Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
aaf2d66d
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
aaf2d66d
编写于
8月 04, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:baidu/Paddle into gradient_check_utils
上级
133541ee
6512893b
变更
36
隐藏空白更改
内联
并排
Showing
36 changed file
with
693 addition
and
499 deletion
+693
-499
CMakeLists.txt
CMakeLists.txt
+2
-2
README.md
README.md
+1
-1
cmake/external/mkldnn.cmake
cmake/external/mkldnn.cmake
+21
-26
cmake/external/mklml.cmake
cmake/external/mklml.cmake
+11
-7
paddle/CMakeLists.txt
paddle/CMakeLists.txt
+0
-1
paddle/framework/CMakeLists.txt
paddle/framework/CMakeLists.txt
+10
-4
paddle/framework/backward.cc
paddle/framework/backward.cc
+14
-11
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+19
-18
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+71
-81
paddle/framework/grad_op_builder.h
paddle/framework/grad_op_builder.h
+1
-38
paddle/framework/grad_op_builder_test.cc
paddle/framework/grad_op_builder_test.cc
+124
-5
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+1
-2
paddle/framework/operator.h
paddle/framework/operator.h
+4
-0
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+61
-63
paddle/framework/tensor.h
paddle/framework/tensor.h
+6
-8
paddle/framework/tensor_impl.h
paddle/framework/tensor_impl.h
+0
-0
paddle/framework/tensor_py.h
paddle/framework/tensor_py.h
+5
-8
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+6
-8
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+11
-1
paddle/operators/mean_op.cu
paddle/operators/mean_op.cu
+1
-0
paddle/operators/mean_op.h
paddle/operators/mean_op.h
+17
-0
paddle/operators/net_op.cc
paddle/operators/net_op.cc
+3
-3
paddle/operators/net_op.h
paddle/operators/net_op.h
+11
-9
paddle/operators/net_op_design.md
paddle/operators/net_op_design.md
+0
-0
paddle/operators/net_op_test.cc
paddle/operators/net_op_test.cc
+10
-8
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+97
-121
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+9
-6
paddle/operators/recurrent_op_test.cc
paddle/operators/recurrent_op_test.cc
+25
-31
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+31
-18
paddle/operators/softmax_op.cu
paddle/operators/softmax_op.cu
+1
-0
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+47
-11
paddle/operators/type_alias.h
paddle/operators/type_alias.h
+5
-2
paddle/pybind/CMakeLists.txt
paddle/pybind/CMakeLists.txt
+1
-1
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+2
-2
paddle/scripts/travis/build_doc.sh
paddle/scripts/travis/build_doc.sh
+2
-2
python/paddle/v2/framework/tests/test_softmax_op.py
python/paddle/v2/framework/tests/test_softmax_op.py
+63
-1
未找到文件。
CMakeLists.txt
浏览文件 @
aaf2d66d
...
...
@@ -36,8 +36,8 @@ include(simd)
################################ Configurations #######################################
option
(
WITH_GPU
"Compile PaddlePaddle with NVIDIA GPU"
${
CUDA_FOUND
}
)
option
(
WITH_AVX
"Compile PaddlePaddle with AVX intrinsics"
${
AVX_FOUND
}
)
option
(
WITH_MKLDNN
"Compile PaddlePaddle with mkl-dnn support."
OFF
)
option
(
WITH_MKLML
"Compile PaddlePaddle with mklml package."
OFF
)
option
(
WITH_MKLDNN
"Compile PaddlePaddle with mkl-dnn support."
${
AVX_FOUND
}
)
option
(
WITH_MKLML
"Compile PaddlePaddle with mklml package."
${
AVX_FOUND
}
)
option
(
WITH_DSO
"Compile PaddlePaddle with dynamic linked CUDA"
ON
)
option
(
WITH_TESTING
"Compile PaddlePaddle with unit testing"
ON
)
option
(
WITH_SWIG_PY
"Compile PaddlePaddle with inference api"
ON
)
...
...
README.md
浏览文件 @
aaf2d66d
...
...
@@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and
-
[
Deep Learning 101
](
http://book.paddlepaddle.org/index.html
)
You might want to start from th
e th
is online interactive book that can run in Jupyter Notebook.
You might want to start from this online interactive book that can run in Jupyter Notebook.
-
[
Distributed Training
](
http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html
)
...
...
cmake/external/mkldnn.cmake
浏览文件 @
aaf2d66d
...
...
@@ -20,34 +20,30 @@ INCLUDE(ExternalProject)
SET
(
MKLDNN_PROJECT
"extern_mkldnn"
)
SET
(
MKLDNN_SOURCES_DIR
${
THIRD_PARTY_PATH
}
/mkldnn
)
SET
(
MKLDNN_INSTALL_ROOT
${
CMAKE_INSTALL_PREFIX
}
)
IF
(
NOT
"$ENV{HOME}"
STREQUAL
"/root"
)
SET
(
MKLDNN_INSTALL_ROOT
"$ENV{HOME}"
)
ENDIF
()
SET
(
MKLDNN_INSTALL_DIR
"
${
MKLDNN_INSTALL_ROOT
}
/opt/paddle/third_party/mkldnn"
)
SET
(
MKLDNN_INCLUDE_DIR
"
${
MKLDNN_INSTALL_DIR
}
/include"
CACHE PATH
"mkldnn include directory."
FORCE
)
SET
(
MKLDNN_INSTALL_DIR
${
THIRD_PARTY_PATH
}
/install/mkldnn
)
SET
(
MKLDNN_INC_DIR
"
${
MKLDNN_INSTALL_DIR
}
/include"
CACHE PATH
"mkldnn include directory."
FORCE
)
IF
(
WIN32
)
MESSAGE
(
WARNING
"It is not supported compiling with mkldnn in windows Paddle yet."
"Force WITH_MKLDNN=OFF"
)
SET
(
WITH_MKLDNN OFF
)
IF
(
WIN32 OR APPLE
)
MESSAGE
(
WARNING
"Windows or Mac is not supported with MKLDNN in Paddle yet."
"Force WITH_MKLDNN=OFF"
)
SET
(
WITH_MKLDNN OFF CACHE STRING
"Disable MKLDNN in Windows and MacOS"
FORCE
)
return
()
ELSE
(
WIN32
)
SET
(
MKLDNN_LIBRARY
"
${
MKLDNN_INSTALL_DIR
}
/lib/libmkldnn.so"
CACHE FILEPATH
"mkldnn library."
FORCE
)
MESSAGE
(
STATUS
"Set
${
MKLDNN_INSTALL_DIR
}
/lib to runtime path"
)
SET
(
CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE
)
#SET(CMAKE_MACOSX_RPATH 1) # hold for MacOS
SET
(
CMAKE_INSTALL_RPATH
"
${
CMAKE_INSTALL_RPATH
}
"
"
${
MKLDNN_INSTALL_DIR
}
/lib"
)
ENDIF
(
WIN32
)
ENDIF
()
SET
(
MKLDNN_LIB
"
${
MKLDNN_INSTALL_DIR
}
/lib/libmkldnn.so"
CACHE FILEPATH
"mkldnn library."
FORCE
)
MESSAGE
(
STATUS
"Set
${
MKLDNN_INSTALL_DIR
}
/lib to runtime path"
)
SET
(
CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE
)
SET
(
CMAKE_INSTALL_RPATH
"
${
CMAKE_INSTALL_RPATH
}
"
"
${
MKLDNN_INSTALL_DIR
}
/lib"
)
INCLUDE_DIRECTORIES
(
${
MKLDNN_INC
LUDE
_DIR
}
)
INCLUDE_DIRECTORIES
(
${
MKLDNN_INC_DIR
}
)
IF
(
${
CBLAS_PROVIDER
}
STREQUAL
"MKLML"
)
SET
(
MKLDNN_DEPENDS
${
MKLML_PROJECT
}
)
SET
(
MKLDNN_MKLROOT
${
MKLML_ROOT
}
)
SET
(
MKLDNN_IOMP_LIB
${
MKLML_IOMP_LIB
}
)
SET
(
MKLDNN_IOMP_DIR
${
MKLML_LIB_DIR
}
)
MESSAGE
(
STATUS
"Build MKLDNN with
${
MKLDNN_MKLROOT
}
"
)
ENDIF
()
ExternalProject_Add
(
...
...
@@ -57,16 +53,15 @@ ExternalProject_Add(
GIT_REPOSITORY
"https://github.com/01org/mkl-dnn.git"
GIT_TAG
"v0.9"
PREFIX
${
MKLDNN_SOURCES_DIR
}
CONFIGURE_COMMAND mkdir -p <SOURCE_DIR>/build
BUILD_COMMAND cd <SOURCE_DIR>/build
&& cmake .. -DCMAKE_INSTALL_PREFIX=
${
MKLDNN_INSTALL_DIR
}
-DMKLROOT=
${
MKLDNN_MKLROOT
}
&& $
(
MAKE
)
INSTALL_COMMAND cd <SOURCE_DIR>/build && $
(
MAKE
)
install
UPDATE_COMMAND
""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=
${
MKLDNN_INSTALL_DIR
}
CMAKE_ARGS -DMKLROOT=
${
MKLDNN_MKLROOT
}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=
${
MKLDNN_INSTALL_DIR
}
-DMKLROOT:PATH=
${
MKLDNN_MKLROOT
}
)
ADD_LIBRARY
(
mkldnn SHARED IMPORTED GLOBAL
)
SET_PROPERTY
(
TARGET mkldnn PROPERTY IMPORTED_LOCATION
${
MKLDNN_LIB
RARY
}
)
SET_PROPERTY
(
TARGET mkldnn PROPERTY IMPORTED_LOCATION
${
MKLDNN_LIB
}
)
ADD_DEPENDENCIES
(
mkldnn
${
MKLDNN_PROJECT
}
)
MESSAGE
(
STATUS
"Mkldnn library:
${
MKLDNN_LIB
RARY
}
"
)
MESSAGE
(
STATUS
"Mkldnn library:
${
MKLDNN_LIB
}
"
)
LIST
(
APPEND external_project_dependencies mkldnn
)
cmake/external/mklml.cmake
浏览文件 @
aaf2d66d
...
...
@@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML})
return
()
ENDIF
(
NOT
${
WITH_MKLML
}
)
IF
(
WIN32 OR APPLE
)
MESSAGE
(
WARNING
"Windows or Mac is not supported with MKLML in Paddle yet."
"Force WITH_MKLML=OFF"
)
SET
(
WITH_MKLML OFF CACHE STRING
"Disable MKLML package in Windows and MacOS"
FORCE
)
return
()
ENDIF
()
INCLUDE
(
ExternalProject
)
SET
(
MKLML_PROJECT
"extern_mklml"
)
SET
(
MKLML_VER
"mklml_lnx_2018.0.20170
425
"
)
SET
(
MKLML_VER
"mklml_lnx_2018.0.20170
720
"
)
SET
(
MKLML_URL
"https://github.com/01org/mkl-dnn/releases/download/v0.9/
${
MKLML_VER
}
.tgz"
)
SET
(
MKLML_SOURCE_DIR
"
${
THIRD_PARTY_PATH
}
/mklml"
)
SET
(
MKLML_DOWNLOAD_DIR
"
${
MKLML_SOURCE_DIR
}
/src/
${
MKLML_PROJECT
}
"
)
SET
(
MKLML_DST_DIR
"opt/paddle/third_party/mklml"
)
SET
(
MKLML_INSTALL_ROOT
"
${
CMAKE_INSTALL_PREFIX
}
"
)
IF
(
NOT
"$ENV{HOME}"
STREQUAL
"/root"
)
SET
(
MKLML_INSTALL_ROOT
"$ENV{HOME}"
)
ENDIF
()
SET
(
MKLML_DST_DIR
"mklml"
)
SET
(
MKLML_INSTALL_ROOT
"
${
THIRD_PARTY_PATH
}
/install"
)
SET
(
MKLML_INSTALL_DIR
${
MKLML_INSTALL_ROOT
}
/
${
MKLML_DST_DIR
}
)
SET
(
MKLML_ROOT
${
MKLML_INSTALL_DIR
}
/
${
MKLML_VER
}
)
SET
(
MKLML_INC_DIR
${
MKLML_ROOT
}
/include
)
...
...
paddle/CMakeLists.txt
浏览文件 @
aaf2d66d
...
...
@@ -15,7 +15,6 @@ if(Boost_FOUND)
add_subdirectory
(
platform
)
add_subdirectory
(
framework
)
add_subdirectory
(
operators
)
add_subdirectory
(
pybind
)
endif
()
if
(
WITH_C_API
)
...
