535
            current_height += 2;

            /* macroblock is now at the start of a new superblock row */
            current_macroblock += superblock_row_inc;
        }

        /* iterate through each potential macroblock in the superblock */
        for (j = 0; j < 4; j++) {
            current_macroblock += hilbert_walk_mb[j];
536
            current_width += travel_width_mb[j];
537 538 539
            current_height += travel_height_mb[j];

            /* check if the macroblock is in bounds */
540
            if ((current_width < right_edge) &&
541 542
                (current_height < bottom_edge)) {
                s->superblock_macroblocks[mapping_index] = current_macroblock;
543 544 545
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
                    s->superblock_macroblocks[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
546 547
            } else {
                s->superblock_macroblocks[mapping_index] = -1;
548 549 550
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
            }

            mapping_index++;
        }
    }

    /* initialize the macroblock <-> fragment mapping */
    current_fragment = 0;
    current_macroblock = 0;
    mapping_index = 0;
    for (i = 0; i < s->fragment_height; i += 2) {

        for (j = 0; j < s->fragment_width; j += 2) {

            debug_init("    macroblock %d contains fragments: ", current_macroblock);
            s->all_fragments[current_fragment].macroblock = current_macroblock;
            s->macroblock_fragments[mapping_index++] = current_fragment;
            debug_init("%d ", current_fragment);

            if (j + 1 < s->fragment_width) {
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
                debug_init("%d ", current_fragment + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if (i + 1 < s->fragment_height) {
578
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
579
                    current_macroblock;
580
                s->macroblock_fragments[mapping_index++] =
581 582 583 584 585 586
                    current_fragment + s->fragment_width;
                debug_init("%d ", current_fragment + s->fragment_width);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
587
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
588
                    current_macroblock;
589
                s->macroblock_fragments[mapping_index++] =
590 591 592 593 594 595
                    current_fragment + s->fragment_width + 1;
                debug_init("%d ", current_fragment + s->fragment_width + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            /* C planes */
596
            c_fragment = s->u_fragment_start +
597
                (i * s->fragment_width / 4) + (j / 2);
598
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
599 600 601
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

602
            c_fragment = s->v_fragment_start +
603
                (i * s->fragment_width / 4) + (j / 2);
604
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
605 606 607 608 609 610 611
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            debug_init("\n");

            if (j + 2 <= s->fragment_width)
                current_fragment += 2;
612
            else
613 614 615 616 617 618
                current_fragment++;
            current_macroblock++;
        }

        current_fragment += s->fragment_width;
    }
619 620

    return 0;  /* successful path out */
621 622 623 624 625 626 627 628 629 630 631 632 633
}

/*
 * This function wipes out all of the fragment data.
 */
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i;

    /* zero out all of the fragment information */
    s->coded_fragment_list_index = 0;
    for (i = 0; i < s->fragment_count; i++) {
        s->all_fragments[i].coeff_count = 0;
634 635 636
        s->all_fragments[i].motion_x = 127;
        s->all_fragments[i].motion_y = 127;
        s->all_fragments[i].next_coeff= NULL;
637 638 639
        s->coeffs[i].index=
        s->coeffs[i].coeff=0;
        s->coeffs[i].next= NULL;
640 641 642 643
    }
}

/*
644
 * This function sets up the dequantization tables used for a particular
645 646 647 648 649
 * frame.
 */
static void init_dequantizer(Vp3DecodeContext *s)
{

650
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
651
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
652 653 654 655
    int i, j;

    debug_vp3("  vp3: initializing dequantization tables\n");

656
    /*
657 658 659 660 661 662 663
     * Scale dequantizers:
     *
     *   quantizer * sf
     *   --------------
     *        100
     *
     * where sf = dc_scale_factor for DC quantizer
664
     *         or ac_scale_factor for AC quantizer
665 666 667
     *
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
     */
668
#define SCALER 4
669 670

    /* scale DC quantizers */
671
    s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
672 673 674 675
    if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_y_dequant[0] *= SCALER;

676
    s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
677 678 679 680
    if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_c_dequant[0] *= SCALER;

681
    s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
682 683 684 685 686 687 688
    if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
        s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
    s->inter_dequant[0] *= SCALER;

    /* scale AC quantizers, zigzag at the same time in preparation for
     * the dequantization phase */
    for (i = 1; i < 64; i++) {
M
Michael Niedermayer 已提交
689 690
        int k= s->scantable.scantable[i];
        j = s->scantable.permutated[i];
691

M
Michael Niedermayer 已提交
692
        s->intra_y_dequant[j] = s->coded_intra_y_dequant[k] * ac_scale_factor / 100;
693 694 695 696
        if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_y_dequant[j] *= SCALER;

M
Michael Niedermayer 已提交
697
        s->intra_c_dequant[j] = s->coded_intra_c_dequant[k] * ac_scale_factor / 100;
698 699 700 701
        if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_c_dequant[j] *= SCALER;

M
Michael Niedermayer 已提交
702
        s->inter_dequant[j] = s->coded_inter_dequant[k] * ac_scale_factor / 100;
703 704 705 706
        if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
            s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
        s->inter_dequant[j] *= SCALER;
    }
707

M
Michael Niedermayer 已提交
708
    memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

    /* print debug information as requested */
    debug_dequantizers("intra Y dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("intra C dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("interframe dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->inter_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/*
 * This function initializes the loop filter boundary limits if the frame's
 * quality index is different from the previous frame's.
 */
static void init_loop_filter(Vp3DecodeContext *s)
{
    int *bounding_values= s->bounding_values_array+127;
    int filter_limit;
    int x;

    filter_limit = s->filter_limit_values[s->quality_index];

    /* set up the bounding values */
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
    for (x = 0; x < filter_limit; x++) {
        bounding_values[-x - filter_limit] = -filter_limit + x;
        bounding_values[-x] = -x;
        bounding_values[x] = x;
        bounding_values[x + filter_limit] = filter_limit - x;
    }
}

761
/*
762
 * This function unpacks all of the superblock/macroblock/fragment coding
763 764
 * information from the bitstream.
 */
765
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
766 767 768 769 770 771
{
    int bit = 0;
    int current_superblock = 0;
    int current_run = 0;
    int decode_fully_flags = 0;
    int decode_partial_blocks = 0;
772
    int first_c_fragment_seen;
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

    int i, j;
    int current_fragment;

    debug_vp3("  vp3: unpacking superblock coding\n");

    if (s->keyframe) {

        debug_vp3("    keyframe-- all superblocks are fully coded\n");
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);

    } else {

        /* unpack the list of partially-coded superblocks */
        bit = get_bits(gb, 1);
788
        /* toggle the bit because as soon as the first run length is
789 790 791
         * fetched the bit will be toggled again */
        bit ^= 1;
        while (current_superblock < s->superblock_count) {
792
            if (current_run-- == 0) {
793
                bit ^= 1;
794
                current_run = get_vlc2(gb,
795 796
                    s->superblock_run_length_vlc.table, 6, 2);
                if (current_run == 33)
797
                    current_run += get_bits(gb, 12);
798 799 800 801 802 803 804
                debug_block_coding("      setting superblocks %d..%d to %s\n",
                    current_superblock,
                    current_superblock + current_run - 1,
                    (bit) ? "partially coded" : "not coded");

                /* if any of the superblocks are not partially coded, flag
                 * a boolean to decode the list of fully-coded superblocks */
805
                if (bit == 0) {
806
                    decode_fully_flags = 1;
807
                } else {
808

809 810 811 812
                    /* make a note of the fact that there are partially coded
                     * superblocks */
                    decode_partial_blocks = 1;
                }
813
            }
814
            s->superblock_coding[current_superblock++] = bit;
815 816 817 818 819 820 821 822 823
        }

        /* unpack the list of fully coded superblocks if any of the blocks were
         * not marked as partially coded in the previous step */
        if (decode_fully_flags) {

            current_superblock = 0;
            current_run = 0;
            bit = get_bits(gb, 1);
824
            /* toggle the bit because as soon as the first run length is
825 826 827 828 829 830 831
             * fetched the bit will be toggled again */
            bit ^= 1;
            while (current_superblock < s->superblock_count) {

                /* skip any superblocks already marked as partially coded */
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {

832
                    if (current_run-- == 0) {
833
                        bit ^= 1;
834
                        current_run = get_vlc2(gb,
835 836
                            s->superblock_run_length_vlc.table, 6, 2);
                        if (current_run == 33)
837
                            current_run += get_bits(gb, 12);
838 839 840 841 842
                    }

                    debug_block_coding("      setting superblock %d to %s\n",
                        current_superblock,
                        (bit) ? "fully coded" : "not coded");
843
                    s->superblock_coding[current_superblock] = 2*bit;
844 845 846 847 848 849 850 851 852 853 854
                }
                current_superblock++;
            }
        }

