vp3.c 101.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * VP3 Video Decoder by Mike Melanson (melanson@pcisys.net)
19 20
 * For more information about the VP3 coding process, visit:
 *   http://www.pcisys.net/~melanson/codecs/
21
 *
22 23
 * Theora decoder by Alex Beregszaszi
 *
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 */

/**
 * @file vp3.c
 * On2 VP3 Video Decoder
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "common.h"
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"

#include "vp3data.h"

#define FRAGMENT_PIXELS 8

/* 
 * Debugging Variables
 * 
 * Define one or more of the following compile-time variables to 1 to obtain
 * elaborate information about certain aspects of the decoding process.
 *
51
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52 53 54 55 56 57 58 59 60 61 62 63
 * DEBUG_VP3: high-level decoding flow
 * DEBUG_INIT: initialization parameters
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
 * DEBUG_MODES: unpacking the coding modes for individual fragments
 * DEBUG_VECTORS: display the motion vectors
 * DEBUG_TOKEN: display exhaustive information about each DCT token
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
 * DEBUG_DC_PRED: display the process of reversing DC prediction
 * DEBUG_IDCT: show every detail of the IDCT process
 */

64 65
#define KEYFRAMES_ONLY 0

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#define DEBUG_VP3 0
#define DEBUG_INIT 0
#define DEBUG_DEQUANTIZERS 0
#define DEBUG_BLOCK_CODING 0
#define DEBUG_MODES 0
#define DEBUG_VECTORS 0
#define DEBUG_TOKEN 0
#define DEBUG_VLC 0
#define DEBUG_DC_PRED 0
#define DEBUG_IDCT 0

#if DEBUG_VP3
#define debug_vp3 printf
#else
static inline void debug_vp3(const char *format, ...) { }
#endif

#if DEBUG_INIT
#define debug_init printf
#else
static inline void debug_init(const char *format, ...) { }
#endif

#if DEBUG_DEQUANTIZERS
#define debug_dequantizers printf 
#else
static inline void debug_dequantizers(const char *format, ...) { } 
#endif

#if DEBUG_BLOCK_CODING
#define debug_block_coding printf 
#else
static inline void debug_block_coding(const char *format, ...) { } 
#endif

#if DEBUG_MODES
#define debug_modes printf 
#else
static inline void debug_modes(const char *format, ...) { } 
#endif

#if DEBUG_VECTORS
#define debug_vectors printf 
#else
static inline void debug_vectors(const char *format, ...) { } 
#endif

#if DEBUG_TOKEN 
#define debug_token printf 
#else
static inline void debug_token(const char *format, ...) { } 
#endif

#if DEBUG_VLC
#define debug_vlc printf 
#else
static inline void debug_vlc(const char *format, ...) { } 
#endif

#if DEBUG_DC_PRED
#define debug_dc_pred printf 
#else
static inline void debug_dc_pred(const char *format, ...) { } 
#endif

#if DEBUG_IDCT
#define debug_idct printf 
#else
static inline void debug_idct(const char *format, ...) { } 
#endif

typedef struct Vp3Fragment {
138
    DCTELEM *coeffs;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    int coding_method;
    int coeff_count;
    int last_coeff;
    int motion_x;
    int motion_y;
    /* address of first pixel taking into account which plane the fragment
     * lives on as well as the plane stride */
    int first_pixel;
    /* this is the macroblock that the fragment belongs to */
    int macroblock;
} Vp3Fragment;

#define SB_NOT_CODED        0
#define SB_PARTIALLY_CODED  1
#define SB_FULLY_CODED      2

#define MODE_INTER_NO_MV      0
#define MODE_INTRA            1
#define MODE_INTER_PLUS_MV    2
#define MODE_INTER_LAST_MV    3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN     5
#define MODE_GOLDEN_MV        6
#define MODE_INTER_FOURMV     7
#define CODING_MODE_COUNT     8

/* special internal mode */
#define MODE_COPY             8

/* There are 6 preset schemes, plus a free-form scheme */
static int ModeAlphabet[7][CODING_MODE_COUNT] =
{
    /* this is the custom scheme */
    { 0, 0, 0, 0, 0, 0, 0, 0 },

    /* scheme 1: Last motion vector dominates */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 2 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 3 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 4 */
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 5: No motion vector dominates */
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,     
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
         MODE_INTRA,            MODE_USING_GOLDEN,      
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

    /* scheme 6 */
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,      
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
         MODE_INTER_PLUS_MV,    MODE_INTRA,             
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },

};

#define MIN_DEQUANT_VAL 2

typedef struct Vp3DecodeContext {
    AVCodecContext *avctx;
216
    int theora, theora_tables;
A
Alex Beregszaszi 已提交
217
    int version;
218 219 220 221 222 223
    int width, height;
    AVFrame golden_frame;
    AVFrame last_frame;
    AVFrame current_frame;
    int keyframe;
    DSPContext dsp;
224
    int flipped_image;
225 226 227 228 229 230 231

    int quality_index;
    int last_quality_index;

    int superblock_count;
    int superblock_width;
    int superblock_height;
232 233 234 235
    int y_superblock_width;
    int y_superblock_height;
    int c_superblock_width;
    int c_superblock_height;
236 237 238 239 240 241 242 243 244 245 246 247 248
    int u_superblock_start;
    int v_superblock_start;
    unsigned char *superblock_coding;

    int macroblock_count;
    int macroblock_width;
    int macroblock_height;

    int fragment_count;
    int fragment_width;
    int fragment_height;

    Vp3Fragment *all_fragments;
249
    DCTELEM *coeffs;
250 251
    int u_fragment_start;
    int v_fragment_start;
252 253 254
    
    /* tables */
    uint16_t coded_dc_scale_factor[64];
255
    uint32_t coded_ac_scale_factor[64];
256 257 258
    uint16_t coded_intra_y_dequant[64];
    uint16_t coded_intra_c_dequant[64];
    uint16_t coded_inter_dequant[64];
259 260 261 262 263 264 265 266 267 268 269 270 271

    /* this is a list of indices into the all_fragments array indicating
     * which of the fragments are coded */
    int *coded_fragment_list;
    int coded_fragment_list_index;
    int pixel_addresses_inited;

    VLC dc_vlc[16];
    VLC ac_vlc_1[16];
    VLC ac_vlc_2[16];
    VLC ac_vlc_3[16];
    VLC ac_vlc_4[16];

272 273 274 275 276
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
     * index into them */
    int16_t __align16 intra_y_dequant[64];
    int16_t __align16 intra_c_dequant[64];
    int16_t __align16 inter_dequant[64];
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

    /* This table contains superblock_count * 16 entries. Each set of 16
     * numbers corresponds to the fragment indices 0..15 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_fragments;

    /* This table contains superblock_count * 4 entries. Each set of 4
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
     * An entry will be -1 to indicate that no entry corresponds to that
     * index. */
    int *superblock_macroblocks;

    /* This table contains macroblock_count * 6 entries. Each set of 6
     * numbers corresponds to the fragment indices 0..5 which comprise
     * the macroblock (4 Y fragments and 2 C fragments). */
    int *macroblock_fragments;
294 295
    /* This is an array that indicates how a particular macroblock 
     * is coded. */
296
    unsigned char *macroblock_coding;
297

298 299 300 301 302
    int first_coded_y_fragment;
    int first_coded_c_fragment;
    int last_coded_y_fragment;
    int last_coded_c_fragment;

M
Michael Niedermayer 已提交
303
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
M
Michael Niedermayer 已提交
304
    uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
305 306
} Vp3DecodeContext;

A
Alex Beregszaszi 已提交
307 308 309
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb);
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb);

310 311 312 313 314 315 316 317
/************************************************************************
 * VP3 specific functions
 ************************************************************************/

/*
 * This function sets up all of the various blocks mappings:
 * superblocks <-> fragments, macroblocks <-> fragments,
 * superblocks <-> macroblocks
318 319
 *
 * Returns 0 is successful; returns 1 if *anything* went wrong.
320
 */
321
static int init_block_mapping(Vp3DecodeContext *s) 
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
{
    int i, j;
    signed int hilbert_walk_y[16];
    signed int hilbert_walk_c[16];
    signed int hilbert_walk_mb[4];

    int current_fragment = 0;
    int current_width = 0;
    int current_height = 0;
    int right_edge = 0;
    int bottom_edge = 0;
    int superblock_row_inc = 0;
    int *hilbert = NULL;
    int mapping_index = 0;

    int current_macroblock;
    int c_fragment;

    signed char travel_width[16] = {
         1,  1,  0, -1, 
         0,  0,  1,  0,
         1,  0,  1,  0,
         0, -1,  0,  1
    };

    signed char travel_height[16] = {
         0,  0,  1,  0,
         1,  1,  0, -1,
         0,  1,  0, -1,
        -1,  0, -1,  0
    };

    signed char travel_width_mb[4] = {
         1,  0,  1,  0
    };

    signed char travel_height_mb[4] = {
         0,  1,  0, -1
    };

    debug_vp3("  vp3: initialize block mapping tables\n");

    /* figure out hilbert pattern per these frame dimensions */
    hilbert_walk_y[0]  = 1;
    hilbert_walk_y[1]  = 1;
    hilbert_walk_y[2]  = s->fragment_width;
    hilbert_walk_y[3]  = -1;
    hilbert_walk_y[4]  = s->fragment_width;
    hilbert_walk_y[5]  = s->fragment_width;
    hilbert_walk_y[6]  = 1;
    hilbert_walk_y[7]  = -s->fragment_width;
    hilbert_walk_y[8]  = 1;
    hilbert_walk_y[9]  = s->fragment_width;
    hilbert_walk_y[10]  = 1;
    hilbert_walk_y[11] = -s->fragment_width;
    hilbert_walk_y[12] = -s->fragment_width;
    hilbert_walk_y[13] = -1;
    hilbert_walk_y[14] = -s->fragment_width;
    hilbert_walk_y[15] = 1;

    hilbert_walk_c[0]  = 1;
    hilbert_walk_c[1]  = 1;
    hilbert_walk_c[2]  = s->fragment_width / 2;
    hilbert_walk_c[3]  = -1;
    hilbert_walk_c[4]  = s->fragment_width / 2;
    hilbert_walk_c[5]  = s->fragment_width / 2;
    hilbert_walk_c[6]  = 1;
    hilbert_walk_c[7]  = -s->fragment_width / 2;
    hilbert_walk_c[8]  = 1;
    hilbert_walk_c[9]  = s->fragment_width / 2;
    hilbert_walk_c[10]  = 1;
    hilbert_walk_c[11] = -s->fragment_width / 2;
    hilbert_walk_c[12] = -s->fragment_width / 2;
    hilbert_walk_c[13] = -1;
    hilbert_walk_c[14] = -s->fragment_width / 2;
    hilbert_walk_c[15] = 1;

    hilbert_walk_mb[0] = 1;
    hilbert_walk_mb[1] = s->macroblock_width;
    hilbert_walk_mb[2] = 1;
    hilbert_walk_mb[3] = -s->macroblock_width;