...
paddle/framework/CMakeLists.txt
浏览文件 @
aaf2d66d
...
...
@@ -31,8 +31,14 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.
add_custom_target
(
framework_py_proto_init ALL COMMAND
${
CMAKE_COMMAND
}
-E touch __init__.py
)
add_dependencies
(
framework_py_proto framework_py_proto_init
)
cc_library
(
net SRCS net.cc DEPS op_registry
)
cc_test
(
net_op_test SRCS net_op_test.cc DEPS net
)
cc_library
(
backward SRCS backward.cc DEPS net
)
cc_library
(
backward SRCS backward.cc DEPS net_op
)
cc_test
(
backward_test SRCS backward_test.cc DEPS backward
)
cc_library
(
paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_op
)
paddle/framework/backward.cc
浏览文件 @
aaf2d66d
...
...
@@ -14,8 +14,8 @@
#include "paddle/framework/backward.h"
#include <list>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -32,7 +32,7 @@ static bool AllInSet(const std::vector<std::string>& names,
}
static
std
::
shared_ptr
<
OperatorBase
>
NOP
()
{
auto
net_op
=
std
::
make_shared
<
NetOp
>
();
auto
net_op
=
std
::
make_shared
<
operators
::
NetOp
>
();
net_op
->
type_
=
"@NOP@"
;
net_op
->
CompleteAddOp
();
return
net_op
;
...
...
@@ -42,9 +42,9 @@ static std::shared_ptr<OperatorBase> NOP() {
//
// no_grad_names the gradient variable names without gradient calculating.
//
// uniq_id is a unique index used inside recursively calling
BackwardRecursive.
//
use `uid = uniq_id++;` to get the unique index, and pass `uniq_id` through
// recursive calling.
// uniq_id is a unique index used inside recursively calling
//
BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//
pass `uniq_id` through
recursive calling.
//
// returns The backward operator. For simple situation, it is a simple
// operator. For complex situation, it is a NetOp.
...
...
@@ -64,8 +64,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
return
NOP
();
}
// All output gradients of forwarding operator do not need to calculate.
Then
// all input gradients cannot be computed at all, and we put them into
// All output gradients of forwarding operator do not need to calculate.
//
Then
all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
if
(
AllInSet
(
forwardOp
.
outputs_
,
OperatorBase
::
GRAD_VAR_SUFFIX
(),
no_grad_names
))
{
...
...
@@ -77,14 +77,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
}
// Returned gradient network
auto
net
=
std
::
make_shared
<
NetOp
>
();
auto
net
=
std
::
make_shared
<
operators
::
NetOp
>
();
if
(
forwardOp
.
IsNetOp
())
{
// Because forwardOp is a net op, it can static_cast.
auto
&
forwardNet
=
static_cast
<
const
NetOp
&>
(
forwardOp
);
auto
&
forwardNet
=
static_cast
<
const
operators
::
NetOp
&>
(
forwardOp
);
// Map from output gradient variable name to operator's indices in
backward
// net. That operator generates that variable.
// Map from output gradient variable name to operator's indices in
//
backward
net. That operator generates that variable.
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
size_t
>>
dup_output_ops
;
size_t
local_op_id
=
0
;
...
...
@@ -168,6 +168,9 @@ std::shared_ptr<OperatorBase> Backward(
std
::
unordered_set
<
std
::
string
>
no_grad_names
;
no_grad_names
.
reserve
(
no_grad_vars
.
size
());
no_grad_names
.
insert
(
OperatorBase
::
EMPTY_VAR_NAME
()
+
OperatorBase
::
GRAD_VAR_SUFFIX
());
for
(
auto
&
name
:
no_grad_vars
)
{
no_grad_names
.
insert
(
name
+
OperatorBase
::
GRAD_VAR_SUFFIX
());
}
...
...
paddle/framework/backward_test.cc
浏览文件 @
aaf2d66d
...
...
@@ -15,8 +15,9 @@
#include "paddle/framework/backward.h"
#include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -70,7 +71,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
}
};
class
FcOp
:
public
NetOp
{
class
FcOp
:
public
ops
::
NetOp
{
public:
void
Init
()
override
{
AddOp
(
OpRegistry
::
CreateOp
(
"mul"
,
{
Input
(
"X"
),
Input
(
"W"
)},
...
...
@@ -161,8 +162,8 @@ TEST(Backward, simple_op_grad) {
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
"X"
,
"b"
},
{
"Out"
},
{});
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
OpRegistry
::
CreateGradOp
(
*
fwd
);
ASSERT_EQ
(
1
UL
,
gop
->
inputs_
.
size
());
ASSERT_EQ
(
"Out"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
gop
->
inputs_
[
0
]);
ASSERT_EQ
(
4
UL
,
gop
->
inputs_
.
size
());
ASSERT_EQ
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
(),
gop
->
inputs_
[
0
]);
ASSERT_EQ
(
"rowwise_add_grad"
,
gop
->
type_
);
ASSERT_EQ
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
gop
->
outputs_
[
0
]);
ASSERT_EQ
(
"b"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
gop
->
outputs_
[
1
]);
...
...
@@ -182,7 +183,8 @@ TEST(Backward, simple_op_not_need_grad) {
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"X"
,
"b"
});
ASSERT_NE
(
no_input_gop
,
nullptr
);
ASSERT_TRUE
(
no_input_gop
->
IsNetOp
());
ASSERT_EQ
(
0UL
,
std
::
static_pointer_cast
<
f
::
NetOp
>
(
no_input_gop
)
->
ops_
.
size
());
ASSERT_EQ
(
0UL
,
std
::
static_pointer_cast
<
ops
::
NetOp
>
(
no_input_gop
)
->
ops_
.
size
());
}
TEST
(
Backward
,
net_fc_backward_normal
)
{
...
...
@@ -191,7 +193,7 @@ TEST(Backward, net_fc_backward_normal) {
ASSERT_NE
(
fwd
,
nullptr
);
std
::
shared_ptr
<
f
::
OperatorBase
>
gop
=
f
::
Backward
(
*
fwd
,
{});
ASSERT_TRUE
(
gop
->
IsNetOp
());
auto
net
=
static_cast
<
f
::
NetOp
*>
(
gop
.
get
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
gop
.
get
());
ASSERT_NO_THROW
(
net
->
DebugString
());
...
...
@@ -214,7 +216,7 @@ TEST(Backward, net_fc_backward_not_have_b) {
ASSERT_NE
(
fwd
,
nullptr
);
std
::
shared_ptr
<
f
::
OperatorBase
>
gop
=
f
::
Backward
(
*
fwd
,
{});
ASSERT_TRUE
(
gop
->
IsNetOp
());
auto
net
=
static_cast
<
f
::
NetOp
*>
(
gop
.
get
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
gop
.
get
());
ASSERT_NO_THROW
(
net
->
DebugString
());
...
...
@@ -228,7 +230,7 @@ TEST(Backward, net_fc_backward_not_have_b) {
}
TEST
(
Backward
,
net_input_of_network_not_need_grad
)
{
f
::
NetOp
net
;
ops
::
NetOp
net
;
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"X"
,
"W1"
,
"b1"
},
{
"mul_tmp_0"
,
"add_tmp_0"
,
"hidden0"
},
{}));
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"hidden0"
,
"W2"
,
"b2"
},
...
...
@@ -236,7 +238,7 @@ TEST(Backward, net_input_of_network_not_need_grad) {
net
.
CompleteAddOp
();
auto
bwd
=
Backward
(
net
,
{
"X"
});
// X@GRAD is not need.
ASSERT_TRUE
(
bwd
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
f
::
NetOp
*>
(
bwd
.
get
());
auto
bwd_net
=
static_cast
<
ops
::
NetOp
*>
(
bwd
.
get
());
std
::
unordered_set
<
std
::
string
>
all_output
=
std
::
unordered_set
<
std
::
string
>
(
bwd_net
->
outputs_
.
begin
(),
bwd_net
->
outputs_
.
end
());
...
...
@@ -253,7 +255,7 @@ TEST(Backward, net_input_of_network_not_need_grad) {
ASSERT_EQ
(
2UL
,
bwd_net
->
ops_
.
size
());
ASSERT_TRUE
(
bwd_net
->
ops_
[
1
]
->
IsNetOp
());
auto
first_fc_grad
=
static_cast
<
f
::
NetOp
*>
(
bwd_net
->
ops_
[
1
].
get
());
auto
first_fc_grad
=
static_cast
<
ops
::
NetOp
*>
(
bwd_net
->
ops_
[
1
].
get
());
ASSERT_EQ
(
3UL
,
first_fc_grad
->
ops_
.
size
());
ASSERT_EQ
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
(),
...
...
@@ -261,14 +263,14 @@ TEST(Backward, net_input_of_network_not_need_grad) {
}
TEST
(
Backward
,
net_shared_weight
)
{
f
::
NetOp
net
;
ops
::
NetOp
net
;
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"mul"
,
{
"X"
,
"W"
},
{
"Out"
},
{}));
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"mul"
,
{
"Out"
,
"W"
},
{
"FinalOut"
},
{}));
net
.
CompleteAddOp
();
auto
bwd
=
f
::
Backward
(
net
,
{});
ASSERT_TRUE
(
bwd
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
f
::
NetOp
*>
(
bwd
.
get
());
auto
bwd_net
=
static_cast
<
ops
::
NetOp
*>
(
bwd
.
get
());
ASSERT_EQ
(
3UL
,
bwd_net
->
ops_
.
size
());
ASSERT_EQ
(
"add"
,
bwd_net
->
ops_
[
2
]
->
type_
);
}
...
...
@@ -285,7 +287,7 @@ TEST(Backward, op_all_input_are_not_need) {
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
"X"
,
"b"
},
{
"Out"
},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"X"
,
"b"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
net
=
static_cast
<
f
::
NetOp
*>
(
backward
.
get
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
backward
.
get
());
ASSERT_TRUE
(
net
->
ops_
.
empty
());
}
...
...
@@ -293,7 +295,7 @@ TEST(Backward, op_all_output_are_not_need) {
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
"X"
,
"b"
},
{
"Out"
},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"Out"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
net
=
static_cast
<
f
::
NetOp
*>
(
backward
.
get
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
backward
.
get
());
ASSERT_TRUE
(
net
->
ops_
.
empty
());
}
...
...
@@ -301,7 +303,7 @@ TEST(Backward, op_part_of_output_are_not_need) {
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"many_output_op"
,
{
"X"
},
{
"Y"
,
"Z"
},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"Z"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
net
=
static_cast
<
f
::
NetOp
*>
(
backward
.
get
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
backward
.
get
());
ASSERT_EQ
(
net
->
ops_
.
size
(),
2UL
);
auto
&
fill_zero
=
*
net
->
ops_
[
0
];
...
...
@@ -341,7 +343,7 @@ TEST(Backward, op_part_of_input_are_not_need) {
}
TEST
(
Backward
,
linear_net_intermediate_variable_has_no_grad
)
{
f
::
NetOp
net
;
ops
::
NetOp
net
;
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"x1"
,
"w1"
,
"b1"
},
{
"mul_out1"
,
"add_out1"
,
"out1"
},
{}));
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"out1"
,
"w2"
,
"b2"
},
...
...
@@ -351,14 +353,13 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
net
.
CompleteAddOp
();
auto
backward
=
f
::
Backward
(
net
,
{
"mul_out2"
,
"tmp_out2"
,
"out2"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
f
::
NetOp
*>
(
backward
.
get
());
auto
bwd_net
=
static_cast
<
ops
::
NetOp
*>
(
backward
.
get
());
ASSERT_EQ
(
bwd_net
->
ops_
.
size
(),
3UL
);
auto
&
grad_fc
=
*
bwd_net
->
ops_
[
0
];
EXPECT_EQ
(
grad_fc
.
inputs_
.
size
(),
3UL
/* external input number */
+
1UL
/* external output number*/
+
1UL
/* number of gradient of external output*/
-
1UL
/*ignoreGradient varable number*/
+
2U
/* internal variable number*/
);
EXPECT_EQ
(
grad_fc
.
outputs_
.
size
(),
2UL
/* input number of mul*/
+
2UL
/* input number of rowwise_add */
...
...
paddle/framework/grad_op_builder.cc
浏览文件 @
aaf2d66d
...
...