        /* if there were partial blocks, initialize bitstream for
         * unpacking fragment codings */
        if (decode_partial_blocks) {

            current_run = 0;
            bit = get_bits(gb, 1);
855
            /* toggle the bit because as soon as the first run length is
856 857 858 859 860 861 862 863
             * fetched the bit will be toggled again */
            bit ^= 1;
        }
    }

    /* figure out which fragments are coded; iterate through each
     * superblock (all planes) */
    s->coded_fragment_list_index = 0;
864
    s->next_coeff= s->coeffs + s->fragment_count;
865 866
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
867
    first_c_fragment_seen = 0;
868
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
869 870 871 872 873 874 875
    for (i = 0; i < s->superblock_count; i++) {

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {

            /* if the fragment is in bounds, check its coding status */
            current_fragment = s->superblock_fragments[i * 16 + j];
876
            if (current_fragment >= s->fragment_count) {
877
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
878 879 880
                    current_fragment, s->fragment_count);
                return 1;
            }
881 882 883 884
            if (current_fragment != -1) {
                if (s->superblock_coding[i] == SB_NOT_CODED) {

                    /* copy all the fragments from the prior frame */
885
                    s->all_fragments[current_fragment].coding_method =
886 887 888 889 890 891
                        MODE_COPY;

                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {

                    /* fragment may or may not be coded; this is the case
                     * that cares about the fragment coding runs */
892
                    if (current_run-- == 0) {
893
                        bit ^= 1;
894
                        current_run = get_vlc2(gb,
895
                            s->fragment_run_length_vlc.table, 5, 2);
896 897 898
                    }

                    if (bit) {
899
                        /* default mode; actual mode will be decoded in
900
                         * the next phase */
901
                        s->all_fragments[current_fragment].coding_method =
902
                            MODE_INTER_NO_MV;
903
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
904
                        s->coded_fragment_list[s->coded_fragment_list_index] =
905
                            current_fragment;
906
                        if ((current_fragment >= s->u_fragment_start) &&
907 908
                            (s->last_coded_y_fragment == -1) &&
                            (!first_c_fragment_seen)) {
909 910
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
911
                            first_c_fragment_seen = 1;
912 913
                        }
                        s->coded_fragment_list_index++;
914
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
915 916 917 918 919 920 921 922 923 924 925 926 927 928
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
                            i, current_fragment);
                    } else {
                        /* not coded; copy this fragment from the prior frame */
                        s->all_fragments[current_fragment].coding_method =
                            MODE_COPY;
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
                            i, current_fragment);
                    }

                } else {

                    /* fragments are fully coded in this superblock; actual
                     * coding will be determined in next step */
929
                    s->all_fragments[current_fragment].coding_method =
930
                        MODE_INTER_NO_MV;
931
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
932
                    s->coded_fragment_list[s->coded_fragment_list_index] =
933
                        current_fragment;
934
                    if ((current_fragment >= s->u_fragment_start) &&
935 936
                        (s->last_coded_y_fragment == -1) &&
                        (!first_c_fragment_seen)) {
937 938
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
939
                        first_c_fragment_seen = 1;
940 941
                    }
                    s->coded_fragment_list_index++;
942
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
943 944 945 946 947 948
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
                        i, current_fragment);
                }
            }
        }
    }
949

950 951
    if (!first_c_fragment_seen)
        /* only Y fragments coded in this frame */
952
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
953
    else
954
        /* end the list of coded C fragments */
955
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
956

957 958 959 960 961 962
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
        s->coded_fragment_list_index,
        s->first_coded_y_fragment,
        s->last_coded_y_fragment,
        s->first_coded_c_fragment,
        s->last_coded_c_fragment);
963 964

    return 0;
965 966 967 968 969 970
}

/*
 * This function unpacks all the coding mode data for individual macroblocks
 * from the bitstream.
 */
971
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
{
    int i, j, k;
    int scheme;
    int current_macroblock;
    int current_fragment;
    int coding_mode;

    debug_vp3("  vp3: unpacking encoding modes\n");

    if (s->keyframe) {
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");

        for (i = 0; i < s->fragment_count; i++)
            s->all_fragments[i].coding_method = MODE_INTRA;

    } else {

        /* fetch the mode coding scheme for this frame */
        scheme = get_bits(gb, 3);
        debug_modes("    using mode alphabet %d\n", scheme);

        /* is it a custom coding scheme? */
        if (scheme == 0) {
            debug_modes("    custom mode alphabet ahead:\n");
            for (i = 0; i < 8; i++)
997
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
998 999 1000
        }

        for (i = 0; i < 8; i++)
1001
            debug_modes("      mode[%d][%d] = %d\n", scheme, i,
1002 1003 1004 1005 1006 1007 1008 1009 1010
                ModeAlphabet[scheme][i]);

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1011
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1012
                    continue;
1013
                if (current_macroblock >= s->macroblock_count) {
1014
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1015 1016 1017
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1018 1019 1020 1021 1022

                /* mode 7 means get 3 bits for each coding mode */
                if (scheme == 7)
                    coding_mode = get_bits(gb, 3);
                else
1023 1024
                    coding_mode = ModeAlphabet[scheme]
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
1025

1026
                s->macroblock_coding[current_macroblock] = coding_mode;
1027
                for (k = 0; k < 6; k++) {
1028
                    current_fragment =
1029
                        s->macroblock_fragments[current_macroblock * 6 + k];
1030 1031 1032
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1033
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1034 1035 1036
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1037
                    if (s->all_fragments[current_fragment].coding_method !=
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
                        MODE_COPY)
                        s->all_fragments[current_fragment].coding_method =
                            coding_mode;
                }

                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
            }
        }
    }
1048 1049

    return 0;
1050 1051
}

1052 1053 1054 1055
/*
 * This function unpacks all the motion vectors for the individual
 * macroblocks from the bitstream.
 */
1056
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
{
    int i, j, k;
    int coding_mode;
    int motion_x[6];
    int motion_y[6];
    int last_motion_x = 0;
    int last_motion_y = 0;
    int prior_last_motion_x = 0;
    int prior_last_motion_y = 0;
    int current_macroblock;
    int current_fragment;

    debug_vp3("  vp3: unpacking motion vectors\n");
    if (s->keyframe) {

        debug_vp3("    keyframe-- there are no motion vectors\n");

    } else {

        memset(motion_x, 0, 6 * sizeof(int));
        memset(motion_y, 0, 6 * sizeof(int));

        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
        coding_mode = get_bits(gb, 1);
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
            (coding_mode == 0) ? "VLC" : "fixed-length");

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1091
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1092
                    continue;
1093
                if (current_macroblock >= s->macroblock_count) {
1094
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1095 1096 1097
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1098 1099

                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1100
                if (current_fragment >= s->fragment_count) {
1101
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1102 1103 1104
                        current_fragment, s->fragment_count);
                    return 1;
                }
1105
                switch (s->macroblock_coding[current_macroblock]) {
1106 1107 1108 1109 1110

                case MODE_INTER_PLUS_MV:
                case MODE_GOLDEN_MV:
                    /* all 6 fragments use the same motion vector */
                    if (coding_mode == 0) {
1111 1112
                        motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
                        motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1113
                    } else {
1114 1115
                        motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
                        motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1116
                    }
1117

1118 1119 1120 1121 1122 1123
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1124
                    if (s->macroblock_coding[current_macroblock] ==
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
                        MODE_INTER_PLUS_MV) {
                        prior_last_motion_x = last_motion_x;
                        prior_last_motion_y = last_motion_y;
                        last_motion_x = motion_x[0];
                        last_motion_y = motion_y[0];
                    }
                    break;

                case MODE_INTER_FOURMV:
                    /* fetch 4 vectors from the bitstream, one for each
                     * Y fragment, then average for the C fragment vectors */
                    motion_x[4] = motion_y[4] = 0;
                    for (k = 0; k < 4; k++) {
                        if (coding_mode == 0) {
1139 1140
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1141
                        } else {
1142 1143
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1144 1145 1146 1147 1148
                        }
                        motion_x[4] += motion_x[k];
                        motion_y[4] += motion_y[k];
                    }

1149
                    if (motion_x[4] >= 0)
1150 1151 1152 1153 1154
                        motion_x[4] = (motion_x[4] + 2) / 4;
                    else
                        motion_x[4] = (motion_x[4] - 2) / 4;
                    motion_x[5] = motion_x[4];