    /* iterate through each superblock (all planes) and map the fragments */
    for (i = 0; i < s->superblock_count; i++) {
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
            i, s->u_superblock_start, s->v_superblock_start);

        /* time to re-assign the limits? */
        if (i == 0) {

            /* start of Y superblocks */
            right_edge = s->fragment_width;
            bottom_edge = s->fragment_height;
415
            current_width = -1;
416
            current_height = 0;
417 418
            superblock_row_inc = 3 * s->fragment_width - 
                (s->y_superblock_width * 4 - s->fragment_width);
419 420 421 422 423 424 425 426 427 428
            hilbert = hilbert_walk_y;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = -1;

        } else if (i == s->u_superblock_start) {

            /* start of U superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
429
            current_width = -1;
430
            current_height = 0;
431 432
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
                (s->c_superblock_width * 4 - s->fragment_width / 2);
433 434 435 436 437 438 439 440 441 442
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->u_fragment_start - 1;

        } else if (i == s->v_superblock_start) {

            /* start of V superblocks */
            right_edge = s->fragment_width / 2;
            bottom_edge = s->fragment_height / 2;
443
            current_width = -1;
444
            current_height = 0;
445 446
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
                (s->c_superblock_width * 4 - s->fragment_width / 2);
447 448 449 450 451 452 453
            hilbert = hilbert_walk_c;

            /* the first operation for this variable is to advance by 1 */
            current_fragment = s->v_fragment_start - 1;

        }

454
        if (current_width >= right_edge - 1) {
455
            /* reset width and move to next superblock row */
456
            current_width = -1;
457 458 459 460 461 462 463 464 465
            current_height += 4;

            /* fragment is now at the start of a new superblock row */
            current_fragment += superblock_row_inc;
        }

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {
            current_fragment += hilbert[j];
466
            current_width += travel_width[j];
467 468 469
            current_height += travel_height[j];

            /* check if the fragment is in bounds */
470
            if ((current_width < right_edge) &&
471 472
                (current_height < bottom_edge)) {
                s->superblock_fragments[mapping_index] = current_fragment;
473 474 475
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n", 
                    s->superblock_fragments[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
476 477
            } else {
                s->superblock_fragments[mapping_index] = -1;
478 479 480
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n", 
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
481 482 483 484 485 486 487 488 489 490
            }

            mapping_index++;
        }
    }

    /* initialize the superblock <-> macroblock mapping; iterate through
     * all of the Y plane superblocks to build this mapping */
    right_edge = s->macroblock_width;
    bottom_edge = s->macroblock_height;
491
    current_width = -1;
492
    current_height = 0;
493 494
    superblock_row_inc = s->macroblock_width -
        (s->y_superblock_width * 2 - s->macroblock_width);;
495 496 497 498 499
    hilbert = hilbert_walk_mb;
    mapping_index = 0;
    current_macroblock = -1;
    for (i = 0; i < s->u_superblock_start; i++) {

500
        if (current_width >= right_edge - 1) {
501
            /* reset width and move to next superblock row */
502
            current_width = -1;
503 504 505 506 507 508 509 510 511
            current_height += 2;

            /* macroblock is now at the start of a new superblock row */
            current_macroblock += superblock_row_inc;
        }

        /* iterate through each potential macroblock in the superblock */
        for (j = 0; j < 4; j++) {
            current_macroblock += hilbert_walk_mb[j];
512
            current_width += travel_width_mb[j];
513 514 515
            current_height += travel_height_mb[j];

            /* check if the macroblock is in bounds */
516
            if ((current_width < right_edge) &&
517 518
                (current_height < bottom_edge)) {
                s->superblock_macroblocks[mapping_index] = current_macroblock;
519 520 521
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
                    s->superblock_macroblocks[mapping_index], i, j,
                    current_width, right_edge, current_height, bottom_edge);
522 523
            } else {
                s->superblock_macroblocks[mapping_index] = -1;
524 525 526
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
                    i, j,
                    current_width, right_edge, current_height, bottom_edge);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
            }

            mapping_index++;
        }
    }

    /* initialize the macroblock <-> fragment mapping */
    current_fragment = 0;
    current_macroblock = 0;
    mapping_index = 0;
    for (i = 0; i < s->fragment_height; i += 2) {

        for (j = 0; j < s->fragment_width; j += 2) {

            debug_init("    macroblock %d contains fragments: ", current_macroblock);
            s->all_fragments[current_fragment].macroblock = current_macroblock;
            s->macroblock_fragments[mapping_index++] = current_fragment;
            debug_init("%d ", current_fragment);

            if (j + 1 < s->fragment_width) {
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
                debug_init("%d ", current_fragment + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if (i + 1 < s->fragment_height) {
                s->all_fragments[current_fragment + s->fragment_width].macroblock = 
                    current_macroblock;
                s->macroblock_fragments[mapping_index++] = 
                    current_fragment + s->fragment_width;
                debug_init("%d ", current_fragment + s->fragment_width);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = 
                    current_macroblock;
                s->macroblock_fragments[mapping_index++] = 
                    current_fragment + s->fragment_width + 1;
                debug_init("%d ", current_fragment + s->fragment_width + 1);
            } else
                s->macroblock_fragments[mapping_index++] = -1;

            /* C planes */
            c_fragment = s->u_fragment_start + 
                (i * s->fragment_width / 4) + (j / 2);
574
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
575 576 577 578 579
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            c_fragment = s->v_fragment_start + 
                (i * s->fragment_width / 4) + (j / 2);
580
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
581 582 583 584 585 586 587 588 589 590 591 592 593 594
            s->macroblock_fragments[mapping_index++] = c_fragment;
            debug_init("%d ", c_fragment);

            debug_init("\n");

            if (j + 2 <= s->fragment_width)
                current_fragment += 2;
            else 
                current_fragment++;
            current_macroblock++;
        }

        current_fragment += s->fragment_width;
    }
595 596

    return 0;  /* successful path out */
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
}

/*
 * This function unpacks a single token (which should be in the range 0..31)
 * and returns a zero run (number of zero coefficients in current DCT matrix
 * before next non-zero coefficient), the next DCT coefficient, and the
 * number of consecutive, non-EOB'd DCT blocks to EOB.
 */
static void unpack_token(GetBitContext *gb, int token, int *zero_run,
                         DCTELEM *coeff, int *eob_run) 
{
    int sign;

    *zero_run = 0;
    *eob_run = 0;
    *coeff = 0;

    debug_token("    vp3 token %d: ", token);
    switch (token) {

    case 0:
        debug_token("DCT_EOB_TOKEN, EOB next block\n");
        *eob_run = 1;
        break;

    case 1:
        debug_token("DCT_EOB_PAIR_TOKEN, EOB next 2 blocks\n");
        *eob_run = 2;
        break;

    case 2:
        debug_token("DCT_EOB_TRIPLE_TOKEN, EOB next 3 blocks\n");
        *eob_run = 3;
        break;

    case 3:
        debug_token("DCT_REPEAT_RUN_TOKEN, ");
        *eob_run = get_bits(gb, 2) + 4;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 4:
        debug_token("DCT_REPEAT_RUN2_TOKEN, ");
        *eob_run = get_bits(gb, 3) + 8;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 5:
        debug_token("DCT_REPEAT_RUN3_TOKEN, ");
        *eob_run = get_bits(gb, 4) + 16;
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 6:
        debug_token("DCT_REPEAT_RUN4_TOKEN, ");
        *eob_run = get_bits(gb, 12);
        debug_token("EOB the next %d blocks\n", *eob_run);
        break;

    case 7:
        debug_token("DCT_SHORT_ZRL_TOKEN, ");
        /* note that this token actually indicates that (3 extra bits) + 1 0s
         * should be output; this case specifies a run of (3 EBs) 0s and a
         * coefficient of 0. */
        *zero_run = get_bits(gb, 3);
        *coeff = 0;
        debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
        break;

    case 8:
        debug_token("DCT_ZRL_TOKEN, ");
        /* note that this token actually indicates that (6 extra bits) + 1 0s
         * should be output; this case specifies a run of (6 EBs) 0s and a
         * coefficient of 0. */
        *zero_run = get_bits(gb, 6);
        *coeff = 0;
        debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
        break;

    case 9:
        debug_token("ONE_TOKEN, output 1\n");
        *coeff = 1;
        break;

    case 10:
        debug_token("MINUS_ONE_TOKEN, output -1\n");
        *coeff = -1;
        break;

    case 11:
        debug_token("TWO_TOKEN, output 2\n");
        *coeff = 2;
        break;

    case 12:
        debug_token("MINUS_TWO_TOKEN, output -2\n");
        *coeff = -2;
        break;

    case 13:
    case 14:
    case 15:
    case 16:
        debug_token("LOW_VAL_TOKENS, ");
        if (get_bits(gb, 1))
            *coeff = -(3 + (token - 13));
        else
            *coeff = 3 + (token - 13);
        debug_token("output %d\n", *coeff);
        break;

    case 17:
        debug_token("DCT_VAL_CATEGORY3, ");
        sign = get_bits(gb, 1);
        *coeff = 7 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 18:
        debug_token("DCT_VAL_CATEGORY4, ");
        sign = get_bits(gb, 1);
        *coeff = 9 + get_bits(gb, 2);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 19:
        debug_token("DCT_VAL_CATEGORY5, ");
        sign = get_bits(gb, 1);
        *coeff = 13 + get_bits(gb, 3);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 20:
        debug_token("DCT_VAL_CATEGORY6, ");
        sign = get_bits(gb, 1);
        *coeff = 21 + get_bits(gb, 4);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 21:
        debug_token("DCT_VAL_CATEGORY7, ");
        sign = get_bits(gb, 1);
        *coeff = 37 + get_bits(gb, 5);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 22:
        debug_token("DCT_VAL_CATEGORY8, ");
        sign = get_bits(gb, 1);
        *coeff = 69 + get_bits(gb, 9);
        if (sign)
            *coeff = -(*coeff);
        debug_token("output %d\n", *coeff);
        break;

    case 23:
    case 24:
    case 25:
    case 26:
    case 27:
        debug_token("DCT_RUN_CATEGORY1, ");
        *zero_run = token - 22;
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 28:
        debug_token("DCT_RUN_CATEGORY1B, ");
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        *zero_run = 6 + get_bits(gb, 2);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 29:
        debug_token("DCT_RUN_CATEGORY1C, ");
        if (get_bits(gb, 1))
            *coeff = -1;
        else
            *coeff = 1;
        *zero_run = 10 + get_bits(gb, 3);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 30:
        debug_token("DCT_RUN_CATEGORY2, ");
        sign = get_bits(gb, 1);
        *coeff = 2 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        *zero_run = 1;
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    case 31:
        debug_token("DCT_RUN_CATEGORY2, ");
        sign = get_bits(gb, 1);
        *coeff = 2 + get_bits(gb, 1);
        if (sign)
            *coeff = -(*coeff);
        *zero_run = 2 + get_bits(gb, 1);
        debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
        break;

    default:
817
        av_log(NULL, AV_LOG_ERROR, "  vp3: help! Got a bad token: %d > 31\n", token);
818 819 820 821 822 823 824 825 826 827 828
        break;