@@ -8,107 +8,97 @@ You may obtain a copy of the License at
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHO
UT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
WITHO
pArgType::OUT WARRANTIES OR CONDITIONS OF ANY KOpArgType::IND, either
express or implied. See the License for the specific language governing
permissions and
limitations under the License. */
#include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
framework
{
OperatorBase
*
GradOpBuilder
::
Build
()
{
BuildOpInOutArgList
();
std
::
string
grad_op_type
=
OpRegistry
::
grad_ops
().
at
(
op_
.
type_
);
OperatorBase
*
grad_op
=
OpRegistry
::
op_creators
().
at
(
grad_op_type
)();
grad_op
->
type_
=
grad_op_type
;
CompleteGradOp
(
grad_op
);
return
grad_op
;
}
class
OpRegistry
;
using
VarIndexMap
=
std
::
unordered_map
<
std
::
string
,
int
>
;
OpInOutArg
*
GradOpBuilder
::
BuildArg
(
const
VarProto
&
var
,
const
VarIndexMap
&
var_map
,
const
std
::
vector
<
int
>&
format
,
InOutType
type
)
{
int
idx
=
var_map
.
at
(
var
.
name
());
int
begin_idx
=
format
.
empty
()
?
idx
:
format
.
at
(
idx
);
int
end_idx
=
format
.
empty
()
?
idx
+
1
:
format
.
at
(
idx
+
1
);
return
new
OpInOutArg
(
var
.
name
(),
type
,
!
var
.
ignore_gradient
(),
begin_idx
,
end_idx
);
enum
class
OpArgType
{
IN
,
OUT
};
static
std
::
vector
<
int
>*
GetOpFormat
(
OperatorBase
*
op
,
const
OpArgType
&
type
)
{
std
::
string
key
=
type
==
OpArgType
::
IN
?
"input_format"
:
"output_format"
;
return
op
->
attrs_
.
count
(
key
)
?
&
boost
::
get
<
std
::
vector
<
int
>>
(
op
->
attrs_
.
at
(
key
))
:
nullptr
;
}
void
GradOpBuilder
::
BuildOpInOutArgList
()
{
const
OpProto
&
op_proto
=
OpRegistry
::
protos
().
at
(
op_
.
type_
);
const
auto
&
var_map
=
*
(
OpRegistry
::
VarIndexMaps
().
at
(
op_
.
type_
));
const
std
::
vector
<
int
>&
in_format
=
op_
.
attrs_
.
count
(
"input_format"
)
?
op_
.
GetAttr
<
std
::
vector
<
int
>>
(
"input_format"
)
:
std
::
vector
<
int
>
();
const
std
::
vector
<
int
>&
out_format
=
op_
.
attrs_
.
count
(
"output_format"
)
?
op_
.
GetAttr
<
std
::
vector
<
int
>>
(
"output_format"
)
:
std
::
vector
<
int
>
();
for
(
const
auto
&
var
:
op_proto
.
inputs
())
{
arg_list_
.
emplace_back
(
std
::
shared_ptr
<
OpInOutArg
>
(
BuildArg
(
var
,
var_map
,
in_format
,
IN
)));
}
for
(
const
auto
&
var
:
op_proto
.
outputs
())
{
arg_list_
.
emplace_back
(
std
::
shared_ptr
<
OpInOutArg
>
(
BuildArg
(
var
,
var_map
,
out_format
,
OUT
)));
}
static
const
std
::
vector
<
int
>*
GetOpFormat
(
const
OperatorBase
*
op
,
const
OpArgType
&
type
)
{
std
::
string
key
=
type
==
OpArgType
::
IN
?
"input_format"
:
"output_format"
;
return
op
->
attrs_
.
count
(
key
)
?
&
boost
::
get
<
std
::
vector
<
int
>>
(
op
->
attrs_
.
at
(
key
))
:
nullptr
;
}
void
GradOpBuilder
::
AddArgIntoGradOp
(
const
OpInOutArg
*
arg
,
std
::
vector
<
std
::
string
>&
in_out
,
std
::
vector
<
int
>&
format
,
VarIndexMap
*
varmap
,
int
&
idx
,
bool
is_grad
)
const
{
std
::
string
var_name
=
arg
->
proto_name_
;
if
(
is_grad
)
{
var_name
+=
OperatorBase
::
GRAD_VAR_SUFFIX
();
}
(
*
varmap
)[
var_name
]
=
idx
++
;
size_t
pre_sz
=
in_out
.
size
();
auto
base_it
=
arg
->
type_
==
IN
?
op_
.
inputs_
.
begin
()
:
op_
.
outputs_
.
begin
();
std
::
copy
(
base_it
+
arg
->
begin_idx_
,
base_it
+
arg
->
end_idx_
,
std
::
back_inserter
(
in_out
));
if
(
is_grad
)
{
for
(
size_t
i
=
pre_sz
;
i
<
in_out
.
size
();
++
i
)
{
in_out
[
i
]
+=
OperatorBase
::
GRAD_VAR_SUFFIX
();
static
void
TransOpArg
(
const
OperatorBase
*
src_op
,
OperatorBase
*
dst_op
,
const
OpArgType
&
src_type
,
const
OpArgType
&
dst_type
,
int
&
idx
,
bool
is_grad
)
{
const
std
::
vector
<
std
::
string
>&
src_inout
=
src_type
==
OpArgType
::
IN
?
src_op
->
inputs_
:
src_op
->
outputs_
;
const
std
::
vector
<
int
>*
src_format
=
GetOpFormat
(
src_op
,
src_type
);
std
::
vector
<
std
::
string
>&
dst_inout
=
dst_type
==
OpArgType
::
IN
?
dst_op
->
inputs_
:
dst_op
->
outputs_
;
std
::
vector
<
int
>*
dst_format
=
GetOpFormat
(
dst_op
,
dst_type
);
const
OpProto
&
proto
=
OpRegistry
::
protos
().
at
(
src_op
->
type_
);
const
auto
&
src_arg_list
=
src_type
==
OpArgType
::
IN
?
proto
.
inputs
()
:
proto
.
outputs
();
for
(
const
auto
&
arg
:
src_arg_list
)
{
std
::
string
src_name
=
arg
.
name
();
std
::
string
dst_name
=
is_grad
?
src_name
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
:
src_name
;
(
*
dst_op
->
in_out_idxs_
)[
dst_name
]
=
idx
++
;
int
src_arg_idx
=
src_op
->
in_out_idxs_
->
at
(
src_name
);
int
src_begin
=
src_format
==
nullptr
?
src_arg_idx
:
src_format
->
at
(
src_arg_idx
);
int
src_end
=
src_format
==
nullptr
?
src_arg_idx
+
1
:
src_format
->
at
(
src_arg_idx
+
1
);
for
(
int
i
=
src_begin
;
i
<
src_end
;
++
i
)
{
std
::
string
s
=
is_grad
?
src_inout
[
i
]
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
:
arg
.
ignore_gradient
()
?
OperatorBase
::
EMPTY_VAR_NAME
()
:
src_inout
[
i
];
dst_inout
.
emplace_back
(
s
);
}
if
(
dst_format
!=
nullptr
)
{
dst_format
->
push_back
(
dst_inout
.
size
());
}
}
format
.
push_back
(
in_out
.
size
());
}
void
GradOpBuilder
::
CompleteGradOp
(
OperatorBase
*
grad_op
)
const
{
grad_op
->
attrs_
=
op_
.
attrs_
;
OperatorBase
*
BuildGradOp
(
const
OperatorBase
*
op
)
{
std
::
string
grad_op_type
=
OpRegistry
::
grad_ops
().
at
(
op
->
type_
);
OperatorBase
*
grad_op
=
OpRegistry
::
op_creators
().
at
(
grad_op_type
)();
grad_op
->
type_
=
grad_op_type
;
grad_op
->
attrs_
=
op
->
attrs_
;
grad_op
->
attrs_
.
erase
(
"input_format"
);
grad_op
->
attrs_
.
erase
(
"output_format"
);
VarIndexMap
*
grad_varmap
=
new
VarIndexMap
();
if
(
GetOpFormat
(
op
,
OpArgType
::
IN
)
!=
nullptr
)
{
grad_op
->
attrs_
[
"output_format"
]
=
std
::
vector
<
int
>
({
0
});
}
if
(
GetOpFormat
(
op
,
OpArgType
::
IN
)
!=
nullptr
||
GetOpFormat
(
op
,
OpArgType
::
OUT
)
!=
nullptr
)
{
grad_op
->
attrs_
[
"input_format"
]
=
std
::
vector
<
int
>
({
0
});
}
grad_op
->
in_out_idxs_
.
reset
(
new
VarIndexMap
());
int
in_idx
=
0
;
int
out_idx
=
0
;
std
::
vector
<
int
>
in_format
({
0
});
std
::
vector
<
int
>
out_format
({
0
});
for
(
const
auto
&
arg
:
arg_list_
)
{
// op_'s inputs_ and outputs_
if
(
arg
->
needed_in_grad_
)
{
AddArgIntoGradOp
(
arg
.
get
(),
grad_op
->
inputs_
,
in_format
,
grad_varmap
,
in_idx
,
false
);
}
if
(
arg
->
type_
==
IN
)
{
// gradients of op_'s inputs_
AddArgIntoGradOp
(
arg
.
get
(),
grad_op
->
outputs_
,
out_format
,
grad_varmap
,
out_idx
,
true
);
}
else
{
// gradients of op_'s outputs_
AddArgIntoGradOp
(
arg
.
get
(),
grad_op
->
inputs_
,
in_format
,
grad_varmap
,
in_idx
,
true
);
}
}
grad_op
->
attrs_
[
"input_format"
]
=
in_format
;
grad_op
->
attrs_
[
"output_format"
]
=
out_format
;
grad_op
->
in_out_idxs_
.
reset
(
grad_varmap
);
TransOpArg
(
op
,
grad_op
,
OpArgType
::
IN
,
OpArgType
::
IN
,
in_idx
,
false
);
// I
TransOpArg
(
op
,
grad_op
,
OpArgType
::
OUT
,
OpArgType
::
IN
,
in_idx
,
false
);
// G
TransOpArg
(
op
,
grad_op
,
OpArgType
::
OUT
,
OpArgType
::
IN
,
in_idx
,
true
);
// OG
TransOpArg
(
op
,
grad_op
,
OpArgType
::
IN
,
OpArgType
::
OUT
,
out_idx
,
true
);
// IG
return
grad_op
;
}
}
// namespace framework
...
...
paddle/framework/grad_op_builder.h
浏览文件 @
aaf2d66d
#pragma once
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/operator.h"
namespace
paddle
{
namespace
framework
{
class
OpRegistry
;
enum
InOutType
{
IN
,
OUT
};
struct
OpInOutArg
{
OpInOutArg
(
const
std
::
string
&
proto_name
,
const
InOutType
&
type
,
bool
needed_in_grad
,
size_t
begin_idx
,
size_t
end_idx
)
:
proto_name_
(
proto_name
),
type_
(
type
),
needed_in_grad_
(
needed_in_grad
),
begin_idx_
(
begin_idx
),
end_idx_
(
end_idx
)
{}
std
::
string
proto_name_
;
InOutType
type_
;
bool
needed_in_grad_
;
size_t
begin_idx_
;
size_t
end_idx_
;
};
class
GradOpBuilder
{
using
VarIndexMap
=
std
::
unordered_map
<
std
::
string
,
int
>
;
public:
GradOpBuilder
(
const
OperatorBase
&
op
)
:
op_
(
op
)
{}
OperatorBase
*
Build
();
private:
OpInOutArg
*
BuildArg
(
const
VarProto
&
var
,
const
VarIndexMap
&
var_map
,
const
std
::
vector
<
int
>&
format
,
InOutType
type
);
void
BuildOpInOutArgList
();
void
AddArgIntoGradOp
(
const
OpInOutArg
*
arg
,
std
::
vector
<
std
::
string
>&
in_out
,
std
::
vector
<
int
>&
format
,
VarIndexMap
*
varmap
,
int
&
idx
,
bool
is_grad
)
const
;
void
CompleteGradOp
(
OperatorBase
*
grad_op
)
const
;
const
OperatorBase
&
op_
;
std
::
vector
<
std
::
shared_ptr
<
OpInOutArg
>>
arg_list_
;
};
OperatorBase
*
BuildGradOp
(
const
OperatorBase
*
op
);
}
// namespace framework
}
// namespace paddle
paddle/framework/grad_op_builder_test.cc
浏览文件 @
aaf2d66d
...
...