1155
                    if (motion_y[4] >= 0)
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
                        motion_y[4] = (motion_y[4] + 2) / 4;
                    else
                        motion_y[4] = (motion_y[4] - 2) / 4;
                    motion_y[5] = motion_y[4];

                    /* vector maintenance; vector[3] is treated as the
                     * last vector in this case */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[3];
                    last_motion_y = motion_y[3];
                    break;

                case MODE_INTER_LAST_MV:
                    /* all 6 fragments use the last motion vector */
                    motion_x[0] = last_motion_x;
                    motion_y[0] = last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* no vector maintenance (last vector remains the
                     * last vector) */
                    break;

                case MODE_INTER_PRIOR_LAST:
                    /* all 6 fragments use the motion vector prior to the
                     * last motion vector */
                    motion_x[0] = prior_last_motion_x;
                    motion_y[0] = prior_last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[0];
                    last_motion_y = motion_y[0];
                    break;
1198 1199 1200 1201 1202 1203 1204 1205

                default:
                    /* covers intra, inter without MV, golden without MV */
                    memset(motion_x, 0, 6 * sizeof(int));
                    memset(motion_y, 0, 6 * sizeof(int));

                    /* no vector maintenance */
                    break;
1206 1207 1208 1209 1210
                }

                /* assign the motion vectors to the correct fragments */
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
                    current_fragment,
1211
                    s->macroblock_coding[current_macroblock]);
1212
                for (k = 0; k < 6; k++) {
1213
                    current_fragment =
1214
                        s->macroblock_fragments[current_macroblock * 6 + k];
1215 1216 1217
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1218
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1219 1220 1221
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1222
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1223
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1224 1225
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
                        k, current_fragment, motion_x[k], motion_y[k]);
1226 1227 1228 1229
                }
            }
        }
    }
1230 1231

    return 0;
1232 1233
}

1234
/*
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 * data. This function unpacks all the VLCs for either the Y plane or both
 * C planes, and is called for DC coefficients or different AC coefficient
 * levels (since different coefficient types require different VLC tables.
 *
 * This function returns a residual eob run. E.g, if a particular token gave
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 * left in the current fragment range, 3 would be returned so that it could
 * be passed into the next call to this same function.
 */
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                        VLC *table, int coeff_index,
                        int first_fragment, int last_fragment,
                        int eob_run)
{
    int i;
    int token;
1253 1254
    int zero_run = 0;
    DCTELEM coeff = 0;
1255
    Vp3Fragment *fragment;
M
Michael Niedermayer 已提交
1256
    uint8_t *perm= s->scantable.permutated;
1257
    int bits_to_get;
1258

1259
    if ((first_fragment >= s->fragment_count) ||
1260 1261
        (last_fragment >= s->fragment_count)) {

1262
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1263
            first_fragment, last_fragment);
1264
        return 0;
1265 1266
    }

1267
    for (i = first_fragment; i <= last_fragment; i++) {
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

        fragment = &s->all_fragments[s->coded_fragment_list[i]];
        if (fragment->coeff_count > coeff_index)
            continue;

        if (!eob_run) {
            /* decode a VLC into a token */
            token = get_vlc2(gb, table->table, 5, 3);
            debug_vlc(" token = %2d, ", token);
            /* use the token to get a zero run, a coefficient, and an eob run */
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
            if (token <= 6) {
                eob_run = eob_run_base[token];
                if (eob_run_get_bits[token])
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
                coeff = zero_run = 0;
            } else {
                bits_to_get = coeff_get_bits[token];
                if (!bits_to_get)
                    coeff = coeff_tables[token][0];
                else
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];

                zero_run = zero_run_base[token];
                if (zero_run_get_bits[token])
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
            }
1294 1295 1296 1297
        }

        if (!eob_run) {
            fragment->coeff_count += zero_run;
1298 1299 1300 1301 1302 1303 1304
            if (fragment->coeff_count < 64){
                fragment->next_coeff->coeff= coeff;
                fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
                fragment->next_coeff->next= s->next_coeff;
                s->next_coeff->next=NULL;
                fragment->next_coeff= s->next_coeff++;
            }
1305
            debug_vlc(" fragment %d coeff = %d\n",
1306
                s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
1307
        } else {
1308
            fragment->coeff_count |= 128;
1309
            debug_vlc(" fragment %d eob with %d coefficients\n",
1310
                s->coded_fragment_list[i], fragment->coeff_count&127);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
            eob_run--;
        }
    }

    return eob_run;
}

/*
 * This function unpacks all of the DCT coefficient data from the
 * bitstream.
 */
1322
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
{
    int i;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    int residual_eob_run = 0;

    /* fetch the DC table indices */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    /* unpack the Y plane DC coefficients */
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
        dc_y_table);
1338
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1339
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1340 1341 1342 1343 1344

    /* unpack the C plane DC coefficients */
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
        dc_c_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1345
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1346

1347
    /* fetch the AC table indices */
1348 1349 1350
    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

1351
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1352 1353 1354 1355
    for (i = 1; i <= 5; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1356
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1357
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1358 1359 1360

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1361
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1362
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1363 1364
    }

1365
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1366 1367 1368 1369
    for (i = 6; i <= 14; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1370
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1371
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1372 1373 1374

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1375
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1376
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1377 1378
    }

1379
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1380 1381 1382 1383
    for (i = 15; i <= 27; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1384
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1385
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1386 1387 1388

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1389
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1390
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1391 1392
    }

1393
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1394 1395 1396 1397
    for (i = 28; i <= 63; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
1398
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1399
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1400 1401 1402

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
1403
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1404
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1405
    }
1406 1407

    return 0;
1408 1409 1410 1411
}

/*
 * This function reverses the DC prediction for each coded fragment in
1412
 * the frame. Much of this function is adapted directly from the original
1413 1414 1415 1416 1417
 * VP3 source code.
 */
#define COMPATIBLE_FRAME(x) \
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1418
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1419 1420 1421 1422 1423
static inline int iabs (int x) { return ((x < 0) ? -x : x); }

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
1424
                                  int fragment_height)
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
{

#define PUL 8
#define PU 4
#define PUR 2
#define PL 1

    int x, y;
    int i = first_fragment;

    /*
     * Fragment prediction groups:
     *
     * 32222222226
     * 10000000004
     * 10000000004
     * 10000000004
     * 10000000004
     *
1444
     * Note: Groups 5 and 7 do not exist as it would mean that the
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
     */
    int predictor_group;
    short predicted_dc;

    /* validity flags for the left, up-left, up, and up-right fragments */
    int fl, ful, fu, fur;

    /* DC values for the left, up-left, up, and up-right fragments */
    int vl, vul, vu, vur;

    /* indices for the left, up-left, up, and up-right fragments */
    int l, ul, u, ur;

1459
    /*
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
     * The 6 fields mean:
     *   0: up-left multiplier
     *   1: up multiplier
     *   2: up-right multiplier
     *   3: left multiplier
     *   4: mask
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
     */
    int predictor_transform[16][6] = {
        {  0,  0,  0,  0,   0,  0 },
        {  0,  0,  0,  1,   0,  0 },        // PL
        {  0,  0,  1,  0,   0,  0 },        // PUR
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PU
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
        {  1,  0,  0,  0,   0,  0 },        // PUL
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
    };

    /* This table shows which types of blocks can use other blocks for
     * prediction. For example, INTRA is the only mode in this table to
     * have a frame number of 0. That means INTRA blocks can only predict
1490
     * from other INTRA blocks. There are 2 golden frame coding types;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
     * blocks encoding in these modes can only predict from other blocks
     * that were encoded with these 1 of these 2 modes. */
    unsigned char compatible_frame[8] = {
        1,    /* MODE_INTER_NO_MV */
        0,    /* MODE_INTRA */
        1,    /* MODE_INTER_PLUS_MV */
        1,    /* MODE_INTER_LAST_MV */
        1,    /* MODE_INTER_PRIOR_MV */
        2,    /* MODE_USING_GOLDEN */
        2,    /* MODE_GOLDEN_MV */
        1     /* MODE_INTER_FOUR_MV */
    };
    int current_frame_type;

    /* there is a last DC predictor for each of the 3 frame types */
    short last_dc[3];

    int transform = 0;

    debug_vp3("  vp3: reversing DC prediction\n");

    vul = vu = vur = vl = 0;
    last_dc[0] = last_dc[1] = last_dc[2] = 0;

    /* for each fragment row... */
    for (y = 0; y < fragment_height; y++) {

        /* for each fragment in a row... */
        for (x = 0; x < fragment_width; x++, i++) {