  }
}

/*
 * This function wipes out all of the fragment data.
 */
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
{
    int i;
829
    static const DCTELEM zero_block[64];
830 831 832 833

    /* zero out all of the fragment information */
    s->coded_fragment_list_index = 0;
    for (i = 0; i < s->fragment_count; i++) {
834
        s->all_fragments[i].coeffs = zero_block;
835
        s->all_fragments[i].coeff_count = 0;
M
Michael Niedermayer 已提交
836
        s->all_fragments[i].last_coeff = -1;
837 838
s->all_fragments[i].motion_x = 0xbeef;
s->all_fragments[i].motion_y = 0xbeef;
839 840 841 842 843 844 845 846 847 848
    }
}

/*
 * This function sets of the dequantization tables used for a particular
 * frame.
 */
static void init_dequantizer(Vp3DecodeContext *s)
{

849
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
850
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
851 852 853 854 855 856 857 858 859 860 861 862
    int i, j;

    debug_vp3("  vp3: initializing dequantization tables\n");

    /* 
     * Scale dequantizers:
     *
     *   quantizer * sf
     *   --------------
     *        100
     *
     * where sf = dc_scale_factor for DC quantizer
863
     *         or ac_scale_factor for AC quantizer
864 865 866
     *
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
     */
867
#define SCALER 4
868 869

    /* scale DC quantizers */
870
    s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
871 872 873 874
    if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_y_dequant[0] *= SCALER;

875
    s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
876 877 878 879
    if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
        s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
    s->intra_c_dequant[0] *= SCALER;

880
    s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
881 882 883 884 885 886 887 888
    if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
        s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
    s->inter_dequant[0] *= SCALER;

    /* scale AC quantizers, zigzag at the same time in preparation for
     * the dequantization phase */
    for (i = 1; i < 64; i++) {

889
        j = i;
890

891
        s->intra_y_dequant[j] = s->coded_intra_y_dequant[i] * ac_scale_factor / 100;
892 893 894 895
        if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_y_dequant[j] *= SCALER;

896
        s->intra_c_dequant[j] = s->coded_intra_c_dequant[i] * ac_scale_factor / 100;
897 898 899 900
        if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
            s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
        s->intra_c_dequant[j] *= SCALER;

901
        s->inter_dequant[j] = s->coded_inter_dequant[i] * ac_scale_factor / 100;
902 903 904 905
        if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
            s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
        s->inter_dequant[j] *= SCALER;
    }
M
Michael Niedermayer 已提交
906 907
    
    memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

    /* print debug information as requested */
    debug_dequantizers("intra Y dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("intra C dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");

    debug_dequantizers("interframe dequantizers:\n");
    for (i = 0; i < 8; i++) {
      for (j = i * 8; j < i * 8 + 8; j++) {
        debug_dequantizers(" %4d,", s->inter_dequant[j]);
      }
      debug_dequantizers("\n");
    }
    debug_dequantizers("\n");
}

/*
 * This function is used to fetch runs of 1s or 0s from the bitstream for
 * use in determining which superblocks are fully and partially coded.
 *
 *  Codeword                RunLength
 *  0                       1
 *  10x                     2-3
 *  110x                    4-5
 *  1110xx                  6-9
 *  11110xxx                10-17
 *  111110xxxx              18-33
 *  111111xxxxxxxxxxxx      34-4129
 */
static int get_superblock_run_length(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return 1;

    else if (get_bits(gb, 1) == 0)
        return (2 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (4 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (6 + get_bits(gb, 2));

    else if (get_bits(gb, 1) == 0)
        return (10 + get_bits(gb, 3));

    else if (get_bits(gb, 1) == 0)
        return (18 + get_bits(gb, 4));

    else
        return (34 + get_bits(gb, 12));

}

/*
 * This function is used to fetch runs of 1s or 0s from the bitstream for
 * use in determining which particular fragments are coded.
 *
 * Codeword                RunLength
 * 0x                      1-2
 * 10x                     3-4
 * 110x                    5-6
 * 1110xx                  7-10
 * 11110xx                 11-14
 * 11111xxxx               15-30
 */
static int get_fragment_run_length(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return (1 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (3 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (5 + get_bits(gb, 1));

    else if (get_bits(gb, 1) == 0)
        return (7 + get_bits(gb, 2));

    else if (get_bits(gb, 1) == 0)
        return (11 + get_bits(gb, 2));

    else
        return (15 + get_bits(gb, 4));

}

/*
 * This function decodes a VLC from the bitstream and returns a number
 * that ranges from 0..7. The number indicates which of the 8 coding
 * modes to use.
 *
 *  VLC       Number
 *  0            0
 *  10           1
 *  110          2
 *  1110         3
 *  11110        4
 *  111110       5
 *  1111110      6
 *  1111111      7
 *
 */
static int get_mode_code(GetBitContext *gb)
{

    if (get_bits(gb, 1) == 0)
        return 0;

    else if (get_bits(gb, 1) == 0)
        return 1;

    else if (get_bits(gb, 1) == 0)
        return 2;

    else if (get_bits(gb, 1) == 0)
        return 3;

    else if (get_bits(gb, 1) == 0)
        return 4;

    else if (get_bits(gb, 1) == 0)
        return 5;

    else if (get_bits(gb, 1) == 0)
        return 6;

    else
        return 7;

}

/*
 * This function extracts a motion vector from the bitstream using a VLC
 * scheme. 3 bits are fetched from the bitstream and 1 of 8 actions is
 * taken depending on the value on those 3 bits:
 *
 *  0: return 0
 *  1: return 1
 *  2: return -1
 *  3: if (next bit is 1) return -2, else return 2
 *  4: if (next bit is 1) return -3, else return 3
 *  5: return 4 + (next 2 bits), next bit is sign
 *  6: return 8 + (next 3 bits), next bit is sign
 *  7: return 16 + (next 4 bits), next bit is sign
 */
static int get_motion_vector_vlc(GetBitContext *gb)
{
    int bits;

    bits = get_bits(gb, 3);

    switch(bits) {

    case 0:
        bits = 0;
        break;

    case 1:
        bits = 1;
        break;

    case 2:
        bits = -1;
        break;

    case 3:
        if (get_bits(gb, 1) == 0)
            bits = 2;
        else
            bits = -2;
        break;

    case 4:
        if (get_bits(gb, 1) == 0)
            bits = 3;
        else
            bits = -3;
        break;

    case 5:
        bits = 4 + get_bits(gb, 2);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    case 6:
        bits = 8 + get_bits(gb, 3);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    case 7:
        bits = 16 + get_bits(gb, 4);
        if (get_bits(gb, 1) == 1)
            bits = -bits;
        break;

    }

    return bits;
}

/*
 * This function fetches a 5-bit number from the stream followed by
 * a sign and calls it a motion vector.
 */
static int get_motion_vector_fixed(GetBitContext *gb)
{

    int bits;

    bits = get_bits(gb, 5);

    if (get_bits(gb, 1) == 1)
        bits = -bits;

    return bits;
}

/*
 * This function unpacks all of the superblock/macroblock/fragment coding 
 * information from the bitstream.
 */
1149
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
1150 1151 1152 1153 1154 1155
{
    int bit = 0;
    int current_superblock = 0;
    int current_run = 0;
    int decode_fully_flags = 0;
    int decode_partial_blocks = 0;
1156
    int first_c_fragment_seen;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

    int i, j;
    int current_fragment;

    debug_vp3("  vp3: unpacking superblock coding\n");

    if (s->keyframe) {

        debug_vp3("    keyframe-- all superblocks are fully coded\n");
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);

    } else {

        /* unpack the list of partially-coded superblocks */
        bit = get_bits(gb, 1);
        /* toggle the bit because as soon as the first run length is 
         * fetched the bit will be toggled again */
        bit ^= 1;
        while (current_superblock < s->superblock_count) {
            if (current_run == 0) {
                bit ^= 1;
                current_run = get_superblock_run_length(gb);
                debug_block_coding("      setting superblocks %d..%d to %s\n",
                    current_superblock,
                    current_superblock + current_run - 1,
                    (bit) ? "partially coded" : "not coded");

                /* if any of the superblocks are not partially coded, flag
                 * a boolean to decode the list of fully-coded superblocks */
1186
                if (bit == 0) {
1187
                    decode_fully_flags = 1;
1188
                } else {
1189

1190 1191 1192 1193
                    /* make a note of the fact that there are partially coded
                     * superblocks */
                    decode_partial_blocks = 1;
                }
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            }
            s->superblock_coding[current_superblock++] = 
                (bit) ? SB_PARTIALLY_CODED : SB_NOT_CODED;
            current_run--;
        }

        /* unpack the list of fully coded superblocks if any of the blocks were
         * not marked as partially coded in the previous step */
        if (decode_fully_flags) {

            current_superblock = 0;
            current_run = 0;
            bit = get_bits(gb, 1);
            /* toggle the bit because as soon as the first run length is 
             * fetched the bit will be toggled again */
            bit ^= 1;
            while (current_superblock < s->superblock_count) {

                /* skip any superblocks already marked as partially coded */
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {

                    if (current_run == 0) {
                        bit ^= 1;
                        current_run = get_superblock_run_length(gb);
                    }

                    debug_block_coding("      setting superblock %d to %s\n",
                        current_superblock,
                        (bit) ? "fully coded" : "not coded");
                    s->superblock_coding[current_superblock] = 
                        (bit) ? SB_FULLY_CODED : SB_NOT_CODED;
                    current_run--;
                }
                current_superblock++;
            }
        }

        /* if there were partial blocks, initialize bitstream for
         * unpacking fragment codings */
        if (decode_partial_blocks) {

            current_run = 0;
            bit = get_bits(gb, 1);
            /* toggle the bit because as soon as the first run length is 
             * fetched the bit will be toggled again */
            bit ^= 1;
        }
    }

    /* figure out which fragments are coded; iterate through each
     * superblock (all planes) */
    s->coded_fragment_list_index = 0;
1246 1247
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
1248
    first_c_fragment_seen = 0;
1249
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
1250 1251 1252 1253 1254 1255 1256
    for (i = 0; i < s->superblock_count; i++) {

        /* iterate through all 16 fragments in a superblock */
        for (j = 0; j < 16; j++) {

            /* if the fragment is in bounds, check its coding status */
            current_fragment = s->superblock_fragments[i * 16 + j];
1257
            if (current_fragment >= s->fragment_count) {
1258
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
1259 1260 1261
                    current_fragment, s->fragment_count);
                return 1;
            }
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
            if (current_fragment != -1) {
                if (s->superblock_coding[i] == SB_NOT_CODED) {