@@ -8,10 +8,49 @@ USE_OP(add_two);
namespace
paddle
{
namespace
framework
{
class
NOP
:
public
OperatorBase
{
public:
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
MutiInOutOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
MutiInOutOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"In1"
,
"a single input"
);
AddInput
(
"In2_mult"
,
"a multiple input"
).
SetMultiple
();
AddInput
(
"In3"
,
"another single input"
);
AddOutput
(
"Out1"
,
"a single output"
);
AddOutput
(
"Out2_mult"
,
"a multiple output"
).
SetMultiple
();
AddComment
(
"test op with multiple inputs and outputs"
);
}
};
class
IOIgnoredOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
IOIgnoredOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"In1"
,
"a single input"
);
AddInput
(
"In2_mult"
,
"a multiple input"
).
SetMultiple
().
IgnoreGradient
();
AddInput
(
"In3_mult"
,
"another multiple input"
).
SetMultiple
();
AddOutput
(
"Out1_mult"
,
"a multiple output"
).
SetMultiple
();
AddOutput
(
"Out2"
,
"a single output"
).
IgnoreGradient
();
AddComment
(
"op with inputs and outputs ignored in gradient calculating"
);
}
};
}
// namespace framework
}
// namespace paddle
namespace
f
=
paddle
::
framework
;
TEST
(
GradOpBuilder
,
AddTwo
)
{
std
::
shared_ptr
<
OperatorBase
>
add_op
(
OpRegistry
::
CreateOp
(
"add_two"
,
{
"x"
,
"y"
},
{
"out"
},
{}));
std
::
shared_ptr
<
OperatorBase
>
grad_add_op
=
OpRegistry
::
CreateGradOp
(
*
add_op
);
std
::
shared_ptr
<
f
::
OperatorBase
>
add_op
(
f
::
OpRegistry
::
CreateOp
(
"add_two"
,
{
"x"
,
"y"
},
{
"out"
},
{}));
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_add_op
=
f
::
OpRegistry
::
CreateGradOp
(
*
add_op
);
EXPECT_EQ
(
static_cast
<
int
>
(
grad_add_op
->
inputs_
.
size
()),
4
);
EXPECT_EQ
(
static_cast
<
int
>
(
grad_add_op
->
outputs_
.
size
()),
2
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"X"
),
"x"
);
...
...
@@ -22,5 +61,85 @@ TEST(GradOpBuilder, AddTwo) {
EXPECT_EQ
(
grad_add_op
->
Output
(
"Y@GRAD"
),
"y@GRAD"
);
}
}
// namespace framework
}
// namespace paddle
\ No newline at end of file
REGISTER_OP
(
mult_io
,
f
::
NOP
,
f
::
MutiInOutOpMaker
);
REGISTER_GRADIENT_OP
(
mult_io
,
mult_io_grad
,
f
::
NOP
);
REGISTER_OP
(
io_ignored
,
f
::
NOP
,
f
::
IOIgnoredOpMaker
);
REGISTER_GRADIENT_OP
(
io_ignored
,
io_ignored_grad
,
f
::
NOP
);
TEST
(
GradOpBuilder
,
MutiInOut
)
{
f
::
AttributeMap
attrs
{{
"input_format"
,
std
::
vector
<
int
>
{
0
,
1
,
4
,
5
}},
{
"output_format"
,
std
::
vector
<
int
>
{
0
,
1
,
3
}}};
std
::
shared_ptr
<
f
::
OperatorBase
>
test_op
(
f
::
OpRegistry
::
CreateOp
(
"mult_io"
,
{
"in1"
,
"in2_1"
,
"in2_2"
,
"in2_3"
,
"in3"
},
{
"out1"
,
"out2_1"
,
"out2_2"
},
attrs
));
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_test_op
=
f
::
OpRegistry
::
CreateGradOp
(
*
test_op
);
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
5UL
+
3UL
+
3UL
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In2_mult"
),
std
::
vector
<
std
::
string
>
({
"in2_1"
,
"in2_2"
,
"in2_3"
}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"In3"
),
"in3"
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out1"
),
"out1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out2_mult"
),
std
::
vector
<
std
::
string
>
({
"out2_1"
,
"out2_2"
}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"out1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out2_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
(
{
"out2_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"out2_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
5UL
);
EXPECT_EQ
(
grad_test_op
->
Output
(
"In1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"in1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In2_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
({
"in2_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"in2_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"in2_3"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
EXPECT_EQ
(
grad_test_op
->
Output
(
"In3"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"in3"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
}
TEST
(
GradOpBuilder
,
IOIgnoredInGradient
)
{
f
::
AttributeMap
attrs
{{
"input_format"
,
std
::
vector
<
int
>
{
0
,
1
,
3
,
5
}},
{
"output_format"
,
std
::
vector
<
int
>
{
0
,
2
,
3
}}};
std
::
shared_ptr
<
f
::
OperatorBase
>
test_op
(
f
::
OpRegistry
::
CreateOp
(
"io_ignored"
,
{
"in1"
,
"in2_1"
,
"in2_2"
,
"in3_1"
,
"in3_2"
},
{
"out1_1"
,
"out1_2"
,
"out2"
},
attrs
));
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_test_op
=
f
::
OpRegistry
::
CreateGradOp
(
*
test_op
);
// 'In2' and 'Out2' are ignored in gradient calculating
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
5UL
+
3UL
+
3UL
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In2_mult"
),
std
::
vector
<
std
::
string
>
({
f
::
OperatorBase
::
EMPTY_VAR_NAME
(),
f
::
OperatorBase
::
EMPTY_VAR_NAME
()}));
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In3_mult"
),
std
::
vector
<
std
::
string
>
({
"in3_1"
,
"in3_2"
}));
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out1_mult"
),
std
::
vector
<
std
::
string
>
({
"out1_1"
,
"out1_2"
}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out2"
),
f
::
OperatorBase
::
EMPTY_VAR_NAME
());
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out1_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
(
{
"out1_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"out1_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"out2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
5UL
);
EXPECT_EQ
(
grad_test_op
->
Output
(
"In1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"in1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In2_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
({
"in2_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"in2_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In3_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
({
"in3_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"in3_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
}
paddle/framework/op_registry.h
浏览文件 @
aaf2d66d
...
...
@@ -306,8 +306,7 @@ class OpRegistry {
static
std
::
shared_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
)
{
PADDLE_ENFORCE
(
!
op
.
IsNetOp
(),
"Use framework::Backward to get backward ops"
);
GradOpBuilder
builder
(
op
);
std
::
shared_ptr
<
OperatorBase
>
grad_op
(
builder
.
Build
());
std
::
shared_ptr
<
OperatorBase
>
grad_op
(
BuildGradOp
(
&
op
));
grad_op
->
Init
();
return
grad_op
;
}
...
...
paddle/framework/operator.h
浏览文件 @
aaf2d66d
...
...
@@ -55,6 +55,10 @@ class OperatorBase {
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
static
std
::
string
GRAD_VAR_SUFFIX
()
{
return
"@GRAD"
;
}
static
std
::
string
GRAD_VAR_NAME
(
const
std
::
string
&
name
)
{
return
name
+
GRAD_VAR_SUFFIX
();
}
/// Variables with this suffix are supposed to be filled up with zeros.
static
std
::
string
ZERO_VAR_SUFFIX
()
{
return
"@ZERO"
;
}
...
...
paddle/
pybind
/pybind.cc
→
paddle/
framework
/pybind.cc
浏览文件 @
aaf2d66d
...
...
@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
...
...
@@ -17,19 +17,19 @@ limitations under the License. */
#include <vector>
#include "paddle/framework/backward.h"
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace
py
=
pybind11
;
namespace
pd
=
paddle
::
framework
;
USE_OP
(
add_two
);
USE_OP
(
onehot_cross_entropy
);
...
...
@@ -41,17 +41,18 @@ USE_OP(sigmoid);
USE_OP
(
softmax
);
USE_OP
(
rowwise_add
);
USE_OP_WITHOUT_KERNEL
(
recurrent_op
);
namespace
paddle
{
namespace
framework
{
template
<
typename
ClassType
>
void
ExposeOperator
(
ClassType
&
m
)
{
void
ExposeOperator
(
ClassType
&
m
)
{
m
.
def
(
"infer_shape"
,
&
ClassType
::
type
::
InferShape
)
.
def
(
"run"
,
&
ClassType
::
type
::
Run
)
.
def
(
"type"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
string
{
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
string
{
return
op
.
type_
;
})
.
def
(
"outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
vector
<
std
::
string
>
{
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
vector
<
std
::
string
>
{
return
op
.
outputs_
;
})
.
def
(
"__str__"
,
&
ClassType
::
type
::
DebugString
);
...
...
@@ -73,88 +74,81 @@ bool IsCompileGPU() {
PYBIND11_PLUGIN
(
core
)
{
py
::
module
m
(
"core"
,
"C++ core of PaddlePaddle"
);
py
::
class_
<
pd
::
Tensor
>
(
m
,
"Tensor"
,
py
::
buffer_protocol
())
.
def_buffer
([](
pd
::
Tensor
&
self
)
->
py
::
buffer_info
{
return
paddle
::
pybind
::
CastToPyBuffer
(
self
);
})
py
::
class_
<
Tensor
>
(
m
,
"Tensor"
,
py
::
buffer_protocol
())
.
def_buffer
(
[](
Tensor
&
self
)
->
py
::
buffer_info
{
return
CastToPyBuffer
(
self
);
})
.
def
(
"get_dims"
,
[](
const
pd
::
Tensor
&
self
)
{
return
pd
::
vectorize
(
self
.
dims
());
})
[](
const
Tensor
&
self
)
{
return
vectorize
(
self
.
dims
());
})
.
def
(
"set_dims"
,
[](
pd
::
Tensor
&
self
,
const
std
::
vector
<
int
>&
dim
)
{
self
.
Resize
(
pd
::
make_ddim
(
dim
));
[](
Tensor
&
self
,
const
std
::
vector
<
int
>
&
dim
)
{
self
.
Resize
(
make_ddim
(
dim
));
})
.
def
(
"alloc_float"
,
[](
pd
::
Tensor
&
self
,
paddle
::
platform
::
GPUPlace
&
place
)
{
[](
Tensor
&
self
,
paddle
::
platform
::
GPUPlace
&
place
)
{
self
.
mutable_data
<
float
>
(
place
);
})
.
def
(
"alloc_float"
,
[](
pd
::
Tensor
&
self
,
paddle
::
platform
::
CPUPlace
&
place
)
{
[](
Tensor
&
self
,
paddle
::
platform
::
CPUPlace
&
place
)
{
self
.
mutable_data
<
float
>
(
place
);
})
.
def
(
"alloc_int"
,
[](
pd
::
Tensor
&
self
,
paddle
::
platform
::
CPUPlace
&
place
)
{
[](
Tensor
&
self
,
paddle
::
platform
::
CPUPlace
&
place
)
{
self
.
mutable_data
<
int
>
(
place
);
})
.
def
(
"alloc_int"
,
[](
pd
::
Tensor
&
self
,
paddle
::
platform
::
GPUPlace
&
place
)
{
[](
Tensor
&
self
,
paddle
::
platform
::
GPUPlace
&
place
)
{
self
.
mutable_data
<
int
>
(
place
);
})
.
def
(
"set"
,
paddle
::
pybind
::
PyCPUTensorSetFromArray
<
float
>
)
.
def
(
"set"
,
paddle
::
pybind
::
PyCPUTensorSetFromArray
<
int
>
)
.
def
(
"set"
,
PyCPUTensorSetFromArray
<
float
>
)
.
def
(
"set"
,
PyCPUTensorSetFromArray
<
int
>
)
#ifndef PADDLE_ONLY_CPU
.
def
(
"set"
,
paddle
::
pybind
::
PyCUDATensorSetFromArray
<
float
>
)
.
def
(
"set"
,
paddle
::
pybind
::
PyCUDATensorSetFromArray
<
int
>
)
.
def
(
"set"
,
PyCUDATensorSetFromArray
<
float
>
)
.
def
(
"set"
,
PyCUDATensorSetFromArray
<
int
>
)
#endif
.
def
(
"shape"
,
[](
pd
::
Tensor
&
self
)
{
return
pd
::
vectorize
(
self
.
dims
());
})
.
def
(
"shape"
,
[](
Tensor
&
self
)
{
return
vectorize
(
self
.
dims
());
})
.
def
(
"set_float_element"
,
[](
pd
::
Tensor
&
self
,
size_t
offset
,
float
f
)
{
[](
Tensor
&
self
,
size_t
offset
,
float
f
)
{
// TODO(yuyang18): Only support GPU now.
self
.
data
<
float
>
()[
offset
]
=
f
;
})
.
def
(
"get_float_element"
,
[](
pd
::
Tensor
&
self
,
size_t
offset
)
->
float
{
.
def
(
"get_float_element"
,
[](
Tensor
&
self
,
size_t
offset
)
->
float
{
// TODO(yuyang18): Only support GPU now.
return
self
.
data
<
float
>
()[
offset
];
});
py
::
class_
<
pd
::
Variable
>
(
m
,
"Variable"
,
R"DOC(Variable Class.
py
::
class_
<
Variable
>
(
m
,
"Variable"
,
R"DOC(Variable Class.