            /* reverse prediction if this block was coded */
            if (s->all_fragments[i].coding_method != MODE_COPY) {

1524
                current_frame_type =
1525 1526 1527 1528
                    compatible_frame[s->all_fragments[i].coding_method];
                predictor_group = (x == 0) + ((y == 0) << 1) +
                    ((x + 1 == fragment_width) << 2);
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
1529
                    i, predictor_group, DC_COEFF(i));
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

                switch (predictor_group) {

                case 0:
                    /* main body of fragments; consider all 4 possible
                     * fragments for prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1544 1545 1546 1547
                    vul = DC_COEFF(ul);
                    vu = DC_COEFF(u);
                    vur = DC_COEFF(ur);
                    vl = DC_COEFF(l);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);

                    break;

                case 1:
                    /* left column of fragments, not including top corner;
                     * only consider up and up-right fragments */

                    /* calculate the indices of the predicting fragments */
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;

                    /* fetch the DC values for the predicting fragments */
1569 1570
                    vu = DC_COEFF(u);
                    vur = DC_COEFF(ur);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

                    /* figure out which fragments are valid */
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);

                    /* decide which predictor transform to use */
                    transform = (fu*PU) | (fur*PUR);

                    break;

                case 2:
                case 6:
                    /* top row of fragments, not including top-left frag;
                     * only consider the left fragment for prediction */

                    /* calculate the indices of the predicting fragments */
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1590
                    vl = DC_COEFF(l);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

                    /* figure out which fragments are valid */
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL);

                    break;

                case 3:
                    /* top-left fragment */

                    /* nothing to predict from in this case */
                    transform = 0;

                    break;

                case 4:
                    /* right column of fragments, not including top corner;
                     * consider up-left, up, and left fragments for
                     * prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
1619 1620 1621
                    vul = DC_COEFF(ul);
                    vu = DC_COEFF(u);
                    vl = DC_COEFF(l);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);

                    break;

                }

                debug_dc_pred("transform = %d, ", transform);

                if (transform == 0) {

                    /* if there were no fragments to predict from, use last
                     * DC saved */
1641
                    predicted_dc = last_dc[current_frame_type];
1642
                    debug_dc_pred("from last DC (%d) = %d\n",
1643
                        current_frame_type, DC_COEFF(i));
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

                } else {

                    /* apply the appropriate predictor transform */
                    predicted_dc =
                        (predictor_transform[transform][0] * vul) +
                        (predictor_transform[transform][1] * vu) +
                        (predictor_transform[transform][2] * vur) +
                        (predictor_transform[transform][3] * vl);

                    /* if there is a shift value in the transform, add
                     * the sign bit before the shift */
                    if (predictor_transform[transform][5] != 0) {
1657
                        predicted_dc += ((predicted_dc >> 15) &
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
                            predictor_transform[transform][4]);
                        predicted_dc >>= predictor_transform[transform][5];
                    }

                    /* check for outranging on the [ul u l] and
                     * [ul u ur l] predictors */
                    if ((transform == 13) || (transform == 15)) {
                        if (iabs(predicted_dc - vu) > 128)
                            predicted_dc = vu;
                        else if (iabs(predicted_dc - vl) > 128)
                            predicted_dc = vl;
                        else if (iabs(predicted_dc - vul) > 128)
                            predicted_dc = vul;
                    }

1673
                    debug_dc_pred("from pred DC = %d\n",
1674
                    DC_COEFF(i));
1675 1676
                }

1677 1678 1679 1680 1681 1682 1683 1684
                /* at long last, apply the predictor */
                if(s->coeffs[i].index){
                    *s->next_coeff= s->coeffs[i];
                    s->coeffs[i].index=0;
                    s->coeffs[i].coeff=0;
                    s->coeffs[i].next= s->next_coeff++;
                }
                s->coeffs[i].coeff += predicted_dc;
1685
                /* save the DC */
1686 1687 1688 1689 1690 1691 1692
                last_dc[current_frame_type] = DC_COEFF(i);
                if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
                    s->all_fragments[i].coeff_count= 129;
//                    s->all_fragments[i].next_coeff= s->next_coeff;
                    s->coeffs[i].next= s->next_coeff;
                    (s->next_coeff++)->next=NULL;
                }
1693 1694 1695 1696 1697
            }
        }
    }
}

1698 1699 1700 1701 1702 1703

static void horizontal_filter(unsigned char *first_pixel, int stride,
    int *bounding_values);
static void vertical_filter(unsigned char *first_pixel, int stride,
    int *bounding_values);

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
/*
 * Perform the final rendering for a particular slice of data.
 * The slice number ranges from 0..(macroblock_height - 1).
 */
static void render_slice(Vp3DecodeContext *s, int slice)
{
    int x, y;
    int m, n;
    int i;  /* indicates current fragment */
    int16_t *dequantizer;
    DCTELEM __align16 block[64];
    unsigned char *output_plane;
    unsigned char *last_plane;
    unsigned char *golden_plane;
    int stride;
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
    int upper_motion_limit, lower_motion_limit;
    int motion_halfpel_index;
    uint8_t *motion_source;
    int plane;
    int plane_width;
    int plane_height;
    int slice_height;
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1728
    int fragment_width;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

    if (slice >= s->macroblock_height)
        return;

    for (plane = 0; plane < 3; plane++) {

        /* set up plane-specific parameters */
        if (plane == 0) {
            output_plane = s->current_frame.data[0];
            last_plane = s->last_frame.data[0];
            golden_plane = s->golden_frame.data[0];
            stride = s->current_frame.linesize[0];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[0];
            lower_motion_limit = s->height * s->current_frame.linesize[0] + s->width - 8;
            y = slice * FRAGMENT_PIXELS * 2;
            plane_width = s->width;
            plane_height = s->height;
            slice_height = y + FRAGMENT_PIXELS * 2;
            i = s->macroblock_fragments[current_macroblock_entry + 0];
        } else if (plane == 1) {
            output_plane = s->current_frame.data[1];
            last_plane = s->last_frame.data[1];
            golden_plane = s->golden_frame.data[1];
            stride = s->current_frame.linesize[1];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[1];
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[1] + (s->width / 2) - 8;
            y = slice * FRAGMENT_PIXELS;
            plane_width = s->width / 2;
            plane_height = s->height / 2;
            slice_height = y + FRAGMENT_PIXELS;
            i = s->macroblock_fragments[current_macroblock_entry + 4];
        } else {
            output_plane = s->current_frame.data[2];
            last_plane = s->last_frame.data[2];
            golden_plane = s->golden_frame.data[2];
            stride = s->current_frame.linesize[2];
            if (!s->flipped_image) stride = -stride;
            upper_motion_limit = 7 * s->current_frame.linesize[2];
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[2] + (s->width / 2) - 8;
            y = slice * FRAGMENT_PIXELS;
            plane_width = s->width / 2;
            plane_height = s->height / 2;
            slice_height = y + FRAGMENT_PIXELS;
            i = s->macroblock_fragments[current_macroblock_entry + 5];
        }
1776
        fragment_width = plane_width / FRAGMENT_PIXELS;
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
        if(ABS(stride) > 2048)
            return; //various tables are fixed size

        /* for each fragment row in the slice (both of them)... */
        for (; y < slice_height; y += 8) {

            /* for each fragment in a row... */
            for (x = 0; x < plane_width; x += 8, i++) {

                if ((i < 0) || (i >= s->fragment_count)) {
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
                    return;
                }

                /* transform if this block was coded */
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {

                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
                        motion_source= golden_plane;
1799
                    else
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
                        motion_source= last_plane;

                    motion_source += s->all_fragments[i].first_pixel;
                    motion_halfpel_index = 0;

                    /* sort out the motion vector if this fragment is coded
                     * using a motion vector method */
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
                        int src_x, src_y;
                        motion_x = s->all_fragments[i].motion_x;
                        motion_y = s->all_fragments[i].motion_y;
                        if(plane){
                            motion_x= (motion_x>>1) | (motion_x&1);
                            motion_y= (motion_y>>1) | (motion_y&1);
                        }

                        src_x= (motion_x>>1) + x;
                        src_y= (motion_y>>1) + y;
                        if ((motion_x == 127) || (motion_y == 127))
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);

                        motion_halfpel_index = motion_x & 0x01;
                        motion_source += (motion_x >> 1);

                        motion_halfpel_index |= (motion_y & 0x01) << 1;
                        motion_source += ((motion_y >> 1) * stride);

                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
                            uint8_t *temp= s->edge_emu_buffer;
                            if(stride<0) temp -= 9*stride;
                            else temp += 9*stride;