                    /* copy all the fragments from the prior frame */
                    s->all_fragments[current_fragment].coding_method = 
                        MODE_COPY;

                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {

                    /* fragment may or may not be coded; this is the case
                     * that cares about the fragment coding runs */
                    if (current_run == 0) {
                        bit ^= 1;
                        current_run = get_fragment_run_length(gb);
                    }

                    if (bit) {
1279 1280
                        /* default mode; actual mode will be decoded in 
                         * the next phase */
1281 1282
                        s->all_fragments[current_fragment].coding_method = 
                            MODE_INTER_NO_MV;
1283
                        s->all_fragments[current_fragment].coeffs= s->coeffs + 64*s->coded_fragment_list_index;
1284
                        s->coded_fragment_list[s->coded_fragment_list_index] = 
1285
                            current_fragment;
1286
                        if ((current_fragment >= s->u_fragment_start) &&
1287 1288
                            (s->last_coded_y_fragment == -1) &&
                            (!first_c_fragment_seen)) {
1289 1290
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
1291
                            first_c_fragment_seen = 1;
1292 1293
                        }
                        s->coded_fragment_list_index++;
1294
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
                            i, current_fragment);
                    } else {
                        /* not coded; copy this fragment from the prior frame */
                        s->all_fragments[current_fragment].coding_method =
                            MODE_COPY;
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
                            i, current_fragment);
                    }

                    current_run--;

                } else {

                    /* fragments are fully coded in this superblock; actual
                     * coding will be determined in next step */
                    s->all_fragments[current_fragment].coding_method = 
                        MODE_INTER_NO_MV;
1313
                    s->all_fragments[current_fragment].coeffs= s->coeffs + 64*s->coded_fragment_list_index;
1314
                    s->coded_fragment_list[s->coded_fragment_list_index] = 
1315
                        current_fragment;
1316
                    if ((current_fragment >= s->u_fragment_start) &&
1317 1318
                        (s->last_coded_y_fragment == -1) &&
                        (!first_c_fragment_seen)) {
1319 1320
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
1321
                        first_c_fragment_seen = 1;
1322 1323
                    }
                    s->coded_fragment_list_index++;
1324
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
1325 1326 1327 1328 1329 1330
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
                        i, current_fragment);
                }
            }
        }
    }
1331

1332 1333
    if (!first_c_fragment_seen)
        /* only Y fragments coded in this frame */
1334
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
1335
    else 
1336
        /* end the list of coded C fragments */
1337
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
1338

1339 1340 1341 1342 1343 1344
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
        s->coded_fragment_list_index,
        s->first_coded_y_fragment,
        s->last_coded_y_fragment,
        s->first_coded_c_fragment,
        s->last_coded_c_fragment);
1345 1346

    return 0;
1347 1348 1349 1350 1351 1352
}

/*
 * This function unpacks all the coding mode data for individual macroblocks
 * from the bitstream.
 */
1353
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
{
    int i, j, k;
    int scheme;
    int current_macroblock;
    int current_fragment;
    int coding_mode;

    debug_vp3("  vp3: unpacking encoding modes\n");

    if (s->keyframe) {
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");

        for (i = 0; i < s->fragment_count; i++)
            s->all_fragments[i].coding_method = MODE_INTRA;

    } else {

        /* fetch the mode coding scheme for this frame */
        scheme = get_bits(gb, 3);
        debug_modes("    using mode alphabet %d\n", scheme);

        /* is it a custom coding scheme? */
        if (scheme == 0) {
            debug_modes("    custom mode alphabet ahead:\n");
            for (i = 0; i < 8; i++)
1379
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        }

        for (i = 0; i < 8; i++)
            debug_modes("      mode[%d][%d] = %d\n", scheme, i, 
                ModeAlphabet[scheme][i]);

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1393
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1394
                    continue;
1395
                if (current_macroblock >= s->macroblock_count) {
1396
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1397 1398 1399
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1400 1401 1402 1403 1404 1405 1406

                /* mode 7 means get 3 bits for each coding mode */
                if (scheme == 7)
                    coding_mode = get_bits(gb, 3);
                else
                    coding_mode = ModeAlphabet[scheme][get_mode_code(gb)];

1407
                s->macroblock_coding[current_macroblock] = coding_mode;
1408 1409 1410
                for (k = 0; k < 6; k++) {
                    current_fragment = 
                        s->macroblock_fragments[current_macroblock * 6 + k];
1411 1412 1413
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1414
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1415 1416 1417
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
                    if (s->all_fragments[current_fragment].coding_method != 
                        MODE_COPY)
                        s->all_fragments[current_fragment].coding_method =
                            coding_mode;
                }

                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
            }
        }
    }
1429 1430

    return 0;
1431 1432
}

1433 1434 1435 1436
/*
 * This function unpacks all the motion vectors for the individual
 * macroblocks from the bitstream.
 */
1437
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
{
    int i, j, k;
    int coding_mode;
    int motion_x[6];
    int motion_y[6];
    int last_motion_x = 0;
    int last_motion_y = 0;
    int prior_last_motion_x = 0;
    int prior_last_motion_y = 0;
    int current_macroblock;
    int current_fragment;

    debug_vp3("  vp3: unpacking motion vectors\n");
    if (s->keyframe) {

        debug_vp3("    keyframe-- there are no motion vectors\n");

    } else {

        memset(motion_x, 0, 6 * sizeof(int));
        memset(motion_y, 0, 6 * sizeof(int));

        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
        coding_mode = get_bits(gb, 1);
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
            (coding_mode == 0) ? "VLC" : "fixed-length");

        /* iterate through all of the macroblocks that contain 1 or more
         * coded fragments */
        for (i = 0; i < s->u_superblock_start; i++) {

            for (j = 0; j < 4; j++) {
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
                if ((current_macroblock == -1) ||
1472
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1473
                    continue;
1474
                if (current_macroblock >= s->macroblock_count) {
1475
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1476 1477 1478
                        current_macroblock, s->macroblock_count);
                    return 1;
                }
1479 1480

                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1481
                if (current_fragment >= s->fragment_count) {
1482
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1483 1484 1485
                        current_fragment, s->fragment_count);
                    return 1;
                }
1486
                switch (s->macroblock_coding[current_macroblock]) {
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

                case MODE_INTER_PLUS_MV:
                case MODE_GOLDEN_MV:
                    /* all 6 fragments use the same motion vector */
                    if (coding_mode == 0) {
                        motion_x[0] = get_motion_vector_vlc(gb);
                        motion_y[0] = get_motion_vector_vlc(gb);
                    } else {
                        motion_x[0] = get_motion_vector_fixed(gb);
                        motion_y[0] = get_motion_vector_fixed(gb);
                    }
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1504
                    if (s->macroblock_coding[current_macroblock] ==
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
                        MODE_INTER_PLUS_MV) {
                        prior_last_motion_x = last_motion_x;
                        prior_last_motion_y = last_motion_y;
                        last_motion_x = motion_x[0];
                        last_motion_y = motion_y[0];
                    }
                    break;

                case MODE_INTER_FOURMV:
                    /* fetch 4 vectors from the bitstream, one for each
                     * Y fragment, then average for the C fragment vectors */
                    motion_x[4] = motion_y[4] = 0;
                    for (k = 0; k < 4; k++) {
                        if (coding_mode == 0) {
                            motion_x[k] = get_motion_vector_vlc(gb);
                            motion_y[k] = get_motion_vector_vlc(gb);
                        } else {
                            motion_x[k] = get_motion_vector_fixed(gb);
                            motion_y[k] = get_motion_vector_fixed(gb);
                        }
                        motion_x[4] += motion_x[k];
                        motion_y[4] += motion_y[k];
                    }

                    if (motion_x[4] >= 0) 
                        motion_x[4] = (motion_x[4] + 2) / 4;
                    else
                        motion_x[4] = (motion_x[4] - 2) / 4;
                    motion_x[5] = motion_x[4];

                    if (motion_y[4] >= 0) 
                        motion_y[4] = (motion_y[4] + 2) / 4;
                    else
                        motion_y[4] = (motion_y[4] - 2) / 4;
                    motion_y[5] = motion_y[4];

                    /* vector maintenance; vector[3] is treated as the
                     * last vector in this case */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[3];
                    last_motion_y = motion_y[3];
                    break;

                case MODE_INTER_LAST_MV:
                    /* all 6 fragments use the last motion vector */
                    motion_x[0] = last_motion_x;
                    motion_y[0] = last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* no vector maintenance (last vector remains the
                     * last vector) */
                    break;

                case MODE_INTER_PRIOR_LAST:
                    /* all 6 fragments use the motion vector prior to the
                     * last motion vector */
                    motion_x[0] = prior_last_motion_x;
                    motion_y[0] = prior_last_motion_y;
                    for (k = 1; k < 6; k++) {
                        motion_x[k] = motion_x[0];
                        motion_y[k] = motion_y[0];
                    }

                    /* vector maintenance */
                    prior_last_motion_x = last_motion_x;
                    prior_last_motion_y = last_motion_y;
                    last_motion_x = motion_x[0];
                    last_motion_y = motion_y[0];
                    break;
1578 1579 1580 1581 1582 1583 1584 1585

                default:
                    /* covers intra, inter without MV, golden without MV */
                    memset(motion_x, 0, 6 * sizeof(int));
                    memset(motion_y, 0, 6 * sizeof(int));

                    /* no vector maintenance */
                    break;
1586 1587 1588 1589 1590
                }

                /* assign the motion vectors to the correct fragments */
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
                    current_fragment,
1591
                    s->macroblock_coding[current_macroblock]);
1592 1593 1594
                for (k = 0; k < 6; k++) {
                    current_fragment = 
                        s->macroblock_fragments[current_macroblock * 6 + k];
1595 1596 1597
                    if (current_fragment == -1)
                        continue;
                    if (current_fragment >= s->fragment_count) {
1598
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1599 1600 1601
                            current_fragment, s->fragment_count);
                        return 1;
                    }
1602
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1603
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1604 1605
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
                        k, current_fragment, motion_x[k], motion_y[k]);
1606 1607 1608 1609
                }
            }
        }
    }
1610 1611

    return 0;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
}

/* 
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 * data. This function unpacks all the VLCs for either the Y plane or both
 * C planes, and is called for DC coefficients or different AC coefficient
 * levels (since different coefficient types require different VLC tables.
 *
 * This function returns a residual eob run. E.g, if a particular token gave
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 * left in the current fragment range, 3 would be returned so that it could
 * be passed into the next call to this same function.
 */
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
                        VLC *table, int coeff_index,
                        int first_fragment, int last_fragment,
                        int eob_run)
{
    int i;
    int token;
    int zero_run;
    DCTELEM coeff;
    Vp3Fragment *fragment;

1637
    if ((first_fragment >= s->fragment_count) ||
1638 1639
        (last_fragment >= s->fragment_count)) {