All parameter, weight, gradient are variables in Paddle.
)DOC"
)
.
def
(
"is_int"
,
[](
const
pd
::
Variable
&
var
)
{
return
var
.
IsType
<
int
>
();
})
.
def
(
"is_int"
,
[](
const
Variable
&
var
)
{
return
var
.
IsType
<
int
>
();
})
.
def
(
"set_int"
,
[](
pd
::
Variable
&
var
,
int
val
)
->
void
{
*
var
.
GetMutable
<
int
>
()
=
val
;
})
.
def
(
"get_int"
,
[](
const
pd
::
Variable
&
var
)
->
int
{
return
var
.
Get
<
int
>
();
})
[](
Variable
&
var
,
int
val
)
->
void
{
*
var
.
GetMutable
<
int
>
()
=
val
;
})
.
def
(
"get_int"
,
[](
const
Variable
&
var
)
->
int
{
return
var
.
Get
<
int
>
();
})
.
def
(
"get_tensor"
,
[](
pd
::
Variable
&
self
)
->
pd
::
Tensor
*
{
return
self
.
GetMutable
<
pd
::
Tensor
>
();
},
[](
Variable
&
self
)
->
Tensor
*
{
return
self
.
GetMutable
<
Tensor
>
();
},
py
::
return_value_policy
::
reference
)
.
def
(
"get_net"
,
[](
pd
::
Variable
&
self
)
->
pd
::
NetOp
*
{
return
self
.
GetMutable
<
pd
::
NetOp
>
();
[](
Variable
&
self
)
->
ops
::
NetOp
*
{
return
self
.
GetMutable
<
ops
::
NetOp
>
();
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
pd
::
Scope
>
(
m
,
"Scope"
,
""
)
py
::
class_
<
Scope
>
(
m
,
"Scope"
,
""
)
.
def
(
"new_var"
,
[](
pd
::
Scope
&
self
,
const
std
::
string
&
name
)
->
pd
::
Variable
*
{
[](
Scope
&
self
,
const
std
::
string
&
name
)
->
Variable
*
{
return
self
.
NewVar
(
name
);
},
py
::
return_value_policy
::
reference
)
.
def
(
"find_var"
,
&
pd
::
Scope
::
FindVar
,
py
::
return_value_policy
::
reference
)
.
def
(
"find_var"
,
&
Scope
::
FindVar
,
py
::
return_value_policy
::
reference
)
.
def
(
py
::
init
<>
())
.
def
(
"new_scope"
,
[](
pd
::
Scope
&
self
)
->
pd
::
Scope
*
{
return
&
self
.
NewScope
();
},
.
def
(
"new_scope"
,
[](
Scope
&
self
)
->
Scope
*
{
return
&
self
.
NewScope
();
},
py
::
return_value_policy
::
reference
)
.
def
(
"drop_kids"
,
&
pd
::
Scope
::
DropKids
);
.
def
(
"drop_kids"
,
&
Scope
::
DropKids
);
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
m
.
def
(
"get_all_op_protos"
,
[]()
->
std
::
vector
<
py
::
bytes
>
{
auto
&
protos
=
pd
::
OpRegistry
::
protos
();
auto
&
protos
=
OpRegistry
::
protos
();
std
::
vector
<
py
::
bytes
>
ret_values
;
for
(
auto
it
=
protos
.
begin
();
it
!=
protos
.
end
();
++
it
)
{
PADDLE_ENFORCE
(
it
->
second
.
IsInitialized
(),
...
...
@@ -169,8 +163,8 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def_submodule
(
"var_names"
,
"The module will return special predefined variable name in Paddle"
)
.
def
(
"empty"
,
pd
::
OperatorBase
::
EMPTY_VAR_NAME
)
.
def
(
"temp"
,
pd
::
OperatorBase
::
TMP_VAR_NAME
);
.
def
(
"empty"
,
OperatorBase
::
EMPTY_VAR_NAME
)
.
def
(
"temp"
,
OperatorBase
::
TMP_VAR_NAME
);
// clang-format off
py
::
class_
<
paddle
::
platform
::
DeviceContext
>
(
m
,
"DeviceContext"
)
.
def_static
(
"create"
,
...
...
@@ -193,43 +187,45 @@ All parameter, weight, gradient are variables in Paddle.
py
::
class_
<
paddle
::
platform
::
CPUPlace
>
(
m
,
"CPUPlace"
).
def
(
py
::
init
<>
());
py
::
class_
<
pd
::
OperatorBase
,
std
::
shared_ptr
<
pd
::
OperatorBase
>>
operator_base
(
py
::
class_
<
OperatorBase
,
std
::
shared_ptr
<
OperatorBase
>>
operator_base
(
m
,
"Operator"
);
operator_base
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
{
pd
::
OpDesc
desc
;
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
return
pd
::
OpRegistry
::
CreateOp
(
desc
);
return
OpRegistry
::
CreateOp
(
desc
);
});
operator_base
.
def
(
"backward"
,
[](
const
pd
::
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
return
pd
::
Backward
(
forwardOp
,
no_grad_vars
);
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
return
Backward
(
forwardOp
,
no_grad_vars
);
});
ExposeOperator
(
operator_base
);
py
::
class_
<
pd
::
NetOp
,
std
::
shared_ptr
<
pd
::
NetOp
>>
net
(
m
,
"Net"
);
py
::
class_
<
ops
::
NetOp
,
std
::
shared_ptr
<
ops
::
NetOp
>>
net
(
m
,
"Net"
);
net
.
def_static
(
"create"
,
[]()
->
std
::
shared_ptr
<
pd
::
NetOp
>
{
auto
retv
=
std
::
make_shared
<
pd
::
NetOp
>
();
[]()
->
std
::
shared_ptr
<
ops
::
NetOp
>
{
auto
retv
=
std
::
make_shared
<
ops
::
NetOp
>
();
retv
->
type_
=
"plain_net"
;
return
retv
;
})
.
def
(
"add_op"
,
&
pd
::
NetOp
::
AddOp
)
.
def
(
"add_op"
,
[](
pd
::
NetOp
&
self
,
const
std
::
shared_ptr
<
pd
::
NetOp
>&
net
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
pd
::
OperatorBase
>
(
net
));
})
.
def
(
"complete_add_op"
,
&
pd
::
NetOp
::
CompleteAddOp
)
.
def
(
"add_op"
,
&
ops
::
NetOp
::
AddOp
)
.
def
(
"add_op"
,
[](
ops
::
NetOp
&
self
,
const
std
::
shared_ptr
<
ops
::
NetOp
>
&
net
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
net
));
})
.
def
(
"complete_add_op"
,
&
ops
::
NetOp
::
CompleteAddOp
)
.
def
(
"complete_add_op"
,
[](
std
::
shared_ptr
<
pd
::
NetOp
>&
self
)
{
self
->
CompleteAddOp
();
});
[](
std
::
shared_ptr
<
ops
::
NetOp
>
&
self
)
{
self
->
CompleteAddOp
();
});
ExposeOperator
(
net
);
m
.
def
(
"unique_integer"
,
UniqueIntegerGenerator
);
...
...
@@ -238,3 +234,5 @@ All parameter, weight, gradient are variables in Paddle.
return
m
.
ptr
();
}
}
// namespace framework
}
// namespace paddle
paddle/framework/tensor.h
浏览文件 @
aaf2d66d
...
...
@@ -26,19 +26,17 @@ limitations under the License. */
#include "unsupported/Eigen/CXX11/Tensor"
namespace
paddle
{
namespace
pybind
{
namespace
details
{
// forward declare
template
<
bool
less
,
size_t
i
,
typename
...
args
>
struct
CastToPyBufferImpl
;
}
// namespace details
}
// namespace pybind
namespace
framework
{
namespace
details
{
template
<
bool
less
,
size_t
i
,
typename
...
args
>
struct
CastToPyBufferImpl
;
}
class
Tensor
{
public:
template
<
bool
less
,
size_t
i
,
typename
...
args
>
friend
struct
paddle
::
pybind
::
details
::
CastToPyBufferImpl
;
friend
struct
details
::
CastToPyBufferImpl
;
template
<
typename
T
,
size_t
D
,
int
MajorType
,
typename
IndexType
>
friend
struct
EigenTensor
;
...
...
@@ -167,4 +165,4 @@ class Tensor {
}
// namespace framework
}
// namespace paddle
#include "paddle/framework/
detail/tensor-in
l.h"
#include "paddle/framework/
tensor_imp
l.h"
paddle/framework/
detail/tensor-in
l.h
→
paddle/framework/
tensor_imp
l.h
浏览文件 @
aaf2d66d
文件已移动
paddle/
pybind/tensor_bind
.h
→
paddle/
framework/tensor_py
.h
浏览文件 @
aaf2d66d
...
...
@@ -23,7 +23,7 @@ namespace py = pybind11;
namespace
paddle
{
namespace
pybind
{
namespace
framework
{
namespace
details
{
...
...
@@ -63,11 +63,8 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
}
return
py
::
buffer_info
(
dst_tensor
.
mutable_data
<
CUR_TYPE
>
(
dst_tensor
.
holder_
->
place
()),
sizeof
(
CUR_TYPE
),
py
::
format_descriptor
<
CUR_TYPE
>::
format
(),
(
size_t
)
framework
::
arity
(
dst_tensor
.
dims
()),
dims_outside
,
strides
);
sizeof
(
CUR_TYPE
),
py
::
format_descriptor
<
CUR_TYPE
>::
format
(),
(
size_t
)
framework
::
arity
(
dst_tensor
.
dims
()),
dims_outside
,
strides
);
}
else
{
constexpr
bool
less
=
I
+
1
<
std
::
tuple_size
<
std
::
tuple
<
ARGS
...
>>::
value
;
return
CastToPyBufferImpl
<
less
,
I
+
1
,
ARGS
...
>
()(
tensor
);
...
...
@@ -110,8 +107,8 @@ void PyCUDATensorSetFromArray(
self
.
Resize
(
framework
::
make_ddim
(
dims
));
auto
*
dst
=
self
.
mutable_data
<
T
>
(
place
);
paddle
::
platform
::
GpuMemcpySync
(
dst
,
array
.
data
(),
sizeof
(
T
)
*
array
.
size
(),
cudaMemcpyHostToDevice
);
paddle
::
platform
::
GpuMemcpySync
(
dst
,
array
.
data
(),
sizeof
(
T
)
*
array
.
size
(),
cudaMemcpyHostToDevice
);
}
#endif
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
aaf2d66d
...
...
@@ -41,6 +41,9 @@ function(op_library TARGET)
endif
()
endfunction
()
cc_library
(
net_op SRCS net_op.cc DEPS op_registry
)
cc_test
(
net_op_test SRCS net_op_test.cc DEPS net_op
)
op_library
(
add_op SRCS add_op.cc add_op.cu
)
cc_test
(
add_op_test SRCS add_op_test.cc DEPS add_op
)
...
...
@@ -59,11 +62,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library
(
fc_op
SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net
)
op_library
(
recurrent_network_op
SRCS recurrent_network_op.cc
DEPS op_desc tensor net
)
cc_test
(
recurrent_network_op_test
SRCS recurrent_network_op_test.cc
DEPS recurrent_network_op mul_op add_op
)
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op
)
op_library
(
recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net_op
)
cc_test
(
recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op
)
paddle/operators/mean_op.cc
浏览文件 @
aaf2d66d
...
...
@@ -33,13 +33,23 @@ public:
MeanOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
)
.
IgnoreGradient
()
;
AddComment
(
"Mean Operator"
);
}
};
class
MeanGradOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
"X"
+
GRAD_VAR_SUFFIX
())
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
mean
,
ops
::
MeanOp
,
ops
::
MeanOpMaker
);
REGISTER_OP_CPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
mean
,
mean_grad
,
ops
::
MeanGradOp
);
REGISTER_OP_CPU_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
ops
::
CPUPlace
,
float
>
);
paddle/operators/mean_op.cu
浏览文件 @
aaf2d66d
...