                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
                            motion_source= temp;
                        }
                    }
1837

1838 1839 1840 1841

                    /* first, take care of copying a block from either the
                     * previous or the golden frame */
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1842 1843 1844
                        /* Note, it is possible to implement all MC cases with
                           put_no_rnd_pixels_l2 which would look more like the
                           VP3 source but this would be slower as
1845 1846 1847 1848 1849 1850 1851 1852 1853
                           put_no_rnd_pixels_tab is better optimzed */
                        if(motion_halfpel_index != 3){
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
                                output_plane + s->all_fragments[i].first_pixel,
                                motion_source, stride, 8);
                        }else{
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
                            s->dsp.put_no_rnd_pixels_l2[1](
                                output_plane + s->all_fragments[i].first_pixel,
1854 1855
                                motion_source - d,
                                motion_source + stride + 1 + d,
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
                                stride, 8);
                        }
                        dequantizer = s->inter_dequant;
                    }else{
                        if (plane == 0)
                            dequantizer = s->intra_y_dequant;
                        else
                            dequantizer = s->intra_c_dequant;
                    }

                    /* dequantize the DCT coefficients */
1867 1868
                    debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
                        i, s->all_fragments[i].coding_method,
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
                        DC_COEFF(i), dequantizer[0]);

                    if(s->avctx->idct_algo==FF_IDCT_VP3){
                        Coeff *coeff= s->coeffs + i;
                        memset(block, 0, sizeof(block));
                        while(coeff->next){
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
                            coeff= coeff->next;
                        }
                    }else{
                        Coeff *coeff= s->coeffs + i;
                        memset(block, 0, sizeof(block));
                        while(coeff->next){
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
                            coeff= coeff->next;
                        }
                    }

                    /* invert DCT and place (or add) in final output */
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
                            block[0] += 128<<3;
                        s->dsp.idct_put(
                            output_plane + s->all_fragments[i].first_pixel,
                            stride,
                            block);
                    } else {
                        s->dsp.idct_add(
                            output_plane + s->all_fragments[i].first_pixel,
                            stride,
                            block);
                    }

                    debug_idct("block after idct_%s():\n",
                        (s->all_fragments[i].coding_method == MODE_INTRA)?
                        "put" : "add");
                    for (m = 0; m < 8; m++) {
                        for (n = 0; n < 8; n++) {
1908
                            debug_idct(" %3d", *(output_plane +
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
                                s->all_fragments[i].first_pixel + (m * stride + n)));
                        }
                        debug_idct("\n");
                    }
                    debug_idct("\n");

                } else {

                    /* copy directly from the previous frame */
                    s->dsp.put_pixels_tab[1][0](
                        output_plane + s->all_fragments[i].first_pixel,
                        last_plane + s->all_fragments[i].first_pixel,
                        stride, 8);

                }
1924
#if 0
1925 1926 1927 1928 1929 1930 1931
                /* perform the left edge filter if:
                 *   - the fragment is not on the left column
                 *   - the fragment is coded in this frame
                 *   - the fragment is not coded in this frame but the left
                 *     fragment is coded in this frame (this is done instead
                 *     of a right edge filter when rendering the left fragment
                 *     since this fragment is not available yet) */
1932
                if ((x > 0) &&
1933 1934 1935
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1936
                    horizontal_filter(
1937 1938
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
                        -stride, bounding_values);
1939 1940
                }

1941 1942 1943 1944 1945 1946 1947
                /* perform the top edge filter if:
                 *   - the fragment is not on the top row
                 *   - the fragment is coded in this frame
                 *   - the fragment is not coded in this frame but the above
                 *     fragment is coded in this frame (this is done instead
                 *     of a bottom edge filter when rendering the above
                 *     fragment since this fragment is not available yet) */
1948
                if ((y > 0) &&
1949 1950 1951
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1952
                    vertical_filter(
1953 1954
                        output_plane + s->all_fragments[i].first_pixel - stride,
                        -stride, bounding_values);
1955
                }
1956
#endif
1957 1958 1959 1960 1961 1962 1963
            }
        }
    }

     /* this looks like a good place for slice dispatch... */
     /* algorithm:
      *   if (slice == s->macroblock_height - 1)
1964 1965 1966
      *     dispatch (both last slice & 2nd-to-last slice);
      *   else if (slice > 0)
      *     dispatch (slice - 1);
1967 1968 1969 1970 1971
      */

    emms_c();
}

1972 1973 1974
static void horizontal_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
1975
    unsigned char *end;
1976 1977
    int filter_value;

1978
    for (end= first_pixel + 8*stride; first_pixel < end; first_pixel += stride) {
1979
        filter_value =
1980 1981
            (first_pixel[-2] - first_pixel[ 1])
         +3*(first_pixel[ 0] - first_pixel[-1]);
1982
        filter_value = bounding_values[(filter_value + 4) >> 3];
1983 1984
        first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
        first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
1985 1986 1987 1988 1989 1990
    }
}

static void vertical_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
1991
    unsigned char *end;
1992
    int filter_value;
1993
    const int nstride= -stride;
1994

1995
    for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
1996
        filter_value =
1997 1998
            (first_pixel[2 * nstride] - first_pixel[ stride])
         +3*(first_pixel[0          ] - first_pixel[nstride]);
1999
        filter_value = bounding_values[(filter_value + 4) >> 3];
2000
        first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
2001
        first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    }
}

static void apply_loop_filter(Vp3DecodeContext *s)
{
    int x, y, plane;
    int width, height;
    int fragment;
    int stride;
    unsigned char *plane_data;
2012
    int *bounding_values= s->bounding_values_array+127;
2013

2014
#if 0
2015
    int bounding_values_array[256];
2016 2017 2018 2019 2020 2021 2022
    int filter_limit;

    /* find the right loop limit value */
    for (x = 63; x >= 0; x--) {
        if (vp31_ac_scale_factor[x] >= s->quality_index)
            break;
    }
2023
    filter_limit = vp31_filter_limit_values[s->quality_index];
2024 2025

    /* set up the bounding values */
2026
    memset(bounding_values_array, 0, 256 * sizeof(int));
2027 2028 2029 2030 2031 2032
    for (x = 0; x < filter_limit; x++) {
        bounding_values[-x - filter_limit] = -filter_limit + x;
        bounding_values[-x] = -x;
        bounding_values[x] = x;
        bounding_values[x + filter_limit] = filter_limit - x;
    }
2033
#endif
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    for (plane = 0; plane < 3; plane++) {

        if (plane == 0) {
            /* Y plane parameters */
            fragment = 0;
            width = s->fragment_width;
            height = s->fragment_height;
            stride = s->current_frame.linesize[0];
            plane_data = s->current_frame.data[0];
        } else if (plane == 1) {
            /* U plane parameters */
            fragment = s->u_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[1];
            plane_data = s->current_frame.data[1];
        } else {
            /* V plane parameters */
            fragment = s->v_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[2];
            plane_data = s->current_frame.data[2];
        }

        for (y = 0; y < height; y++) {
2061

2062
            for (x = 0; x < width; x++) {
M
Michael Niedermayer 已提交
2063
START_TIMER
2064 2065 2066 2067
                /* do not perform left edge filter for left columns frags */
                if ((x > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    horizontal_filter(
2068
                        plane_data + s->all_fragments[fragment].first_pixel - 7*stride,
2069 2070 2071 2072 2073 2074 2075
                        stride, bounding_values);
                }

                /* do not perform top edge filter for top row fragments */
                if ((y > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    vertical_filter(
2076
                        plane_data + s->all_fragments[fragment].first_pixel + stride,
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
                        stride, bounding_values);
                }

                /* do not perform right edge filter for right column
                 * fragments or if right fragment neighbor is also coded
                 * in this frame (it will be filtered in next iteration) */
                if ((x < width - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
                    horizontal_filter(
2087
                        plane_data + s->all_fragments[fragment + 1].first_pixel - 7*stride,
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
                        stride, bounding_values);
                }

                /* do not perform bottom edge filter for bottom row
                 * fragments or if bottom fragment neighbor is also coded
                 * in this frame (it will be filtered in the next row) */
                if ((y < height - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
                    vertical_filter(
2098
                        plane_data + s->all_fragments[fragment + width].first_pixel + stride,
2099 2100 2101 2102
                        stride, bounding_values);
                }

                fragment++;
M
Michael Niedermayer 已提交
2103
STOP_TIMER("loop filter")
2104 2105 2106
            }
        }
    }
2107 2108
}