1640
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1641
            first_fragment, last_fragment);
1642
        return 0;
1643 1644
    }

1645
    for (i = first_fragment; i <= last_fragment; i++) {
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

        fragment = &s->all_fragments[s->coded_fragment_list[i]];
        if (fragment->coeff_count > coeff_index)
            continue;

        if (!eob_run) {
            /* decode a VLC into a token */
            token = get_vlc2(gb, table->table, 5, 3);
            debug_vlc(" token = %2d, ", token);
            /* use the token to get a zero run, a coefficient, and an eob run */
            unpack_token(gb, token, &zero_run, &coeff, &eob_run);
        }

        if (!eob_run) {
            fragment->coeff_count += zero_run;
            if (fragment->coeff_count < 64)
1662
                fragment->coeffs[dezigzag_index[fragment->coeff_count++]] = coeff;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            debug_vlc(" fragment %d coeff = %d\n",
                s->coded_fragment_list[i], fragment->coeffs[coeff_index]);
        } else {
            fragment->last_coeff = fragment->coeff_count;
            fragment->coeff_count = 64;
            debug_vlc(" fragment %d eob with %d coefficients\n", 
                s->coded_fragment_list[i], fragment->last_coeff);
            eob_run--;
        }
    }

    return eob_run;
}

/*
 * This function unpacks all of the DCT coefficient data from the
 * bitstream.
 */
1681
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
{
    int i;
    int dc_y_table;
    int dc_c_table;
    int ac_y_table;
    int ac_c_table;
    int residual_eob_run = 0;

    /* fetch the DC table indices */
    dc_y_table = get_bits(gb, 4);
    dc_c_table = get_bits(gb, 4);

    /* unpack the Y plane DC coefficients */
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
        dc_y_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, 
1698
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1699 1700 1701 1702 1703

    /* unpack the C plane DC coefficients */
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
        dc_c_table);
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1704
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1705

1706
    /* fetch the AC table indices */
1707 1708 1709
    ac_y_table = get_bits(gb, 4);
    ac_c_table = get_bits(gb, 4);

1710
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1711 1712 1713 1714 1715
    for (i = 1; i <= 5; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, 
1716
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1717 1718 1719 1720

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, 
1721
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1722 1723
    }

1724
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1725 1726 1727 1728 1729
    for (i = 6; i <= 14; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, 
1730
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1731 1732 1733 1734

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, 
1735
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1736 1737
    }

1738
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1739 1740 1741 1742 1743
    for (i = 15; i <= 27; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, 
1744
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1745 1746 1747 1748

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, 
1749
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1750 1751
    }

1752
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1753 1754 1755 1756 1757
    for (i = 28; i <= 63; i++) {

        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
            i, ac_y_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, 
1758
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1759 1760 1761 1762

        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
            i, ac_c_table);
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, 
1763
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1764
    }
1765 1766

    return 0;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
}

/*
 * This function reverses the DC prediction for each coded fragment in
 * the frame. Much of this function is adapted directly from the original 
 * VP3 source code.
 */
#define COMPATIBLE_FRAME(x) \
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
static inline int iabs (int x) { return ((x < 0) ? -x : x); }

static void reverse_dc_prediction(Vp3DecodeContext *s,
                                  int first_fragment,
                                  int fragment_width,
                                  int fragment_height) 
{

#define PUL 8
#define PU 4
#define PUR 2
#define PL 1

    int x, y;
    int i = first_fragment;

    /*
     * Fragment prediction groups:
     *
     * 32222222226
     * 10000000004
     * 10000000004
     * 10000000004
     * 10000000004
     *
     * Note: Groups 5 and 7 do not exist as it would mean that the 
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
     */
    int predictor_group;
    short predicted_dc;

    /* validity flags for the left, up-left, up, and up-right fragments */
    int fl, ful, fu, fur;

    /* DC values for the left, up-left, up, and up-right fragments */
    int vl, vul, vu, vur;

    /* indices for the left, up-left, up, and up-right fragments */
    int l, ul, u, ur;

    /* 
     * The 6 fields mean:
     *   0: up-left multiplier
     *   1: up multiplier
     *   2: up-right multiplier
     *   3: left multiplier
     *   4: mask
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
     */
    int predictor_transform[16][6] = {
        {  0,  0,  0,  0,   0,  0 },
        {  0,  0,  0,  1,   0,  0 },        // PL
        {  0,  0,  1,  0,   0,  0 },        // PUR
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PU
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
        {  1,  0,  0,  0,   0,  0 },        // PUL
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
    };

    /* This table shows which types of blocks can use other blocks for
     * prediction. For example, INTRA is the only mode in this table to
     * have a frame number of 0. That means INTRA blocks can only predict
     * from other INTRA blocks. There are 2 golden frame coding types; 
     * blocks encoding in these modes can only predict from other blocks
     * that were encoded with these 1 of these 2 modes. */
    unsigned char compatible_frame[8] = {
        1,    /* MODE_INTER_NO_MV */
        0,    /* MODE_INTRA */
        1,    /* MODE_INTER_PLUS_MV */
        1,    /* MODE_INTER_LAST_MV */
        1,    /* MODE_INTER_PRIOR_MV */
        2,    /* MODE_USING_GOLDEN */
        2,    /* MODE_GOLDEN_MV */
        1     /* MODE_INTER_FOUR_MV */
    };
    int current_frame_type;

    /* there is a last DC predictor for each of the 3 frame types */
    short last_dc[3];

    int transform = 0;

    debug_vp3("  vp3: reversing DC prediction\n");

    vul = vu = vur = vl = 0;
    last_dc[0] = last_dc[1] = last_dc[2] = 0;

    /* for each fragment row... */
    for (y = 0; y < fragment_height; y++) {

        /* for each fragment in a row... */
        for (x = 0; x < fragment_width; x++, i++) {

            /* reverse prediction if this block was coded */
            if (s->all_fragments[i].coding_method != MODE_COPY) {

                current_frame_type = 
                    compatible_frame[s->all_fragments[i].coding_method];
                predictor_group = (x == 0) + ((y == 0) << 1) +
                    ((x + 1 == fragment_width) << 2);
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
                    i, predictor_group, s->all_fragments[i].coeffs[0]);

                switch (predictor_group) {

                case 0:
                    /* main body of fragments; consider all 4 possible
                     * fragments for prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vul = s->all_fragments[ul].coeffs[0];
                    vu = s->all_fragments[u].coeffs[0];
                    vur = s->all_fragments[ur].coeffs[0];
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);

                    break;

                case 1:
                    /* left column of fragments, not including top corner;
                     * only consider up and up-right fragments */

                    /* calculate the indices of the predicting fragments */
                    u = i - fragment_width;
                    ur = i - fragment_width + 1;

                    /* fetch the DC values for the predicting fragments */
                    vu = s->all_fragments[u].coeffs[0];
                    vur = s->all_fragments[ur].coeffs[0];

                    /* figure out which fragments are valid */
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);

                    /* decide which predictor transform to use */
                    transform = (fu*PU) | (fur*PUR);

                    break;

                case 2:
                case 6:
                    /* top row of fragments, not including top-left frag;
                     * only consider the left fragment for prediction */

                    /* calculate the indices of the predicting fragments */
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL);

                    break;

                case 3:
                    /* top-left fragment */

                    /* nothing to predict from in this case */
                    transform = 0;

                    break;

                case 4:
                    /* right column of fragments, not including top corner;
                     * consider up-left, up, and left fragments for
                     * prediction */

                    /* calculate the indices of the predicting fragments */
                    ul = i - fragment_width - 1;
                    u = i - fragment_width;
                    l = i - 1;

                    /* fetch the DC values for the predicting fragments */
                    vul = s->all_fragments[ul].coeffs[0];
                    vu = s->all_fragments[u].coeffs[0];
                    vl = s->all_fragments[l].coeffs[0];

                    /* figure out which fragments are valid */
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);

                    /* decide which predictor transform to use */
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);

                    break;

                }

                debug_dc_pred("transform = %d, ", transform);

                if (transform == 0) {

                    /* if there were no fragments to predict from, use last
                     * DC saved */
                    s->all_fragments[i].coeffs[0] += last_dc[current_frame_type];
                    debug_dc_pred("from last DC (%d) = %d\n", 
                        current_frame_type, s->all_fragments[i].coeffs[0]);

                } else {

                    /* apply the appropriate predictor transform */
                    predicted_dc =
                        (predictor_transform[transform][0] * vul) +
                        (predictor_transform[transform][1] * vu) +
                        (predictor_transform[transform][2] * vur) +
                        (predictor_transform[transform][3] * vl);

                    /* if there is a shift value in the transform, add
                     * the sign bit before the shift */
                    if (predictor_transform[transform][5] != 0) {
                        predicted_dc += ((predicted_dc >> 15) & 
                            predictor_transform[transform][4]);
                        predicted_dc >>= predictor_transform[transform][5];
                    }

                    /* check for outranging on the [ul u l] and
                     * [ul u ur l] predictors */
                    if ((transform == 13) || (transform == 15)) {
                        if (iabs(predicted_dc - vu) > 128)
                            predicted_dc = vu;
                        else if (iabs(predicted_dc - vl) > 128)
                            predicted_dc = vl;
                        else if (iabs(predicted_dc - vul) > 128)
                            predicted_dc = vul;
                    }

                    /* at long last, apply the predictor */
                    s->all_fragments[i].coeffs[0] += predicted_dc;
                    debug_dc_pred("from pred DC = %d\n", 
                    s->all_fragments[i].coeffs[0]);
                }

                /* save the DC */
                last_dc[current_frame_type] = s->all_fragments[i].coeffs[0];
M
Michael Niedermayer 已提交
2039 2040
                if(s->all_fragments[i].coeffs[0] && s->all_fragments[i].last_coeff<0)
                    s->all_fragments[i].last_coeff= 0;
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
            }
        }
    }
}

/*
 * This function performs the final rendering of each fragment's data
 * onto the output frame.
 */
static void render_fragments(Vp3DecodeContext *s,
                             int first_fragment,
2052 2053
                             int width,
                             int height,
2054 2055
                             int plane /* 0 = Y, 1 = U, 2 = V */) 
{
2056
    int x, y, j;
2057 2058 2059
    int m, n;
    int i = first_fragment;
    int16_t *dequantizer;
2060
    DCTELEM __align16 output_samples[64];
2061 2062 2063 2064
    unsigned char *output_plane;
    unsigned char *last_plane;
    unsigned char *golden_plane;
    int stride;
2065
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
2066
    int upper_motion_limit, lower_motion_limit;
2067
    int motion_halfpel_index;
M
Michael Niedermayer 已提交
2068
    uint8_t *motion_source;
2069 2070 2071 2072 2073 2074 2075

    debug_vp3("  vp3: rendering final fragments for %s\n",
        (plane == 0) ? "Y plane" : (plane == 1) ? "U plane" : "V plane");