...
@@ -3,3 +3,4 @@
#include "paddle/operators/mean_op.h"
REGISTER_OP_GPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
ops
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
ops
::
GPUPlace
,
float
>
);
\ No newline at end of file
paddle/operators/mean_op.h
浏览文件 @
aaf2d66d
...
...
@@ -35,5 +35,22 @@ public:
}
};
template
<
typename
Place
,
typename
T
>
class
MeanGradKernel
:
public
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
auto
OG
=
context
.
Input
<
Tensor
>
(
"Out"
+
OperatorBase
::
GRAD_VAR_SUFFIX
());
PADDLE_ENFORCE
(
framework
::
product
(
OG
->
dims
())
==
1
,
"Mean Gradient should be scalar"
);
auto
IG
=
context
.
Output
<
Tensor
>
(
"X"
+
OperatorBase
::
GRAD_VAR_SUFFIX
());
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
ig_size
=
(
T
)
framework
::
product
(
IG
->
dims
());
EigenVector
<
T
>::
Flatten
(
*
IG
).
device
(
context
.
GetEigenDevice
<
Place
>
())
=
EigenScalar
<
T
>::
From
(
*
OG
)
/
ig_size
;
}
};
}
// namespace operators
}
// namespace paddle
paddle/
framework/net
.cc
→
paddle/
operators/net_op
.cc
浏览文件 @
aaf2d66d
...
...
@@ -14,11 +14,11 @@
limitations under the License.
*/
#include "paddle/
framework/net
.h"
#include "paddle/
operators/net_op
.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
operators
{
void
NetOp
::
CompleteAddOp
(
bool
calc
)
{
add_op_done_
=
true
;
...
...
@@ -74,5 +74,5 @@ std::string NetOp::DebugString() const {
bool
NetOp
::
IsNetOp
()
const
{
return
true
;
}
}
// namespace
framework
}
// namespace
operators
}
// namespace paddle
paddle/
framework/net
.h
→
paddle/
operators/net_op
.h
浏览文件 @
aaf2d66d
...
...
@@ -14,15 +14,17 @@ limitations under the License. */
#pragma once
#include <paddle/framework/op_desc.pb.h>
#include <paddle/framework/operator.h>
#include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/device_context.h"
namespace
paddle
{
namespace
framework
{
namespace
operators
{
/**
* @brief Network is also a type of Operator
*
...
...
@@ -37,13 +39,13 @@ namespace framework {
* This is the base class of network, all the networks should implement the APIs
* it defines.
*/
class
NetOp
:
public
OperatorBase
{
public:
class
NetOp
:
public
framework
::
OperatorBase
{
public:
/**
* Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch
*/
void
InferShape
(
const
Scope
&
scope
)
const
override
{
void
InferShape
(
const
framework
::
Scope
&
scope
)
const
override
{
for
(
auto
&
op
:
ops_
)
{
op
->
InferShape
(
scope
);
}
...
...
@@ -56,7 +58,7 @@ class NetOp : public OperatorBase {
* scope will be used instead. If no OpContext is provicded, default context
* will be used.
*/
void
Run
(
const
Scope
&
scope
,
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
for
(
auto
&
op
:
ops_
)
{
op
->
Run
(
scope
,
dev_ctx
);
...
...
@@ -88,7 +90,7 @@ class NetOp : public OperatorBase {
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
>>
ops_
;
private:
private:
bool
add_op_done_
{
false
};
template
<
typename
T
,
typename
KeyType
>
...
...
@@ -97,5 +99,5 @@ class NetOp : public OperatorBase {
}
};
}
// namespace
framework
}
// namespace
operators
}
// namespace paddle
paddle/
framework/net
_design.md
→
paddle/
operators/net_op
_design.md
浏览文件 @
aaf2d66d
文件已移动
paddle/
framework
/net_op_test.cc
→
paddle/
operators
/net_op_test.cc
浏览文件 @
aaf2d66d
#include "paddle/operators/net_op.h"
#include <gtest/gtest.h>
#include <paddle/framework/net.h>
#include
<paddle/framework/op_registry.h>
#include
<paddle/framework/operator.h>
#include
"paddle/framework/op_registry.h"
#include
"paddle/framework/operator.h"
namespace
paddle
{
namespace
framework
{
namespace
operators
{
static
int
infer_shape_cnt
=
0
;
static
int
run_cnt
=
0
;
class
TestOp
:
public
OperatorBase
{
public:
public:
void
InferShape
(
const
framework
::
Scope
&
scope
)
const
override
{
++
infer_shape_cnt
;
}
...
...
@@ -21,7 +23,7 @@ class TestOp : public OperatorBase {
};
class
EmptyOp
:
public
OperatorBase
{
public:
public:
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
...
...
@@ -73,7 +75,7 @@ TEST(OpKernel, all) {
ASSERT_THROW
(
net
->
AddOp
(
op2
),
paddle
::
platform
::
EnforceNotMet
);
}
TEST
(
Net
,
insert_op
)
{
TEST
(
Net
Op
,
insert_op
)
{
NetOp
net
;
auto
op1
=
std
::
make_shared
<
EmptyOp
>
();
op1
->
inputs_
=
{
"x"
,
"w1"
,
"b1"
};
...
...
@@ -85,5 +87,5 @@ TEST(Net, insert_op) {
ASSERT_EQ
(
3UL
,
net
.
ops_
.
size
());
}
}
// namespace
framework
}
// namespace
operators
}
// namespace paddle
paddle/operators/recurrent_
network_
op.cc
→
paddle/operators/recurrent_op.cc
浏览文件 @
aaf2d66d
...
...
@@ -12,14 +12,14 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/recurrent_
network_
op.h"
#include "paddle/operators/recurrent_op.h"
#include <glog/logging.h>
#include <cstring>
#include <sstream>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/platform/enforce.h"
namespace
paddle
{
...
...
@@ -29,11 +29,15 @@ namespace rnn {
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
)
{
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
PADDLE_ENFORCE
(
!
inlinks
.
empty
(),
"no in links are provided."
);
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
Tensor
*
input
=
step_scopes
[
0
]
->
FindVar
(
inlinks
[
i
].
external
)
->
GetMutable
<
Tensor
>
();
auto
input_var
=
step_scopes
[
0
]
->
FindVar
(
inlinks
[
i
].
external
);
PADDLE_ENFORCE
(
input_var
!=
nullptr
,
"input link [%s] is not in scope."
,
inlinks
[
i
].
external
);
Tensor
*
input
=
input_var
->
GetMutable
<
Tensor
>
();
DDim
dims
=
input
->
dims
();
PADDLE_ENFORCE
(
static_cast
<
size_t
>
(
dims
[
0
])
==
seq_len
,
"all the inlinks must have same length"
);
...
...
@@ -41,7 +45,9 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_input
=
step_scopes
[
j
]
->
NewVar
(
inlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
*
step_input
=
input
->
Slice
<
float
>
(
j
,
j
+
1
);
if
(
!
infer_shape_mode
)
{
*
step_input
=
input
->
Slice
<
float
>
(
j
,
j
+
1
);
}
step_input
->
Resize
(
step_dims
);
}
}
...
...
@@ -49,36 +55,41 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
)
{
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
Tensor
*
output
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
external
)
->
GetMutable
<
Tensor
>
();
// TODO(qingiqng) remove following code after adding
// InferShape in RecurrentGradientOp
DDim
step_dims
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
mutable_data
<
float
>
(
make_ddim
(
dims_vec
),
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_output
=
step_scopes
[
j
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(
output
->
Slice
<
float
>
(
j
,
j
+
1
))
.
CopyFrom
<
float
>
(
*
step_output
,
platform
::
CPUPlace
());
auto
output_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
external
);
PADDLE_ENFORCE
(
output_var
!=
nullptr
,
"output link [%s] is not in scope."
,
outlinks
[
i
].
external
);
Tensor
*
output
=
output_var
->
GetMutable
<
Tensor
>
();
if
(
infer_shape_mode
)
{
DDim
step_dims
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
Resize
(
make_ddim
(
dims_vec
));
}
else
{
output
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_output
=
step_scopes
[
j
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(
output
->
Slice
<
float
>
(
j
,
j
+
1
))
.
CopyFrom
<
float
>
(
*
step_output
,
platform
::
CPUPlace
());
}
}
}
}
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
scopes
,
const
std
::
vector
<
rnn
::
MemoryAttr
>&
memories
,
size_t
step_id
,
int
offset
)
{
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape_mode
)
{
PADDLE_ENFORCE
(
step_id
<
scopes
.
size
(),
"step [%d] is out of range of step scopes' size [%d]"
,
step_id
,
...
...
@@ -95,18 +106,13 @@ void LinkMemories(const std::vector<Scope*>& scopes,
auto
scope
=
scopes
[
step_id
];
auto
linked_scope
=
scopes
[
step_id
+
offset
];
for
(
auto
&
attr
:
memories
)
{
auto
mem
=
scope
->
NewVar
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
// maybe share variable is better?
auto
mem
=
scope
->
FindVar
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
auto
linked_mem
=
linked_scope
->
FindVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
mem
->
ShareDataWith
<
float
>
(
*
linked_mem
);
// TODO(qingqing) remove following code
// the memory of current step should be allocated in step net
auto
m
=
scope
->
NewVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
// for unit test, as addOp and mulOp are null currently, if not
// mutable_data, mem.data() in output will be error. We will
// remove this line after merge the correct addOp and mulOp.
m
->
mutable_data
<
float
>
(
mem
->
dims
(),
platform
::
CPUPlace
());
if
(
infer_shape_mode
)
{
mem
->
Resize
(
linked_mem
->
dims
());
}
else
{
mem
->
ShareDataWith
<
float
>
(
*
linked_mem
);
}
}
}
...
...
@@ -175,60 +181,39 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const {
->
dims
()[
0
];
CreateScopes
(
scope
);
auto
step_scopes
=
GetStepScopes
(
scope
);
// SegmentInputs is called in InferShape. The input must hold memory in
// SegmentInputs. But the other op only set dimension for the output in
// InferShape. That's a problem. Wether the RNN op needs InferShape or not?
// Wether the following functions (SegmentInputs, InitMemories, ...) need
// to rewrite for RNN op?
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
);
InitMemories
(
step_scopes
[
0
]);
PADDLE_ENFORCE
(
scope
.
FindVar
(
arg_
->
step_net
)
!=
nullptr
,
"stepnet [%s] is not in scope."
,
arg_
->
step_net
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
InitMemories
(
step_scopes
[
0
],
true
/*infer_shape_mode*/
);
Variable
*
net
=
scope
.
FindVar
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net
!=
nullptr
,
"failed to get step net"
);
// If the InferShape is called in OperatorBase's run function,
// the rnn op only needs to do InferShape for the first time step
for
(
size_t
i
=
0
;
i
<
seq_len_
;
i
++
)
{
if
(
i
>
0
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
i
,
-
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
i
,
-
1
,
true
/*infer_shape_mode*/
);
}
net
->
GetMutable
<
NetOp
>
()
->
InferShape
(
*
step_scopes
[
i
]);
}
auto
outlinks
=
arg_
->
outlinks
;
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
DDim
step_dims
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
// now only support fixed length
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len_
);
Tensor
*
output
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
external
)
->
GetMutable
<
Tensor
>
();
output
->
Resize
(
make_ddim
(
dims_vec
));
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
}
void
RecurrentAlgorithm
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
InitMemories
(
step_scopes
[
0
],
false
/*infer_shape_mode*/
);
Variable
*
net
=
scope
.
FindVar
(
arg_
->
step_net
);
for
(
size_t
step_id
=
0
;
step_id
<
seq_len_
;
step_id
++
)
{
// the link memory is done in InferShape
// maybe remove following code after testing
if
(
step_id
>
0
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
-
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
-
1
,
false
/*infer_shape_mode*/
);
}
net
->
GetMutable
<
NetOp
>
()
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
}
void
RecurrentAlgorithm
::
CreateScopes
(
const
Scope
&
scope
)
const
{
...
...
@@ -244,18 +229,19 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op.
auto
net_op
=
scope
.
FindVar
(
arg_
->
step_net
)
->
GetMutable
<
NetOp
>
();
for
(
auto
&
input
:
net_op
->
inputs_
)
{
// the weight are located in parent scope
if
(
!
step_scope
.
FindVar
(
input
))
step_scope
.