2109
/*
2110 2111 2112 2113
 * This function computes the first pixel addresses for each fragment.
 * This function needs to be invoked after the first frame is allocated
 * so that it has access to the plane strides.
 */
2114
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
2115 2116 2117 2118 2119 2120 2121 2122 2123
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = s->fragment_height; y > 0; y--) {
        for (x = 0; x < s->fragment_width; x++) {
2124
            s->all_fragments[i++].first_pixel =
2125 2126 2127
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
2128
            debug_init("  fragment %d, first pixel @ %d\n",
2129 2130 2131 2132 2133 2134 2135 2136
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2137
            s->all_fragments[i++].first_pixel =
2138 2139 2140
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
2141
            debug_init("  fragment %d, first pixel @ %d\n",
2142 2143 2144 2145 2146 2147 2148 2149
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2150
            s->all_fragments[i++].first_pixel =
2151 2152 2153
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
2154
            debug_init("  fragment %d, first pixel @ %d\n",
2155 2156 2157 2158 2159
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2160
/* FIXME: this should be merged with the above! */
2161
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s)
2162 2163 2164 2165 2166 2167 2168 2169 2170
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = 1; y <= s->fragment_height; y++) {
        for (x = 0; x < s->fragment_width; x++) {
2171
            s->all_fragments[i++].first_pixel =
2172 2173 2174
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
2175
            debug_init("  fragment %d, first pixel @ %d\n",
2176 2177 2178 2179 2180 2181 2182 2183
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2184
            s->all_fragments[i++].first_pixel =
2185 2186 2187
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
2188
            debug_init("  fragment %d, first pixel @ %d\n",
2189 2190 2191 2192 2193 2194 2195 2196
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
2197
            s->all_fragments[i++].first_pixel =
2198 2199 2200
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
2201
            debug_init("  fragment %d, first pixel @ %d\n",
2202 2203 2204 2205 2206
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2207 2208 2209 2210 2211 2212 2213
/*
 * This is the ffmpeg/libavcodec API init function.
 */
static int vp3_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i;
2214 2215 2216 2217
    int c_width;
    int c_height;
    int y_superblock_count;
    int c_superblock_count;
2218

A
Alex Beregszaszi 已提交
2219 2220 2221 2222 2223
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
	s->version = 0;
    else
	s->version = 1;

2224
    s->avctx = avctx;
2225 2226
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
2227 2228
    avctx->pix_fmt = PIX_FMT_YUV420P;
    avctx->has_b_frames = 0;
2229 2230
    if(avctx->idct_algo==FF_IDCT_AUTO)
        avctx->idct_algo=FF_IDCT_VP3;
2231
    dsputil_init(&s->dsp, avctx);
2232

M
Michael Niedermayer 已提交
2233
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
2234 2235 2236 2237 2238

    /* initialize to an impossible value which will force a recalculation
     * in the first frame decode */
    s->quality_index = -1;

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
    s->y_superblock_width = (s->width + 31) / 32;
    s->y_superblock_height = (s->height + 31) / 32;
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;

    /* work out the dimensions for the C planes */
    c_width = s->width / 2;
    c_height = s->height / 2;
    s->c_superblock_width = (c_width + 31) / 32;
    s->c_superblock_height = (c_height + 31) / 32;
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;

    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
    s->u_superblock_start = y_superblock_count;
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
    s->superblock_coding = av_malloc(s->superblock_count);

    s->macroblock_width = (s->width + 15) / 16;
    s->macroblock_height = (s->height + 15) / 16;
    s->macroblock_count = s->macroblock_width * s->macroblock_height;

    s->fragment_width = s->width / FRAGMENT_PIXELS;
    s->fragment_height = s->height / FRAGMENT_PIXELS;

    /* fragment count covers all 8x8 blocks for all 3 planes */
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
    s->u_fragment_start = s->fragment_width * s->fragment_height;
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;

2267 2268 2269 2270 2271 2272
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
    debug_init("  C plane: %d x %d\n", c_width, c_height);
    debug_init("  Y superblocks: %d x %d, %d total\n",
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
    debug_init("  C superblocks: %d x %d, %d total\n",
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
2273
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n",
2274
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
    debug_init("  macroblocks: %d x %d, %d total\n",
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
        s->fragment_count,
        s->fragment_width,
        s->fragment_height,
        s->u_fragment_start,
        s->v_fragment_start);

    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2285
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
2286 2287 2288
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
    s->pixel_addresses_inited = 0;

2289 2290 2291 2292 2293
    if (!s->theora_tables)
    {
	for (i = 0; i < 64; i++)
	    s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
	for (i = 0; i < 64; i++)
2294
	    s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
2295 2296 2297 2298 2299 2300
	for (i = 0; i < 64; i++)
	    s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
	for (i = 0; i < 64; i++)
	    s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
	for (i = 0; i < 64; i++)
	    s->coded_inter_dequant[i] = vp31_inter_dequant[i];
2301 2302
	for (i = 0; i < 64; i++)
	    s->filter_limit_values[i] = vp31_filter_limit_values[i];
2303

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
        /* init VLC tables */
        for (i = 0; i < 16; i++) {

            /* DC histograms */
            init_vlc(&s->dc_vlc[i], 5, 32,
                &dc_bias[i][0][1], 4, 2,
                &dc_bias[i][0][0], 4, 2, 0);

            /* group 1 AC histograms */
            init_vlc(&s->ac_vlc_1[i], 5, 32,
                &ac_bias_0[i][0][1], 4, 2,
                &ac_bias_0[i][0][0], 4, 2, 0);

            /* group 2 AC histograms */
            init_vlc(&s->ac_vlc_2[i], 5, 32,
                &ac_bias_1[i][0][1], 4, 2,
                &ac_bias_1[i][0][0], 4, 2, 0);

            /* group 3 AC histograms */
            init_vlc(&s->ac_vlc_3[i], 5, 32,
                &ac_bias_2[i][0][1], 4, 2,
                &ac_bias_2[i][0][0], 4, 2, 0);

            /* group 4 AC histograms */
            init_vlc(&s->ac_vlc_4[i], 5, 32,
                &ac_bias_3[i][0][1], 4, 2,
                &ac_bias_3[i][0][0], 4, 2, 0);
        }
    } else {
        for (i = 0; i < 16; i++) {

            /* DC histograms */
            init_vlc(&s->dc_vlc[i], 5, 32,
                &s->huffman_table[i][0][1], 4, 2,
                &s->huffman_table[i][0][0], 4, 2, 0);

            /* group 1 AC histograms */
            init_vlc(&s->ac_vlc_1[i], 5, 32,
                &s->huffman_table[i+16][0][1], 4, 2,
                &s->huffman_table[i+16][0][0], 4, 2, 0);

            /* group 2 AC histograms */
            init_vlc(&s->ac_vlc_2[i], 5, 32,
                &s->huffman_table[i+16*2][0][1], 4, 2,
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);

            /* group 3 AC histograms */
            init_vlc(&s->ac_vlc_3[i], 5, 32,
                &s->huffman_table[i+16*3][0][1], 4, 2,
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);

            /* group 4 AC histograms */
            init_vlc(&s->ac_vlc_4[i], 5, 32,
                &s->huffman_table[i+16*4][0][1], 4, 2,
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
        }
2360 2361
    }

2362 2363 2364 2365
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
        &superblock_run_length_vlc_table[0][1], 4, 2,
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);

2366
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
        &fragment_run_length_vlc_table[0][1], 4, 2,
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);

    init_vlc(&s->mode_code_vlc, 3, 8,
        &mode_code_vlc_table[0][1], 2, 1,
        &mode_code_vlc_table[0][0], 2, 1, 0);

    init_vlc(&s->motion_vector_vlc, 6, 63,
        &motion_vector_vlc_table[0][1], 2, 1,
        &motion_vector_vlc_table[0][0], 2, 1, 0);

2378 2379 2380 2381
    /* work out the block mapping tables */
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2382
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2383 2384
    init_block_mapping(s);

2385 2386 2387 2388
    for (i = 0; i < 3; i++) {
        s->current_frame.data[i] = NULL;
        s->last_frame.data[i] = NULL;
        s->golden_frame.data[i] = NULL;
2389 2390
    }

2391 2392 2393 2394 2395 2396
    return 0;
}

/*
 * This is the ffmpeg/libavcodec API frame decode function.
 */
2397
static int vp3_decode_frame(AVCodecContext *avctx,
2398 2399 2400 2401 2402 2403
                            void *data, int *data_size,
                            uint8_t *buf, int buf_size)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    static int counter = 0;
2404
    int i;
2405 2406

    init_get_bits(&gb, buf, buf_size * 8);
2407

2408 2409
    if (s->theora && get_bits1(&gb))
    {
2410 2411 2412 2413
#if 1
	av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
	return -1;
#else
2414
	int ptype = get_bits(&gb, 7);
2415