    /* set up plane-specific parameters */
    if (plane == 0) {
        output_plane = s->current_frame.data[0];
2076 2077
        last_plane = s->last_frame.data[0];
        golden_plane = s->golden_frame.data[0];
2078 2079
        stride = s->current_frame.linesize[0];
	if (!s->flipped_image) stride = -stride;
2080 2081
        upper_motion_limit = 7 * s->current_frame.linesize[0];
        lower_motion_limit = height * s->current_frame.linesize[0] + width - 8;
2082 2083
    } else if (plane == 1) {
        output_plane = s->current_frame.data[1];
2084 2085
        last_plane = s->last_frame.data[1];
        golden_plane = s->golden_frame.data[1];
2086 2087
        stride = s->current_frame.linesize[1];
	if (!s->flipped_image) stride = -stride;
2088 2089
        upper_motion_limit = 7 * s->current_frame.linesize[1];
        lower_motion_limit = height * s->current_frame.linesize[1] + width - 8;
2090 2091
    } else {
        output_plane = s->current_frame.data[2];
2092 2093
        last_plane = s->last_frame.data[2];
        golden_plane = s->golden_frame.data[2];
2094 2095
        stride = s->current_frame.linesize[2];
	if (!s->flipped_image) stride = -stride;
2096 2097
        upper_motion_limit = 7 * s->current_frame.linesize[2];
        lower_motion_limit = height * s->current_frame.linesize[2] + width - 8;
2098
    }
2099
    
M
Michael Niedermayer 已提交
2100
    if(ABS(stride) > 2048)
2101
        return; //various tables are fixed size
2102 2103

    /* for each fragment row... */
2104
    for (y = 0; y < height; y += 8) {
2105 2106

        /* for each fragment in a row... */
2107
        for (x = 0; x < width; x += 8, i++) {
2108

2109
            if ((i < 0) || (i >= s->fragment_count)) {
2110
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_fragments(): bad fragment number (%d)\n", i);
2111 2112 2113
                return;
            }

2114
            /* transform if this block was coded */
2115 2116
            if ((s->all_fragments[i].coding_method != MODE_COPY) &&
		!((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
2117

M
Michael Niedermayer 已提交
2118 2119 2120 2121 2122 2123 2124
                if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
                    (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
                    motion_source= golden_plane;
                else 
                    motion_source= last_plane;

                motion_source += s->all_fragments[i].first_pixel;
2125 2126 2127 2128 2129 2130
                motion_halfpel_index = 0;

                /* sort out the motion vector if this fragment is coded
                 * using a motion vector method */
                if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
                    (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
M
Michael Niedermayer 已提交
2131
                    int src_x, src_y;
2132 2133
                    motion_x = s->all_fragments[i].motion_x;
                    motion_y = s->all_fragments[i].motion_y;
M
Michael Niedermayer 已提交
2134 2135 2136 2137 2138
                    if(plane){
                        motion_x= (motion_x>>1) | (motion_x&1);
                        motion_y= (motion_y>>1) | (motion_y&1);
                    }

M
Michael Niedermayer 已提交
2139 2140
                    src_x= (motion_x>>1) + x;
                    src_y= (motion_y>>1) + y;
2141
if ((motion_x == 0xbeef) || (motion_y == 0xbeef))
2142
av_log(s->avctx, AV_LOG_ERROR, " help! got beefy vector! (%X, %X)\n", motion_x, motion_y);
2143

M
Michael Niedermayer 已提交
2144 2145
                    motion_halfpel_index = motion_x & 0x01;
                    motion_source += (motion_x >> 1);
2146 2147

//                    motion_y = -motion_y;
M
Michael Niedermayer 已提交
2148 2149
                    motion_halfpel_index |= (motion_y & 0x01) << 1;
                    motion_source += ((motion_y >> 1) * stride);
2150

M
Michael Niedermayer 已提交
2151 2152 2153
                    if(src_x<0 || src_y<0 || src_x + 9 >= width || src_y + 9 >= height){
                        uint8_t *temp= s->edge_emu_buffer;
                        if(stride<0) temp -= 9*stride;
2154
			else temp += 9*stride;
M
Michael Niedermayer 已提交
2155 2156 2157

                        ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, width, height);
                        motion_source= temp;
2158
                    }
2159
                }
2160
                
2161

2162 2163 2164
                /* first, take care of copying a block from either the
                 * previous or the golden frame */
                if (s->all_fragments[i].coding_method != MODE_INTRA) {
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
                    //Note, it is possible to implement all MC cases with put_no_rnd_pixels_l2 which would look more like the VP3 source but this would be slower as put_no_rnd_pixels_tab is better optimzed
                    if(motion_halfpel_index != 3){
                        s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
                            output_plane + s->all_fragments[i].first_pixel,
                            motion_source, stride, 8);
                    }else{
                        int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
                        s->dsp.put_no_rnd_pixels_l2[1](
                            output_plane + s->all_fragments[i].first_pixel,
                            motion_source - d, 
                            motion_source + stride + 1 + d, 
                            stride, 8);
                    }
M
Michael Niedermayer 已提交
2178 2179 2180 2181 2182 2183
                    dequantizer = s->inter_dequant;
                }else{
                    if (plane == 0)
                        dequantizer = s->intra_y_dequant;
                    else
                        dequantizer = s->intra_c_dequant;
2184 2185
                }

2186
                /* dequantize the DCT coefficients */
2187 2188 2189
                debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n", 
                    i, s->all_fragments[i].coding_method, 
                    s->all_fragments[i].coeffs[0], dequantizer[0]);
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
                if(s->avctx->idct_algo==FF_IDCT_VP3){
                    for (j = 0; j < 64; j++) {
                        s->all_fragments[i].coeffs[j] *= dequantizer[j];
                    }
                }else{
                    for (j = 0; j < 64; j++) {
                        s->all_fragments[i].coeffs[j]= (dequantizer[j] * s->all_fragments[i].coeffs[j] + 2) >> 2;
                    }
                }

2201
                /* invert DCT and place (or add) in final output */
2202
                
2203
                if (s->all_fragments[i].coding_method == MODE_INTRA) {
2204 2205 2206
                    if(s->avctx->idct_algo!=FF_IDCT_VP3)
                        s->all_fragments[i].coeffs[0] += 128<<3;
                    s->dsp.idct_put(
2207
                        output_plane + s->all_fragments[i].first_pixel,
2208 2209
                        stride,
                        s->all_fragments[i].coeffs);
2210
                } else {
2211
                    s->dsp.idct_add(
2212
                        output_plane + s->all_fragments[i].first_pixel,
2213 2214
                        stride,
                        s->all_fragments[i].coeffs);
2215
                }
2216
                memset(s->all_fragments[i].coeffs, 0, 64*sizeof(DCTELEM));
2217 2218 2219 2220

                debug_idct("block after idct_%s():\n",
                    (s->all_fragments[i].coding_method == MODE_INTRA)?
                    "put" : "add");
2221 2222
                for (m = 0; m < 8; m++) {
                    for (n = 0; n < 8; n++) {
2223 2224
                        debug_idct(" %3d", *(output_plane + 
                            s->all_fragments[i].first_pixel + (m * stride + n)));
2225 2226 2227 2228 2229 2230 2231
                    }
                    debug_idct("\n");
                }
                debug_idct("\n");

            } else {

2232 2233 2234 2235 2236
                /* copy directly from the previous frame */
                s->dsp.put_pixels_tab[1][0](
                    output_plane + s->all_fragments[i].first_pixel,
                    last_plane + s->all_fragments[i].first_pixel,
                    stride, 8);
2237 2238 2239 2240 2241 2242

            }
        }
    }

    emms_c();
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
}

#define SATURATE_U8(x) ((x) < 0) ? 0 : ((x) > 255) ? 255 : x

static void horizontal_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
    int i;
    int filter_value;

    for (i = 0; i < 8; i++, first_pixel += stride) {
        filter_value = 
            (first_pixel[-2] * 1) - 
            (first_pixel[-1] * 3) +
            (first_pixel[ 0] * 3) -
            (first_pixel[ 1] * 1);
        filter_value = bounding_values[(filter_value + 4) >> 3];
        first_pixel[-1] = SATURATE_U8(first_pixel[-1] + filter_value);
        first_pixel[ 0] = SATURATE_U8(first_pixel[ 0] - filter_value);
    }
}

static void vertical_filter(unsigned char *first_pixel, int stride,
    int *bounding_values)
{
    int i;
    int filter_value;

    for (i = 0; i < 8; i++, first_pixel++) {
        filter_value = 
            (first_pixel[-(2 * stride)] * 1) - 
            (first_pixel[-(1 * stride)] * 3) +
            (first_pixel[ (0         )] * 3) -
            (first_pixel[ (1 * stride)] * 1);
        filter_value = bounding_values[(filter_value + 4) >> 3];
        first_pixel[-(1 * stride)] = SATURATE_U8(first_pixel[-(1 * stride)] + filter_value);
        first_pixel[0] = SATURATE_U8(first_pixel[0] - filter_value);
    }
}

static void apply_loop_filter(Vp3DecodeContext *s)
{
    int x, y, plane;
    int width, height;
    int fragment;
    int stride;
    unsigned char *plane_data;
2290 2291 2292

    int bounding_values_array[256];
    int *bounding_values= bounding_values_array+127;
2293 2294 2295 2296 2297 2298 2299
    int filter_limit;

    /* find the right loop limit value */
    for (x = 63; x >= 0; x--) {
        if (vp31_ac_scale_factor[x] >= s->quality_index)
            break;
    }
2300
    filter_limit = vp31_filter_limit_values[s->quality_index];
2301 2302

    /* set up the bounding values */
2303
    memset(bounding_values_array, 0, 256 * sizeof(int));
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    for (x = 0; x < filter_limit; x++) {
        bounding_values[-x - filter_limit] = -filter_limit + x;
        bounding_values[-x] = -x;
        bounding_values[x] = x;
        bounding_values[x + filter_limit] = filter_limit - x;
    }

    for (plane = 0; plane < 3; plane++) {

        if (plane == 0) {
            /* Y plane parameters */
            fragment = 0;
            width = s->fragment_width;
            height = s->fragment_height;
            stride = s->current_frame.linesize[0];
            plane_data = s->current_frame.data[0];
        } else if (plane == 1) {
            /* U plane parameters */
            fragment = s->u_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[1];
            plane_data = s->current_frame.data[1];
        } else {
            /* V plane parameters */
            fragment = s->v_fragment_start;
            width = s->fragment_width / 2;
            height = s->fragment_height / 2;
            stride = s->current_frame.linesize[2];
            plane_data = s->current_frame.data[2];
        }

        for (y = 0; y < height; y++) {
2337

2338
            for (x = 0; x < width; x++) {
M
Michael Niedermayer 已提交
2339
START_TIMER
2340 2341 2342 2343
                /* do not perform left edge filter for left columns frags */
                if ((x > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    horizontal_filter(
2344
                        plane_data + s->all_fragments[fragment].first_pixel - 7*stride, 
2345 2346 2347 2348 2349 2350 2351
                        stride, bounding_values);
                }