NewVar
(
input
);
}
for
(
auto
&
output
:
net_op
->
outputs_
)
{
step_scope
.
NewVar
(
output
);
}
step_scopes
->
emplace_back
(
&
step_scope
);
}
}
}
void
RecurrentAlgorithm
::
InitMemories
(
Scope
*
step_scope
)
const
{
void
RecurrentAlgorithm
::
InitMemories
(
Scope
*
step_scope
,
bool
infer_shape_mode
)
const
{
for
(
auto
&
attr
:
arg_
->
memories
)
{
Tensor
*
pre_mem
=
step_scope
->
NewVar
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
boot_var
)
!=
nullptr
,
...
...
@@ -263,13 +249,11 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope) const {
attr
.
var
,
attr
.
boot_var
);
Tensor
*
boot_mem
=
step_scope
->
FindVar
(
attr
.
boot_var
)
->
GetMutable
<
Tensor
>
();
pre_mem
->
ShareDataWith
<
float
>
(
*
boot_mem
);
// TODO(qingqing) remove following code
// the memory of current step should be allocated in step net
// here for unit test
auto
cur_step_mem
=
step_scope
->
NewVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
cur_step_mem
->
mutable_data
<
float
>
(
boot_mem
->
dims
(),
platform
::
CPUPlace
());
if
(
infer_shape_mode
)
{
pre_mem
->
Resize
(
boot_mem
->
dims
());
}
else
{
pre_mem
->
ShareDataWith
<
float
>
(
*
boot_mem
);
}
}
}
...
...
@@ -307,13 +291,14 @@ public:
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
const
auto
&
name
=
RecurrentOp
::
kArgName
;
// inputs and outputs stored in proto
AddInput
(
name
.
inlinks
,
"the input that need to be segmented for each step."
)
AddInput
(
name
.
inlinks
,
"the inputs that need to be segmented for each step."
)
.
SetMultiple
();
AddInput
(
name
.
boot_memories
,
"variables to initialize memories."
)
.
SetMultiple
();
AddInput
(
name
.
step_net
,
"network shared by all steps."
);
AddOutput
(
name
.
outlinks
,
"the output that need to concated for all steps."
)
AddOutput
(
name
.
outlinks
,
"the output
s
that need to concated for all steps."
)
.
SetMultiple
();
AddOutput
(
name
.
step_scopes
,
"step scopes"
);
...
...
@@ -331,34 +316,39 @@ public:
void
RecurrentGradientAlgorithm
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
);
PADDLE_ENFORCE
(
scope
.
FindVar
(
arg_
->
step_net
)
!=
nullptr
,
"step net is not in scope."
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
Variable
*
net
=
scope
.
FindVar
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net
!=
nullptr
,
"failed to get step net"
);
for
(
int
step_id
=
seq_len_
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len_
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
,
false
/*infer_shape_mode*/
);
}
net
->
GetMutable
<
NetOp
>
()
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
}
LinkBootMemoryGradients
(
step_scopes
[
0
]);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
);
LinkBootMemoryGradients
(
step_scopes
[
0
],
false
);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
}
void
RecurrentGradientAlgorithm
::
LinkBootMemoryGradients
(
Scope
*
step_scope
)
const
{
Scope
*
step_scope
,
bool
infer_shape_mode
)
const
{
for
(
auto
&
attr
:
arg_
->
memories
)
{
Tensor
*
mem_grad
=
step_scope
->
NewVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
PADDLE_ENFORCE
(
mem_grad
!=
nullptr
,
"boot_tensor should be retrieved before"
);
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
var
)
!=
nullptr
,
"memory variable [%s] does not exists"
,
attr
.
var
);
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
boot_var
)
!=
nullptr
,
"memory [%s]'s boot variable [%s] not exists"
,
attr
.
var
,
"boot variable [%s] does not exists"
,
attr
.
boot_var
);
Tensor
*
mem_grad
=
step_scope
->
NewVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
Tensor
*
boot_mem_grad
=
step_scope
->
NewVar
(
attr
.
boot_var
)
->
GetMutable
<
Tensor
>
();
boot_mem_grad
->
ShareDataWith
<
float
>
(
*
mem_grad
);
if
(
infer_shape_mode
)
{
boot_mem_grad
->
Resize
(
mem_grad
->
dims
());
}
else
{
boot_mem_grad
->
ShareDataWith
<
float
>
(
*
mem_grad
);
}
}
}
...
...
@@ -367,34 +357,20 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
->
GetMutable
<
Tensor
>
()
->
dims
()[
0
];
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
);
PADDLE_ENFORCE
(
scope
.
FindVar
(
arg_
->
step_net
)
!=
nullptr
,
"step net is not in scope."
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
Variable
*
net
=
scope
.
FindVar
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net
!=
nullptr
,
"failed to get step net"
);
for
(
int
step_id
=
seq_len_
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len_
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
,
true
/*infer_shape_mode*/
);
}
net
->
GetMutable
<
NetOp
>
()
->
InferShape
(
*
step_scopes
[
step_id
]);
}
auto
outlinks
=
arg_
->
outlinks
;
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
DDim
step_dims
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
// now only support fixed length
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len_
);
Tensor
*
output
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
external
)
->
GetMutable
<
Tensor
>
();
output
->
Resize
(
make_ddim
(
dims_vec
));
}
LinkBootMemoryGradients
(
step_scopes
[
0
]);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
LinkBootMemoryGradients
(
step_scopes
[
0
],
true
/*infer_shape_mode*/
);
}
void
RecurrentGradientOp
::
Init
()
{
...
...
paddle/operators/recurrent_
network_
op.h
→
paddle/operators/recurrent_op.h
浏览文件 @
aaf2d66d
...
...
@@ -72,19 +72,22 @@ struct ArgumentName {
*/
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
);
const
size_t
seq_len
,
bool
infer_shape_mode
);
/**
* Process outputs of step nets and merge to variables.
*/
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
);
const
size_t
seq_len
,
bool
infer_shape_mode
);
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
MemoryAttr
>&
memories
,
size_t
step_id
,
int
offset
);
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape_mode
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
);
...
...
@@ -122,7 +125,7 @@ protected:
return
*
scope
.
FindVar
(
arg_
->
step_scopes
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
}
void
InitMemories
(
Scope
*
step_scopes
)
const
;
void
InitMemories
(
Scope
*
step_scopes
,
bool
infer_shape_mode
)
const
;
private:
std
::
unique_ptr
<
rnn
::
Argument
>
arg_
;
...
...
@@ -145,7 +148,7 @@ public:
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
;
void
LinkBootMemoryGradients
(
Scope
*
step_scopes
)
const
;
void
LinkBootMemoryGradients
(
Scope
*
step_scopes
,
bool
infer_shape_mode
)
const
;
/**
* InferShape must be called before Run.
...
...
paddle/operators/recurrent_
network_
op_test.cc
→
paddle/operators/recurrent_op_test.cc
浏览文件 @
aaf2d66d
...
...
@@ -11,14 +11,15 @@
limitations under the License.
*/
#include "paddle/operators/recurrent_op.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/
recurrent_network
_op.h"
#include "paddle/operators/
net
_op.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -55,7 +56,7 @@ protected:
w
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
make_ddim
(
std
::
vector
<
int
>
{
30
,
30
}),
platform
::
CPUPlace
());
for
(
auto
boot
:
std
::
vector
<
std
::
string
>
{
"
x_boot"
,
"
h_boot"
})
{
for
(
auto
boot
:
std
::
vector
<
std
::
string
>
{
"h_boot"
})
{
LOG
(
INFO
)
<<
"create global variable "
<<
boot
;
Variable
*
h_boot
=
scope_
.
NewVar
(
boot
);
h_boot
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
...
...
@@ -79,7 +80,6 @@ protected:
op_desc
.
add_inputs
(
"x0"
);
op_desc
.
add_inputs
(
"x1"
);
// boot_memories 3
op_desc
.
add_inputs
(
"x_boot"
);
op_desc
.
add_inputs
(
"h_boot"
);
// step net 5
op_desc
.
add_inputs
(
"step_net"
);
...
...
@@ -91,7 +91,7 @@ protected:
auto
_input_format
=
std
::
vector
<
int
>
{
0
,
// in_link
3
,
// memories
5
// step_net
4
// step_net
};
auto
input_format
=
op_desc
.
add_attrs
();
input_format
->
set_name
(
"input_format"
);
...
...
@@ -129,12 +129,11 @@ protected:
inlink_alias
->
add_strings
(
item
);
}
// pre memories
for
(
const
auto
&
item
:
std
::
vector
<
std
::
string
>
{
"rnn/x@pre"
,
"rnn/h@pre"
})
{
for
(
const
auto
&
item
:
std
::
vector
<
std
::
string
>
{
"rnn/h@pre"
})
{
pre_memories
->
add_strings
(
item
);
}
// memories
for
(
const
auto
&
item
:
std
::
vector
<
std
::
string
>
{
"rnn/
x"
,
"rnn/
h"
})
{
for
(
const
auto
&
item
:
std
::
vector
<
std
::
string
>
{
"rnn/h"
})
{
memories
->
add_strings
(
item
);
}
// output alias
...
...
@@ -151,14 +150,11 @@ protected:
LOG
(
INFO
)
<<
"create variable step_net"
;
Variable
*
var
=
scope_
.
NewVar
(
"step_net"
);
auto
net
=
var
->
GetMutable
<
NetOp
>
();
// rnn/s is net's input or output?
net
->
inputs_
=
{
"rnn/h@pre"
,
"rnn/w"
,
"rnn/x"
};
net
->
inputs_
=
{
"rnn/s"
,
"rnn/h"
};
net
->
AddOp
(
OpRegistry
::
CreateOp
(
"mul"
,
{
"rnn/h@pre"
,
"rnn/w"
},
{
"rnn/s"
},
{}));
net
->
AddOp
(
OpRegistry
::
CreateOp
(
"add_two"
,
{
"
rnn/x
"
,
"rnn/s"
},
{
"rnn/h"
},
{}));
OpRegistry
::
CreateOp
(
"add_two"
,
{
"
x@alias
"
,
"rnn/s"
},
{
"rnn/h"
},
{}));
net
->
CompleteAddOp
();
}
...
...
@@ -297,7 +293,10 @@ protected:
inlink
.
internal
=
"rnn/x"
;
auto
step_scopes
=
scope_
.
FindVar
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
rnn
::
SegmentInputs
(
*
step_scopes
,
std
::
vector
<
rnn
::
Link
>
{
inlink
},
10
);
rnn
::
SegmentInputs
(
*
step_scopes
,
std
::
vector
<
rnn
::
Link
>
{
inlink
},
10
,
true
/*infer_shape_mode*/
);
}
void
LinkeMemories
()
{
...
...
@@ -311,7 +310,8 @@ protected:
auto
step_scopes
=
scope_
.
FindVar
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
for
(
int
i
=
1
;
i
<
10
;
++
i
)
{
rnn
::
LinkMemories
(
*
step_scopes
,
memories
,
i
,
-
1
);
rnn
::
LinkMemories
(
*
step_scopes
,
memories
,
i
,
-
1
,
true
/*infer_shape_mode*/
);
}
}
...
...
@@ -333,14 +333,14 @@ TEST(RecurrentOp, LinkMemories) {
using
namespace
paddle
::
operators
;
// create and init step scopes
in
t
len
=
10
;
size_
t
len
=
10
;
std
::
vector
<
Scope
*>
step_scopes
;
for
(
in
t
i
=
0
;
i
<
len
;
++
i
)
{
for
(
size_
t
i
=
0
;
i
<
len
;
++
i
)
{
auto
scope
=
new
Scope
();
scope
->
NewVar
(
"pre_h"
);
auto
tensor
=
scope
->
NewVar
(
"h"
)
->
GetMutable
<
Tensor
>
();
float
*
data
=
tensor
->
mutable_data
<
float
>
({
15
,
20
},
CPUPlace
());
for
(
in
t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
for
(
size_
t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
data
[
j
]
=
rand
()
*
(
1.
/
(
double
)
RAND_MAX
);
}
step_scopes
.
push_back
(
scope
);
...
...