A
Alex Beregszaszi 已提交
2416
	skip_bits(&gb, 6*8); /* "theora" */
2417

A
Alex Beregszaszi 已提交
2418
	switch(ptype)
2419
	{
A
Alex Beregszaszi 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428
	    case 1:
		theora_decode_comments(avctx, gb);
		break;
	    case 2:
		theora_decode_tables(avctx, gb);
    		init_dequantizer(s);
		break;
	    default:
		av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
2429
	}
A
Alex Beregszaszi 已提交
2430
	return buf_size;
2431
#endif
2432
    }
A
Alex Beregszaszi 已提交
2433 2434 2435

    s->keyframe = !get_bits1(&gb);
    if (!s->theora)
2436
	skip_bits(&gb, 1);
A
Alex Beregszaszi 已提交
2437 2438
    s->last_quality_index = s->quality_index;
    s->quality_index = get_bits(&gb, 6);
M
Matthieu Castet 已提交
2439
    if (s->theora >= 0x030200)
A
Alex Beregszaszi 已提交
2440
        skip_bits1(&gb);
2441

2442 2443 2444
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
	av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
	    s->keyframe?"key":"", counter, s->quality_index);
2445 2446
    counter++;

2447
    if (s->quality_index != s->last_quality_index) {
2448
        init_dequantizer(s);
2449 2450
        init_loop_filter(s);
    }
2451

2452
    if (s->keyframe) {
A
Alex Beregszaszi 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	if (!s->theora)
	{
	    skip_bits(&gb, 4); /* width code */
	    skip_bits(&gb, 4); /* height code */
	    if (s->version)
	    {
		s->version = get_bits(&gb, 5);
		if (counter == 1)
		    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
	    }
	}
	if (s->version || s->theora)
	{
    	    if (get_bits1(&gb))
    	        av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
	    skip_bits(&gb, 2); /* reserved? */
	}

2471 2472 2473
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
2474
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2475 2476 2477 2478 2479 2480
        } else {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
            if (s->last_frame.data[0])
                avctx->release_buffer(avctx, &s->last_frame);
        }
2481

2482
        s->golden_frame.reference = 3;
2483
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2484
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2485 2486 2487 2488
            return -1;
        }

        /* golden frame is also the current frame */
2489
        memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
2490 2491 2492

        /* time to figure out pixel addresses? */
        if (!s->pixel_addresses_inited)
2493 2494 2495 2496 2497 2498
	{
	    if (!s->flipped_image)
        	vp3_calculate_pixel_addresses(s);
	    else
		theora_calculate_pixel_addresses(s);
	}
2499 2500
    } else {
        /* allocate a new current frame */
2501
        s->current_frame.reference = 3;
2502
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2503
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2504 2505 2506 2507
            return -1;
        }
    }

M
Michael Niedermayer 已提交
2508 2509 2510
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
    s->current_frame.qstride= 0;

M
Michael Niedermayer 已提交
2511
    {START_TIMER
2512
    init_frame(s, &gb);
M
Michael Niedermayer 已提交
2513
    STOP_TIMER("init_frame")}
2514

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
#if KEYFRAMES_ONLY
if (!s->keyframe) {

    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
        s->current_frame.linesize[0] * s->height);
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
        s->current_frame.linesize[1] * s->height / 2);
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
        s->current_frame.linesize[2] * s->height / 2);

} else {
#endif

M
Michael Niedermayer 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
    {START_TIMER
    if (unpack_superblocks(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
        return -1;
    }
    STOP_TIMER("unpack_superblocks")}
    {START_TIMER
    if (unpack_modes(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
        return -1;
    }
    STOP_TIMER("unpack_modes")}
    {START_TIMER
    if (unpack_vectors(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
        return -1;
    }
    STOP_TIMER("unpack_vectors")}
    {START_TIMER
    if (unpack_dct_coeffs(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2549 2550
        return -1;
    }
M
Michael Niedermayer 已提交
2551 2552
    STOP_TIMER("unpack_dct_coeffs")}
    {START_TIMER
2553 2554

    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2555 2556 2557 2558 2559
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
        reverse_dc_prediction(s, s->u_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        reverse_dc_prediction(s, s->v_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
2560 2561 2562 2563 2564 2565 2566
    }
    STOP_TIMER("reverse_dc_prediction")}
    {START_TIMER

    for (i = 0; i < s->macroblock_height; i++)
        render_slice(s, i);
    STOP_TIMER("render_fragments")}
2567

M
Michael Niedermayer 已提交
2568
    {START_TIMER
2569
    apply_loop_filter(s);
M
Michael Niedermayer 已提交
2570
    STOP_TIMER("apply_loop_filter")}
2571 2572 2573 2574
#if KEYFRAMES_ONLY
}
#endif

2575 2576 2577
    *data_size=sizeof(AVFrame);
    *(AVFrame*)data= s->current_frame;

2578 2579 2580 2581 2582
    /* release the last frame, if it is allocated and if it is not the
     * golden frame */
    if ((s->last_frame.data[0]) &&
        (s->last_frame.data[0] != s->golden_frame.data[0]))
        avctx->release_buffer(avctx, &s->last_frame);
2583

2584 2585
    /* shuffle frames (last = current) */
    memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
2586
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

    return buf_size;
}

/*
 * This is the ffmpeg/libavcodec API module cleanup function.
 */
static int vp3_decode_end(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    av_free(s->all_fragments);
2599
    av_free(s->coeffs);
2600 2601 2602 2603
    av_free(s->coded_fragment_list);
    av_free(s->superblock_fragments);
    av_free(s->superblock_macroblocks);
    av_free(s->macroblock_fragments);
2604
    av_free(s->macroblock_coding);
2605

2606
    /* release all frames */
2607
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2608 2609 2610 2611 2612
        avctx->release_buffer(avctx, &s->golden_frame);
    if (s->last_frame.data[0])
        avctx->release_buffer(avctx, &s->last_frame);
    /* no need to release the current_frame since it will always be pointing
     * to the same frame as either the golden or last frame */
2613 2614 2615 2616

    return 0;
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
{
    Vp3DecodeContext *s = avctx->priv_data;

    if (get_bits(gb, 1)) {
        int token;
        if (s->entries >= 32) { /* overflow */
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
            return -1;
        }
        token = get_bits(gb, 5);
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
        s->huffman_table[s->hti][token][0] = s->hbits;
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
        s->entries++;
    }
    else {
        if (s->huff_code_size >= 32) {/* overflow */
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
            return -1;
        }
        s->huff_code_size++;
        s->hbits <<= 1;
        read_huffman_tree(avctx, gb);
        s->hbits |= 1;
        read_huffman_tree(avctx, gb);
        s->hbits >>= 1;
        s->huff_code_size--;
    }
    return 0;
}

2649 2650 2651
static int theora_decode_header(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
2652 2653 2654 2655 2656 2657 2658 2659
    int major, minor, micro;

    major = get_bits(&gb, 8); /* version major */
    minor = get_bits(&gb, 8); /* version minor */
    micro = get_bits(&gb, 8); /* version micro */
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %d.%d.%d\n",
	major, minor, micro);

2660 2661 2662
    /* FIXME: endianess? */
    s->theora = (major << 16) | (minor << 8) | micro;

M
Matthieu Castet 已提交
2663
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2664
    /* but previous versions have the image flipped relative to vp3 */
M
Matthieu Castet 已提交
2665
    if (s->theora < 0x030200)
2666 2667 2668 2669
    {
	s->flipped_image = 1;
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
    }
2670 2671 2672

    s->width = get_bits(&gb, 16) << 4;
    s->height = get_bits(&gb, 16) << 4;
2673

2674
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2675
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2676 2677 2678
        s->width= s->height= 0;
        return -1;
    }
2679 2680 2681 2682 2683 2684 2685 2686

    if (s->theora >= 0x030400)
    {
	skip_bits(&gb, 32); /* total number of superblocks in a frame */
	// fixme, the next field is 36bits long
	skip_bits(&gb, 32); /* total number of blocks in a frame */
	skip_bits(&gb, 4); /* total number of blocks in a frame */
	skip_bits(&gb, 32); /* total number of macroblocks in a frame */
2687