                /* do not perform top edge filter for top row fragments */
                if ((y > 0) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
                    vertical_filter(
2352
                        plane_data + s->all_fragments[fragment].first_pixel + stride, 
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
                        stride, bounding_values);
                }

                /* do not perform right edge filter for right column
                 * fragments or if right fragment neighbor is also coded
                 * in this frame (it will be filtered in next iteration) */
                if ((x < width - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
                    horizontal_filter(
2363
                        plane_data + s->all_fragments[fragment + 1].first_pixel - 7*stride, 
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
                        stride, bounding_values);
                }

                /* do not perform bottom edge filter for bottom row
                 * fragments or if bottom fragment neighbor is also coded
                 * in this frame (it will be filtered in the next row) */
                if ((y < height - 1) &&
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
                    vertical_filter(
2374
                        plane_data + s->all_fragments[fragment + width].first_pixel + stride, 
2375 2376 2377 2378
                        stride, bounding_values);
                }

                fragment++;
M
Michael Niedermayer 已提交
2379
STOP_TIMER("loop filter")
2380 2381 2382
            }
        }
    }
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
}

/* 
 * This function computes the first pixel addresses for each fragment.
 * This function needs to be invoked after the first frame is allocated
 * so that it has access to the plane strides.
 */
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) 
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = s->fragment_height; y > 0; y--) {
        for (x = 0; x < s->fragment_width; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = s->fragment_height / 2; y > 0; y--) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/* FIXME: this should be merged with the above! */
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s) 
{

    int i, x, y;

    /* figure out the first pixel addresses for each of the fragments */
    /* Y plane */
    i = 0;
    for (y = 1; y <= s->fragment_height; y++) {
        for (x = 0; x < s->fragment_width; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[0] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* U plane */
    i = s->u_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[1] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }

    /* V plane */
    i = s->v_fragment_start;
    for (y = 1; y <= s->fragment_height / 2; y++) {
        for (x = 0; x < s->fragment_width / 2; x++) {
            s->all_fragments[i++].first_pixel = 
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
                    s->golden_frame.linesize[2] +
                    x * FRAGMENT_PIXELS;
            debug_init("  fragment %d, first pixel @ %d\n", 
                i-1, s->all_fragments[i-1].first_pixel);
        }
    }
}

2483 2484 2485 2486 2487 2488 2489
/*
 * This is the ffmpeg/libavcodec API init function.
 */
static int vp3_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    int i;
2490 2491 2492 2493
    int c_width;
    int c_height;
    int y_superblock_count;
    int c_superblock_count;
2494

A
Alex Beregszaszi 已提交
2495 2496 2497 2498 2499
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
	s->version = 0;
    else
	s->version = 1;

2500
    s->avctx = avctx;
2501
#if 0
2502 2503
    s->width = avctx->width;
    s->height = avctx->height;
2504 2505 2506 2507
#else
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
#endif
2508 2509
    avctx->pix_fmt = PIX_FMT_YUV420P;
    avctx->has_b_frames = 0;
2510 2511
    if(avctx->idct_algo==FF_IDCT_AUTO)
        avctx->idct_algo=FF_IDCT_VP3;
2512 2513 2514 2515 2516 2517
    dsputil_init(&s->dsp, avctx);

    /* initialize to an impossible value which will force a recalculation
     * in the first frame decode */
    s->quality_index = -1;

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
    s->y_superblock_width = (s->width + 31) / 32;
    s->y_superblock_height = (s->height + 31) / 32;
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;

    /* work out the dimensions for the C planes */
    c_width = s->width / 2;
    c_height = s->height / 2;
    s->c_superblock_width = (c_width + 31) / 32;
    s->c_superblock_height = (c_height + 31) / 32;
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;

    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
    s->u_superblock_start = y_superblock_count;
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
    s->superblock_coding = av_malloc(s->superblock_count);

    s->macroblock_width = (s->width + 15) / 16;
    s->macroblock_height = (s->height + 15) / 16;
    s->macroblock_count = s->macroblock_width * s->macroblock_height;

    s->fragment_width = s->width / FRAGMENT_PIXELS;
    s->fragment_height = s->height / FRAGMENT_PIXELS;

    /* fragment count covers all 8x8 blocks for all 3 planes */
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
    s->u_fragment_start = s->fragment_width * s->fragment_height;
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;

2546 2547 2548 2549 2550 2551 2552 2553
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
    debug_init("  C plane: %d x %d\n", c_width, c_height);
    debug_init("  Y superblocks: %d x %d, %d total\n",
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
    debug_init("  C superblocks: %d x %d, %d total\n",
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n", 
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
    debug_init("  macroblocks: %d x %d, %d total\n",
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
        s->fragment_count,
        s->fragment_width,
        s->fragment_height,
        s->u_fragment_start,
        s->v_fragment_start);

    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2564
    s->coeffs = av_malloc(s->fragment_count * sizeof(DCTELEM) * 64);
2565 2566 2567
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
    s->pixel_addresses_inited = 0;

2568 2569 2570 2571 2572
    if (!s->theora_tables)
    {
	for (i = 0; i < 64; i++)
	    s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
	for (i = 0; i < 64; i++)
2573
	    s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
2574 2575 2576 2577 2578 2579 2580 2581
	for (i = 0; i < 64; i++)
	    s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
	for (i = 0; i < 64; i++)
	    s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
	for (i = 0; i < 64; i++)
	    s->coded_inter_dequant[i] = vp31_inter_dequant[i];
    }

2582 2583 2584
    /* init VLC tables */
    for (i = 0; i < 16; i++) {

2585
        /* DC histograms */
2586 2587
        init_vlc(&s->dc_vlc[i], 5, 32,
            &dc_bias[i][0][1], 4, 2,
2588
            &dc_bias[i][0][0], 4, 2, 0);
2589

2590
        /* group 1 AC histograms */
2591 2592
        init_vlc(&s->ac_vlc_1[i], 5, 32,
            &ac_bias_0[i][0][1], 4, 2,
2593
            &ac_bias_0[i][0][0], 4, 2, 0);
2594

2595
        /* group 2 AC histograms */
2596 2597
        init_vlc(&s->ac_vlc_2[i], 5, 32,
            &ac_bias_1[i][0][1], 4, 2,
2598
            &ac_bias_1[i][0][0], 4, 2, 0);
2599

2600
        /* group 3 AC histograms */
2601 2602
        init_vlc(&s->ac_vlc_3[i], 5, 32,
            &ac_bias_2[i][0][1], 4, 2,
2603
            &ac_bias_2[i][0][0], 4, 2, 0);
2604

2605
        /* group 4 AC histograms */
2606 2607
        init_vlc(&s->ac_vlc_4[i], 5, 32,
            &ac_bias_3[i][0][1], 4, 2,
2608
            &ac_bias_3[i][0][0], 4, 2, 0);
2609 2610
    }

2611
    /* build quantization zigzag table */
2612
    for (i = 0; i < 64; i++)
M
Mike Melanson 已提交
2613
        zigzag_index[dezigzag_index[i]] = i;
2614 2615 2616 2617 2618

    /* work out the block mapping tables */
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2619
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2620 2621
    init_block_mapping(s);

2622 2623 2624 2625
    for (i = 0; i < 3; i++) {
        s->current_frame.data[i] = NULL;
        s->last_frame.data[i] = NULL;
        s->golden_frame.data[i] = NULL;
2626 2627
    }

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
    return 0;
}

/*
 * This is the ffmpeg/libavcodec API frame decode function.
 */
static int vp3_decode_frame(AVCodecContext *avctx, 
                            void *data, int *data_size,
                            uint8_t *buf, int buf_size)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    static int counter = 0;

    init_get_bits(&gb, buf, buf_size * 8);
2643 2644 2645
    
    if (s->theora && get_bits1(&gb))
    {
A
Alex Beregszaszi 已提交
2646
	int ptype = get_bits(&gb, 7);
2647

A
Alex Beregszaszi 已提交
2648 2649 2650
	skip_bits(&gb, 6*8); /* "theora" */
	
	switch(ptype)
2651
	{
A
Alex Beregszaszi 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660
	    case 1:
		theora_decode_comments(avctx, gb);
		break;
	    case 2:
		theora_decode_tables(avctx, gb);
    		init_dequantizer(s);
		break;
	    default:
		av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
2661
	}
A
Alex Beregszaszi 已提交
2662
	return buf_size;
2663
    }
A
Alex Beregszaszi 已提交
2664 2665 2666

    s->keyframe = !get_bits1(&gb);
    if (!s->theora)
2667
	skip_bits(&gb, 1);
A
Alex Beregszaszi 已提交
2668 2669
    s->last_quality_index = s->quality_index;
    s->quality_index = get_bits(&gb, 6);
M
Matthieu Castet 已提交
2670
    if (s->theora >= 0x030200)
A
Alex Beregszaszi 已提交
2671
        skip_bits1(&gb);
2672

2673 2674 2675
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
	av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
	    s->keyframe?"key":"", counter, s->quality_index);
2676 2677
    counter++;

2678 2679 2680
    if (s->quality_index != s->last_quality_index)
        init_dequantizer(s);

2681
    if (s->keyframe) {
A
Alex Beregszaszi 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	if (!s->theora)
	{
	    skip_bits(&gb, 4); /* width code */
	    skip_bits(&gb, 4); /* height code */
	    if (s->version)
	    {
		s->version = get_bits(&gb, 5);
		if (counter == 1)
		    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
	    }
	}
	if (s->version || s->theora)
	{
    	    if (get_bits1(&gb))
    	        av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
	    skip_bits(&gb, 2); /* reserved? */
	}

2700 2701 2702
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
2703
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2704 2705 2706 2707 2708 2709
        } else {
            if (s->golden_frame.data[0])
                avctx->release_buffer(avctx, &s->golden_frame);
            if (s->last_frame.data[0])
                avctx->release_buffer(avctx, &s->last_frame);
        }
2710

2711
        s->golden_frame.reference = 3;
2712
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2713
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2714 2715 2716 2717
            return -1;
        }

        /* golden frame is also the current frame */
2718
        memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
2719 2720 2721

        /* time to figure out pixel addresses? */
        if (!s->pixel_addresses_inited)
2722 2723 2724 2725 2726 2727
	{
	    if (!s->flipped_image)
        	vp3_calculate_pixel_addresses(s);
	    else
		theora_calculate_pixel_addresses(s);
	}
2728 2729
    } else {
        /* allocate a new current frame */
2730
        s->current_frame.reference = 3;
2731
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2732
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2733 2734 2735 2736
            return -1;
        }
    }

M
Michael Niedermayer 已提交
2737 2738 2739
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
    s->current_frame.qstride= 0;

M
Michael Niedermayer 已提交
2740
    {START_TIMER
2741
    init_frame(s, &gb);
M
Michael Niedermayer 已提交
2742
    STOP_TIMER("init_frame")}
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
#if KEYFRAMES_ONLY
if (!s->keyframe) {