@@ -354,24 +354,24 @@ TEST(RecurrentOp, LinkMemories) {
std
::
vector
<
rnn
::
MemoryAttr
>
memories
;
memories
.
push_back
(
mem_attr
);
for
(
in
t
i
=
1
;
i
<
len
;
++
i
)
{
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
-
1
);
for
(
size_
t
i
=
1
;
i
<
len
;
++
i
)
{
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
-
1
,
false
/*infer_shape_mode*/
);
}
// check
for
(
in
t
i
=
0
;
i
<
len
-
1
;
++
i
)
{
for
(
size_
t
i
=
0
;
i
<
len
-
1
;
++
i
)
{
const
float
*
a
=
step_scopes
[
i
]
->
FindVar
(
"h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
const
float
*
b
=
step_scopes
[
i
+
1
]
->
FindVar
(
"pre_h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
for
(
size_t
i
=
0
;
i
<
15
*
20
;
++
i
)
{
ASSERT_FLOAT_EQ
(
a
[
i
],
b
[
i
]);
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
ASSERT_FLOAT_EQ
(
a
[
j
],
b
[
j
]);
}
}
for
(
int
i
=
len
-
2
;
i
>=
0
;
--
i
)
{
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
1
);
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
1
,
false
/*infer_shape_mode*/
);
}
// check
for
(
int
i
=
len
-
2
;
i
>=
0
;
--
i
)
{
...
...
@@ -379,8 +379,8 @@ TEST(RecurrentOp, LinkMemories) {
step_scopes
[
i
]
->
FindVar
(
"pre_h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
const
float
*
b
=
step_scopes
[
i
+
1
]
->
FindVar
(
"h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
for
(
size_t
i
=
0
;
i
<
15
*
20
;
++
i
)
{
ASSERT_FLOAT_EQ
(
a
[
i
],
b
[
i
]);
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
ASSERT_FLOAT_EQ
(
a
[
j
],
b
[
j
]);
}
}
...
...
@@ -391,9 +391,3 @@ TEST(RecurrentOp, LinkMemories) {
USE_OP
(
add_two
);
USE_OP
(
mul
);
// int main() {
// //! TODO(yuyang18): Temporary disable this unit-test because implementation
// //! error.
// return 0;
//}
\ No newline at end of file
paddle/operators/softmax_op.cc
浏览文件 @
aaf2d66d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/softmax_op.h"
namespace
paddle
{
...
...
@@ -19,12 +20,13 @@ namespace operators {
class
SoftmaxOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
1
,
"Only one input is need for softmax"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
().
size
()
==
2
,
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
1UL
,
"Only one input is need for softmax"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
()
==
2UL
,
"The input of softmax op must be matrix"
);
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1
,
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1
UL
,
"Only one output is need for softmax"
);
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
@@ -40,10 +42,19 @@ public:
class
SoftmaxOpGrad
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{}
std
::
string
DebugString
()
const
override
{
LOG
(
INFO
)
<<
"SoftmaxOpGrad"
;
return
""
;
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
3UL
,
"Input of SoftmaxOpGrad should be 3, X, Y, YG"
);
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1UL
,
"Output of SoftmaxOpGrad should be 1"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
"Y"
)
!=
nullptr
,
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
GRAD_VAR_NAME
(
"Y"
))
!=
nullptr
,
"Input(Y@GRAD) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
GRAD_VAR_NAME
(
"Y"
))
->
dims
(),
"the shape of Input(0) and Input(1) should be the same"
);
ctx
.
Output
<
Tensor
>
(
GRAD_VAR_NAME
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
};
...
...
@@ -51,5 +62,7 @@ protected:
}
// namespace paddle
REGISTER_OP
(
softmax
,
ops
::
SoftmaxOp
,
ops
::
SoftmaxOpMaker
);
REGISTER_GRADIENT_OP
(
softmax
,
softmax_grad
,
ops
::
SoftmaxOpGrad
);
REGISTER_OP_CPU_KERNEL
(
softmax
,
ops
::
SoftmaxKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
softmax
,
softmax_grad
,
ops
::
SoftmaxOpGrad
);
REGISTER_OP_CPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
ops
::
CPUPlace
,
float
>
);
paddle/operators/softmax_op.cu
浏览文件 @
aaf2d66d
...
...
@@ -3,3 +3,4 @@
#include "paddle/operators/softmax_op.h"
REGISTER_OP_GPU_KERNEL
(
softmax
,
ops
::
SoftmaxKernel
<
ops
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
ops
::
GPUPlace
,
float
>
);
paddle/operators/softmax_op.h
浏览文件 @
aaf2d66d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/ddim.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/type_alias.h"
namespace
paddle
{
...
...
@@ -23,8 +26,8 @@ template <typename Place, typename T>
class
SoftmaxKernel
:
public
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
auto
input
=
context
.
Input
<
Tensor
>
(
0
);
auto
output
=
context
.
Output
<
Tensor
>
(
0
);
auto
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
output
=
context
.
Output
<
Tensor
>
(
"Y"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
input
);
...
...
@@ -57,5 +60,38 @@ public:
.
broadcast
(
one_by_class
));
}
};
template
<
typename
Place
,
typename
T
>
class
SoftmaxGradKernel
:
public
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
std
::
shared_ptr
<
Tensor
>
scale_
=
std
::
make_shared
<
Tensor
>
();
auto
Y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
dY
=
context
.
Input
<
Tensor
>
(
OperatorBase
::
GRAD_VAR_NAME
(
"Y"
));
auto
dX
=
context
.
Output
<
Tensor
>
(
OperatorBase
::
GRAD_VAR_NAME
(
"X"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
batch_size
=
Y
->
dims
()[
0
];
const
int
class_num
=
Y
->
dims
()[
1
];
Eigen
::
DSizes
<
int
,
1
>
along_class
(
1
);
Eigen
::
DSizes
<
int
,
2
>
batch_by_one
(
batch_size
,
1
);
Eigen
::
DSizes
<
int
,
2
>
one_by_class
(
1
,
class_num
);
auto
Y_eigen
=
EigenMatrix
<
T
>::
From
(
*
Y
);
auto
dY_eigen
=
EigenMatrix
<
T
>::
From
(
*
dY
);
auto
dX_eigen
=
EigenMatrix
<
T
>::
From
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
dot
=
(
Y_eigen
*
dY_eigen
)
.
sum
(
along_class
)
.
eval
()
.
reshape
(
batch_by_one
)
.
broadcast
(
one_by_class
);
dX_eigen
.
device
(
place
)
=
(
dY_eigen
-
dot
)
*
Y_eigen
;
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/type_alias.h
浏览文件 @
aaf2d66d
...
...
@@ -15,13 +15,14 @@
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace
paddle
{
namespace
operators
{
using
OpKernel
=
framework
::
OpKernel
;
using
OperatorBase
=
framework
::
OperatorBase
;
using
InferShapeContext
=
framework
::
InferShapeContext
;
using
ExecutionContext
=
framework
::
ExecutionContext
;
using
Variable
=
framework
::
Variable
;
...
...
@@ -43,14 +44,16 @@ template <typename T,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
Tensor
=
framework
::
Tensor
;
using
Scope
=
framework
::
Scope
;
using
OperatorWithKernel
=
framework
::
OperatorWithKernel
;
using
OperatorBase
=
framework
::
OperatorBase
;
using
OpProtoAndCheckerMaker
=
framework
::
OpProtoAndCheckerMaker
;
using
OpProto
=
framework
::
OpProto
;
using
OpAttrChecker
=
framework
::
OpAttrChecker
;
using
CPUPlace
=
platform
::
CPUPlace
;
using
GPUPlace
=
platform
::
GPUPlace
;
using
NetOp
=
framework
::
NetOp
;
using
OpRegistry
=
framework
::
OpRegistry
;
}
// namespace operators
}
// namespace paddle
...
...
paddle/pybind/CMakeLists.txt
浏览文件 @
aaf2d66d
...
...
@@ -6,4 +6,4 @@ cc_library(paddle_pybind SHARED
add_op
mean_op
cross_entropy_op
recurrent_
network_
op
)
recurrent_op
)
paddle/scripts/docker/build.sh
浏览文件 @
aaf2d66d
...
...
@@ -69,7 +69,7 @@ cat <<EOF
Installing ...
========================================
EOF
make
install
make
install
-j
`
nproc
`
pip
install
/usr/local/opt/paddle/share/wheels/
*
.whl
paddle version
...
...
@@ -122,7 +122,7 @@ cat <<EOF
Generating .deb package ...
========================================
EOF
cpack
-D
CPACK_GENERATOR
=
'DEB'
..
cpack
-D
CPACK_GENERATOR
=
'DEB'
-j
`
nproc
`
..
cat
<<
EOF
...
...
paddle/scripts/travis/build_doc.sh
浏览文件 @
aaf2d66d
...
...
@@ -6,14 +6,14 @@ mkdir -p $TRAVIS_BUILD_DIR/build
cd
$TRAVIS_BUILD_DIR
/build
# Compile paddle binaries first
cmake ..
-DCMAKE_BUILD_TYPE
=
Debug
-DWITH_GPU
=
OFF
-DWITH_DOC
=
OFF
-DWITH_GOLANG
=
ON
-DWITH_STYLE_CHECK
=
OFF
cmake ..
-DCMAKE_BUILD_TYPE
=
Debug
-DWITH_GPU
=
OFF
-DWITH_DOC
=
OFF
-DWITH_
MKLDNN
=
OFF
-DWITH_MKLML
=
OFF
-DWITH_
GOLANG
=
ON
-DWITH_STYLE_CHECK
=
OFF
mkdir
output
make
-j
`
nproc
`
find ..
-name
'*whl'
| xargs pip
install
# install all wheels.
rm
-rf
*
# Compile Documentation only.
cmake ..
-DCMAKE_BUILD_TYPE
=
Debug
-DWITH_GPU
=
OFF
-DWITH_DOC
=
ON
cmake ..
-DCMAKE_BUILD_TYPE
=
Debug
-DWITH_GPU
=
OFF
-DWITH_
MKLDNN
=
OFF
-DWITH_MKLML
=
OFF
-DWITH_
DOC
=
ON
make
-j
`
nproc
`
paddle_docs paddle_docs_cn
# check websites for broken links
...
...
python/paddle/v2/framework/tests/test_softmax_op.py
浏览文件 @
aaf2d66d
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
as
np
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.create_op_creation_methods
as
creation
from
op_test_util
import
OpTestMeta
def
stable_softmax
(
x
):
...
...
@@ -19,5 +23,63 @@ class TestSoftmaxOp(unittest.TestCase):
self
.
Y
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
X
)
class
TestSoftmaxGradOp
(
unittest
.
TestCase
):
def
test_softmax_grad
(
self
):
op
=
creation
.
op_creations
.
softmax
(
X
=
"X"
,
Y
=
"Y"
)
backward_op
=
core
.
Operator
.
backward
(
op
,
set
())
self
.
assertEqual
(
backward_op
.
type
(),
"softmax_grad"
)
expected
=
'''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).'''
self
.
assertEqual
(
expected
,
str
(
backward_op
))
batch_size
=
3
class_num
=
5
# Initialize X and add 1e-2 for numerical stability
Y
=
np
.
random
.
rand
(
batch_size
,
class_num
).
astype
(
np
.
float32
)
Y
=
Y
+
1e-2
dY
=
np
.
random
.
rand
(
batch_size
,
class_num
).
astype
(
np
.
float32
)
# Reference implementation of cross entropy with soft labels
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
batch_size
):
d
=
np
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
expected
=
label_softmax_grad
(
Y
,
dY
)
scope
=
core
.
Scope
()
places
=
[]
places
.
append
(
core
.
CPUPlace
())
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
y
=
scope
.
new_var
(
"Y"
)
y_tensor
=
y
.
get_tensor
()
y_tensor
.
set_dims
([
batch_size
,
class_num
])
y_tensor
.
alloc_float
(
place
)
y_tensor
.
set
(
Y
,
place
)
dy
=
scope
.
new_var
(
"Y@GRAD"
)
dy_tensor
=
dy
.
get_tensor
()
dy_tensor
.
set_dims
([
batch_size
,
class_num
])
dy_tensor
.
alloc_float
(
place
)
dy_tensor
.
set
(
dY
,
place
)
x
=
scope
.
new_var
(
"X"
)
dx
=
scope
.
new_var
(
"X@GRAD"
)
tensor
=
scope
.
find_var
(
"X@GRAD"
).
get_tensor
()
backward_op
.
infer_shape
(
scope
)
self
.
assertEqual
([
batch_size
,
class_num
],
tensor
.
shape
())
ctx
=
core
.
DeviceContext
.
create
(
place
)
backward_op
.
run
(
scope
,
ctx
)
actual
=
np
.
array
(
tensor
)
np
.
testing
.
assert_almost_equal
(
actual
,
expected
,
decimal
=
3
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录