2688 2689 2690 2691 2692 2693 2694 2695
	skip_bits(&gb, 24); /* frame width */
	skip_bits(&gb, 24); /* frame height */
    }
    else
    {
	skip_bits(&gb, 24); /* frame width */
	skip_bits(&gb, 24); /* frame height */
    }
2696 2697 2698 2699 2700 2701 2702 2703

    skip_bits(&gb, 8); /* offset x */
    skip_bits(&gb, 8); /* offset y */

    skip_bits(&gb, 32); /* fps numerator */
    skip_bits(&gb, 32); /* fps denumerator */
    skip_bits(&gb, 24); /* aspect numerator */
    skip_bits(&gb, 24); /* aspect denumerator */
2704

M
Matthieu Castet 已提交
2705
    if (s->theora < 0x030200)
2706
	skip_bits(&gb, 5); /* keyframe frequency force */
2707
    skip_bits(&gb, 8); /* colorspace */
2708 2709
    if (s->theora >= 0x030400)
	skip_bits(&gb, 2); /* pixel format: 420,res,422,444 */
2710 2711
    skip_bits(&gb, 24); /* bitrate */

2712
    skip_bits(&gb, 6); /* quality hint */
2713

M
Matthieu Castet 已提交
2714
    if (s->theora >= 0x030200)
2715 2716
    {
	skip_bits(&gb, 5); /* keyframe frequency force */
2717

2718 2719
	if (s->theora < 0x030400)
	    skip_bits(&gb, 5); /* spare bits */
2720
    }
2721

2722
//    align_get_bits(&gb);
2723

2724 2725 2726 2727 2728 2729
    avctx->width = s->width;
    avctx->height = s->height;

    return 0;
}

2730
static inline int theora_get_32bit(GetBitContext gb)
A
Alex Beregszaszi 已提交
2731
{
2732 2733 2734 2735
    int ret = get_bits(&gb, 8);
    ret += get_bits(&gb, 8) << 8;
    ret += get_bits(&gb, 8) << 16;
    ret += get_bits(&gb, 8) << 24;
2736

2737 2738
    return ret;
}
A
Alex Beregszaszi 已提交
2739

2740 2741 2742 2743
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int len;
A
Alex Beregszaszi 已提交
2744

2745
    if (s->theora <= 0x030200)
A
Alex Beregszaszi 已提交
2746
    {
2747 2748 2749 2750 2751 2752
	int i, comments;

	// vendor string
	len = get_bits_long(&gb, 32);
	len = le2me_32(len);
	while(len--)
A
Alex Beregszaszi 已提交
2753
	    skip_bits(&gb, 8);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

	// user comments
	comments = get_bits_long(&gb, 32);
	comments = le2me_32(comments);
	for (i = 0; i < comments; i++)
	{
	    len = get_bits_long(&gb, 32);
	    len = be2me_32(len);
	    while(len--)
		skip_bits(&gb, 8);
	}
A
Alex Beregszaszi 已提交
2765
    }
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
    else
    {
	do {
	    len = get_bits_long(&gb, 32);
	    len = le2me_32(len);
	    if (len <= 0)
		break;
	    while (len--)
		skip_bits(&gb, 8);
	} while (1);
2776
    }
A
Alex Beregszaszi 已提交
2777 2778 2779
    return 0;
}

2780 2781 2782
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
2783
    int i, n, matrices;
M
Matthieu Castet 已提交
2784 2785 2786

    if (s->theora >= 0x030200) {
        n = get_bits(&gb, 3);
2787
        /* loop filter limit values table */
M
Matthieu Castet 已提交
2788
        for (i = 0; i < 64; i++)
2789
            s->filter_limit_values[i] = get_bits(&gb, n);
M
Matthieu Castet 已提交
2790
    }
2791

M
Matthieu Castet 已提交
2792 2793 2794 2795
    if (s->theora >= 0x030200)
        n = get_bits(&gb, 4) + 1;
    else
        n = 16;
2796 2797
    /* quality threshold table */
    for (i = 0; i < 64; i++)
M
Matthieu Castet 已提交
2798
	s->coded_ac_scale_factor[i] = get_bits(&gb, n);
2799

M
Matthieu Castet 已提交
2800 2801 2802 2803
    if (s->theora >= 0x030200)
        n = get_bits(&gb, 4) + 1;
    else
        n = 16;
2804 2805
    /* dc scale factor table */
    for (i = 0; i < 64; i++)
M
Matthieu Castet 已提交
2806
	s->coded_dc_scale_factor[i] = get_bits(&gb, n);
2807

M
Matthieu Castet 已提交
2808
    if (s->theora >= 0x030200)
2809
        matrices = get_bits(&gb, 9) + 1;
M
Matthieu Castet 已提交
2810
    else
2811 2812 2813 2814
        matrices = 3;
    if (matrices != 3) {
        av_log(avctx,AV_LOG_ERROR, "unsupported matrices: %d\n", matrices);
//        return -1;
M
Matthieu Castet 已提交
2815
    }
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
    /* y coeffs */
    for (i = 0; i < 64; i++)
	s->coded_intra_y_dequant[i] = get_bits(&gb, 8);

    /* uv coeffs */
    for (i = 0; i < 64; i++)
	s->coded_intra_c_dequant[i] = get_bits(&gb, 8);

    /* inter coeffs */
    for (i = 0; i < 64; i++)
	s->coded_inter_dequant[i] = get_bits(&gb, 8);
A
Alex Beregszaszi 已提交
2827

2828 2829 2830 2831 2832 2833
    /* skip unknown matrices */
    n = matrices - 3;
    while(n--)
	for (i = 0; i < 64; i++)
	    skip_bits(&gb, 8);

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
    for (i = 0; i <= 1; i++) {
        for (n = 0; n <= 2; n++) {
            int newqr;
            if (i > 0 || n > 0)
                newqr = get_bits(&gb, 1);
            else
                newqr = 1;
            if (!newqr) {
                if (i > 0)
                    get_bits(&gb, 1);
            }
            else {
                int qi = 0;
2847
                skip_bits(&gb, av_log2(matrices-1)+1);
2848 2849
                while (qi < 63) {
                    qi += get_bits(&gb, av_log2(63-qi)+1) + 1;
2850
                    skip_bits(&gb, av_log2(matrices-1)+1);
2851
                }
2852
                if (qi > 63) {
2853
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2854 2855
		    return -1;
		}
2856 2857 2858 2859
            }
        }
    }

2860
    /* Huffman tables */
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
    for (s->hti = 0; s->hti < 80; s->hti++) {
        s->entries = 0;
        s->huff_code_size = 1;
        if (!get_bits(&gb, 1)) {
            s->hbits = 0;
            read_huffman_tree(avctx, &gb);
            s->hbits = 1;
            read_huffman_tree(avctx, &gb);
        }
    }
2871

2872
    s->theora_tables = 1;
2873

2874 2875 2876 2877 2878 2879 2880 2881
    return 0;
}

static int theora_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    int ptype;
2882 2883
    uint8_t *p= avctx->extradata;
    int op_bytes, i;
2884

2885 2886 2887
    s->theora = 1;

    if (!avctx->extradata_size)
2888 2889
    {
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2890
	return -1;
2891
    }
2892

2893 2894 2895 2896 2897 2898
  for(i=0;i<3;i++) {
    op_bytes = *(p++)<<8;
    op_bytes += *(p++);

    init_get_bits(&gb, p, op_bytes);
    p += op_bytes;
2899 2900 2901

    ptype = get_bits(&gb, 8);
    debug_vp3("Theora headerpacket type: %x\n", ptype);
2902

2903 2904 2905
     if (!(ptype & 0x80))
     {
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2906
	return -1;
2907
     }
2908 2909

    // FIXME: check for this aswell
2910
    skip_bits(&gb, 6*8); /* "theora" */
2911

2912 2913 2914 2915 2916 2917
    switch(ptype)
    {
        case 0x80:
            theora_decode_header(avctx, gb);
    	    break;
	case 0x81:
2918 2919
// FIXME: is this needed? it breaks sometimes
//	    theora_decode_comments(avctx, gb);
2920 2921 2922 2923
	    break;
	case 0x82:
	    theora_decode_tables(avctx, gb);
	    break;
2924 2925 2926
	default:
	    av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
	    break;
2927
    }
2928
  }
2929

M
Matthieu Castet 已提交
2930
    vp3_decode_init(avctx);
2931 2932 2933
    return 0;
}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
AVCodec vp3_decoder = {
    "vp3",
    CODEC_TYPE_VIDEO,
    CODEC_ID_VP3,
    sizeof(Vp3DecodeContext),
    vp3_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
2946

2947
#ifndef CONFIG_LIBTHEORA
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
AVCodec theora_decoder = {
    "theora",
    CODEC_TYPE_VIDEO,
    CODEC_ID_THEORA,
    sizeof(Vp3DecodeContext),
    theora_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
2960
#endif