    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
        s->current_frame.linesize[0] * s->height);
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
        s->current_frame.linesize[1] * s->height / 2);
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
        s->current_frame.linesize[2] * s->height / 2);

} else {
#endif

M
Michael Niedermayer 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
    {START_TIMER
    if (unpack_superblocks(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
        return -1;
    }
    STOP_TIMER("unpack_superblocks")}
    {START_TIMER
    if (unpack_modes(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
        return -1;
    }
    STOP_TIMER("unpack_modes")}
    {START_TIMER
    if (unpack_vectors(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
        return -1;
    }
    STOP_TIMER("unpack_vectors")}
    {START_TIMER
    if (unpack_dct_coeffs(s, &gb)){
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2778 2779
        return -1;
    }
M
Michael Niedermayer 已提交
2780 2781
    STOP_TIMER("unpack_dct_coeffs")}
    {START_TIMER
2782 2783

    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
M
Michael Niedermayer 已提交
2784 2785
    STOP_TIMER("reverse_dc_prediction")}
    {START_TIMER
2786
    render_fragments(s, 0, s->width, s->height, 0);
M
Michael Niedermayer 已提交
2787
    STOP_TIMER("render_fragments")}
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
        reverse_dc_prediction(s, s->u_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        reverse_dc_prediction(s, s->v_fragment_start,
            s->fragment_width / 2, s->fragment_height / 2);
        render_fragments(s, s->u_fragment_start, s->width / 2, s->height / 2, 1);
        render_fragments(s, s->v_fragment_start, s->width / 2, s->height / 2, 2);
    } else {
        memset(s->current_frame.data[1], 0x80, s->width * s->height / 4);
        memset(s->current_frame.data[2], 0x80, s->width * s->height / 4);
    }
2800

M
Michael Niedermayer 已提交
2801
    {START_TIMER
2802
    apply_loop_filter(s);
M
Michael Niedermayer 已提交
2803
    STOP_TIMER("apply_loop_filter")}
2804 2805 2806 2807
#if KEYFRAMES_ONLY
}
#endif

2808 2809 2810
    *data_size=sizeof(AVFrame);
    *(AVFrame*)data= s->current_frame;

2811 2812 2813 2814 2815
    /* release the last frame, if it is allocated and if it is not the
     * golden frame */
    if ((s->last_frame.data[0]) &&
        (s->last_frame.data[0] != s->golden_frame.data[0]))
        avctx->release_buffer(avctx, &s->last_frame);
2816

2817 2818
    /* shuffle frames (last = current) */
    memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
2819
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

    return buf_size;
}

/*
 * This is the ffmpeg/libavcodec API module cleanup function.
 */
static int vp3_decode_end(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;

    av_free(s->all_fragments);
2832
    av_free(s->coeffs);
2833 2834 2835 2836
    av_free(s->coded_fragment_list);
    av_free(s->superblock_fragments);
    av_free(s->superblock_macroblocks);
    av_free(s->macroblock_fragments);
2837
    av_free(s->macroblock_coding);
2838
    
2839
    /* release all frames */
2840
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2841 2842 2843 2844 2845
        avctx->release_buffer(avctx, &s->golden_frame);
    if (s->last_frame.data[0])
        avctx->release_buffer(avctx, &s->last_frame);
    /* no need to release the current_frame since it will always be pointing
     * to the same frame as either the golden or last frame */
2846 2847 2848 2849

    return 0;
}

2850 2851 2852
static int theora_decode_header(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
2853 2854 2855 2856 2857 2858 2859 2860
    int major, minor, micro;

    major = get_bits(&gb, 8); /* version major */
    minor = get_bits(&gb, 8); /* version minor */
    micro = get_bits(&gb, 8); /* version micro */
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %d.%d.%d\n",
	major, minor, micro);

2861 2862 2863
    /* FIXME: endianess? */
    s->theora = (major << 16) | (minor << 8) | micro;

M
Matthieu Castet 已提交
2864
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2865
    /* but previous versions have the image flipped relative to vp3 */
M
Matthieu Castet 已提交
2866
    if (s->theora < 0x030200)
2867 2868 2869 2870
    {
	s->flipped_image = 1;
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
    }
2871 2872 2873 2874

    s->width = get_bits(&gb, 16) << 4;
    s->height = get_bits(&gb, 16) << 4;
    
2875 2876 2877 2878 2879
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
        s->width= s->height= 0;
        return -1;
    }
    
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
    skip_bits(&gb, 24); /* frame width */
    skip_bits(&gb, 24); /* frame height */

    skip_bits(&gb, 8); /* offset x */
    skip_bits(&gb, 8); /* offset y */

    skip_bits(&gb, 32); /* fps numerator */
    skip_bits(&gb, 32); /* fps denumerator */
    skip_bits(&gb, 24); /* aspect numerator */
    skip_bits(&gb, 24); /* aspect denumerator */
    
M
Matthieu Castet 已提交
2891
    if (s->theora < 0x030200)
2892
	skip_bits(&gb, 5); /* keyframe frequency force */
2893 2894 2895 2896 2897
    skip_bits(&gb, 8); /* colorspace */
    skip_bits(&gb, 24); /* bitrate */

    skip_bits(&gb, 6); /* last(?) quality index */
    
M
Matthieu Castet 已提交
2898
    if (s->theora >= 0x030200)
2899 2900 2901 2902 2903
    {
	skip_bits(&gb, 5); /* keyframe frequency force */
	skip_bits(&gb, 5); /* spare bits */
    }
    
2904 2905 2906 2907 2908 2909 2910 2911
//    align_get_bits(&gb);
    
    avctx->width = s->width;
    avctx->height = s->height;

    return 0;
}

A
Alex Beregszaszi 已提交
2912 2913 2914 2915
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb)
{
    int nb_comments, i, tmp;

M
Michael Niedermayer 已提交
2916
    tmp = get_bits_long(&gb, 32);
A
Alex Beregszaszi 已提交
2917 2918 2919
    tmp = be2me_32(tmp);
    while(tmp--)
	    skip_bits(&gb, 8);
A
Alex Beregszaszi 已提交
2920

M
Michael Niedermayer 已提交
2921
    nb_comments = get_bits_long(&gb, 32);
A
Alex Beregszaszi 已提交
2922
    nb_comments = be2me_32(nb_comments);
A
Alex Beregszaszi 已提交
2923 2924
    for (i = 0; i < nb_comments; i++)
    {
M
Michael Niedermayer 已提交
2925
	tmp = get_bits_long(&gb, 32);
A
Alex Beregszaszi 已提交
2926 2927
	tmp = be2me_32(tmp);
	while(tmp--)
A
Alex Beregszaszi 已提交
2928 2929 2930 2931 2932 2933
	    skip_bits(&gb, 8);
    }
    
    return 0;
}

2934 2935 2936
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb)
{
    Vp3DecodeContext *s = avctx->priv_data;
M
Matthieu Castet 已提交
2937 2938 2939 2940 2941 2942 2943 2944
    int i, n;

    if (s->theora >= 0x030200) {
        n = get_bits(&gb, 3);
        /* loop filter table */
        for (i = 0; i < 64; i++)
            skip_bits(&gb, n);
    }
2945
    
M
Matthieu Castet 已提交
2946 2947 2948 2949
    if (s->theora >= 0x030200)
        n = get_bits(&gb, 4) + 1;
    else
        n = 16;
2950 2951
    /* quality threshold table */
    for (i = 0; i < 64; i++)
M
Matthieu Castet 已提交
2952
	s->coded_ac_scale_factor[i] = get_bits(&gb, n);
2953

M
Matthieu Castet 已提交
2954 2955 2956 2957
    if (s->theora >= 0x030200)
        n = get_bits(&gb, 4) + 1;
    else
        n = 16;
2958 2959
    /* dc scale factor table */
    for (i = 0; i < 64; i++)
M
Matthieu Castet 已提交
2960
	s->coded_dc_scale_factor[i] = get_bits(&gb, n);
2961

M
Matthieu Castet 已提交
2962 2963 2964 2965 2966 2967 2968 2969
    if (s->theora >= 0x030200)
        n = get_bits(&gb, 9) + 1;
    else
        n = 3;
    if (n != 3) {
        av_log(NULL,AV_LOG_ERROR, "unsupported nbms : %d\n", n);
        return -1;
    }
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
    /* y coeffs */
    for (i = 0; i < 64; i++)
	s->coded_intra_y_dequant[i] = get_bits(&gb, 8);

    /* uv coeffs */
    for (i = 0; i < 64; i++)
	s->coded_intra_c_dequant[i] = get_bits(&gb, 8);

    /* inter coeffs */
    for (i = 0; i < 64; i++)
	s->coded_inter_dequant[i] = get_bits(&gb, 8);
A
Alex Beregszaszi 已提交
2981 2982

    /* FIXME: read huffmann tree.. */
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
    
    s->theora_tables = 1;
    
    return 0;
}

static int theora_decode_init(AVCodecContext *avctx)
{
    Vp3DecodeContext *s = avctx->priv_data;
    GetBitContext gb;
    int ptype;
2994 2995
    uint8_t *p= avctx->extradata;
    int op_bytes, i;
2996 2997 2998 2999 3000 3001
    
    s->theora = 1;

    if (!avctx->extradata_size)
	return -1;

3002 3003 3004 3005 3006 3007
  for(i=0;i<3;i++) {
    op_bytes = *(p++)<<8;
    op_bytes += *(p++);

    init_get_bits(&gb, p, op_bytes);
    p += op_bytes;
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

    ptype = get_bits(&gb, 8);
    debug_vp3("Theora headerpacket type: %x\n", ptype);
	    
    if (!(ptype & 0x80))
	return -1;
	
    skip_bits(&gb, 6*8); /* "theora" */
	
    switch(ptype)
    {
        case 0x80:
            theora_decode_header(avctx, gb);
    	    break;
	case 0x81:
A
Alex Beregszaszi 已提交
3023
	    theora_decode_comments(avctx, gb);
3024 3025 3026 3027 3028
	    break;
	case 0x82:
	    theora_decode_tables(avctx, gb);
	    break;
    }
3029
  }
3030

M
Matthieu Castet 已提交
3031
    vp3_decode_init(avctx);
3032 3033 3034
    return 0;
}

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
AVCodec vp3_decoder = {
    "vp3",
    CODEC_TYPE_VIDEO,
    CODEC_ID_VP3,
    sizeof(Vp3DecodeContext),
    vp3_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
3047

3048
#ifndef CONFIG_LIBTHEORA
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
AVCodec theora_decoder = {
    "theora",
    CODEC_TYPE_VIDEO,
    CODEC_ID_THEORA,
    sizeof(Vp3DecodeContext),
    theora_decode_init,
    NULL,
    vp3_decode_end,
    vp3_decode_frame,
    0,
    NULL
};
3061
#endif