distribute_transpiler.py 95.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
147
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
148 149
          want to change it, please be sure you have read the slice_variable function.

150 151 152 153 154
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
155 156 157 158 159
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
160
    enable_dc_asgd = False
161
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
162
    mode = "pserver"
163
    print_log = False
W
Wu Yi 已提交
164
    wait_port = True
Q
Qiao Longfei 已提交
165 166
    # split the send recv var in runtime
    runtime_split_send_recv = False
167
    sync_mode = True
G
gongweibao 已提交
168

169 170 171 172 173 174 175 176 177
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0
    #Nccl ranks bewteen nodes when use hierarchical allreduce, it's setted to nodes number.
    hierarchical_allreduce_exter_nranks = 0

178 179 180 181
    # if mode is collective
    # supported modes: sgd, local_sgd
    collective_mode = None

G
gongweibao 已提交
182

Y
gen rst  
yi.wu 已提交
183
class DistributeTranspiler(object):
Y
yi.wu 已提交
184 185 186 187
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
188
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
189

W
Wu Yi 已提交
190 191 192 193 194 195 196 197 198
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
199 200 201 202

    Examples:
        .. code-block:: python

203 204 205 206 207 208 209 210 211 212
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
213 214 215 216 217 218
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
219
            role = "PSERVER"
T
Tink_Y 已提交
220 221 222 223 224 225
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
226
                                                                pserver_program)
T
Tink_Y 已提交
227 228 229 230
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
231 232
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
233 234
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
235
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
236
            t = fluid.DistributeTranspiler(config=config)
237
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
238
            exe = fluid.ParallelExecutor(
239 240 241
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
242 243
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
244
    """
Y
Yancey1989 已提交
245

G
gongweibao 已提交
246 247 248 249 250 251 252 253 254
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

255 256 257
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
258 259 260
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
261 262 263 264
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
265 266
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
267 268 269 270 271 272
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
273 274
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
275 276 277

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
278 279 280 281 282 283 284 285 286

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
287 288 289 290
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
291 292 293 294 295
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
296 297 298 299 300
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
301 302 303 304 305 306 307
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
308 309 310 311 312
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
            transpiler = collective.GradAllReduce()
        elif collective_mode == 'local_sgd':
            transpiler = collective.LocalSGD()
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
353
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
354
        sparse_update_ops = []
355
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
356 357
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
358
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
359 360 361
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
362
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
363
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
364 365 366
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
367
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
368
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
369 370 371 372 373 374 375
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
376

377 378 379 380 381
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
382
                  sync_mode=True,
W
Wu Yi 已提交
383 384
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
385
        """
386
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
387 388 389 390 391 392

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
393 394
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
395 396
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
397 398 399
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
400
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
401 402
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
403 404 405
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
406 407 408 409 410 411 412 413 414 415 416

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
417 418 419
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
420 421
        if startup_program is None:
            startup_program = default_startup_program()
422
        self.origin_program = program
W
Wu Yi 已提交
423 424
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
425

W
Wu Yi 已提交
426 427
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
428
            self.origin_program._trainers_endpoints = trainers.split(",")
429 430 431 432 433 434
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
            self.origin_program._hierarchical_allreduce_inter_nranks = \
                int(self.config.hierarchical_allreduce_inter_nranks)
            self.origin_program._hierarchical_allreduce_exter_nranks = \
                int(self.config.hierarchical_allreduce_exter_nranks)
W
Wu Yi 已提交
435 436 437 438
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
439 440
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
441 442
            return

443 444 445 446 447 448 449 450 451 452 453
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

454
        self.trainer_num = trainers
455
        self.sync_mode = sync_mode
456 457 458
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
459
        self.vars_overview = VarsDistributed()
460 461
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
462
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
463 464
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
465
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
466
        self.grad_name_to_param_name = dict()
467 468
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
469
            self.grad_name_to_param_name[grad_var.name] = param_var.name
470

Q
Qiao Longfei 已提交
471
        # get all sparse update ops
Q
Qiao Longfei 已提交
472
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
473
            self.origin_program)
Q
Qiao Longfei 已提交
474
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
475 476
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
477 478 479
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
480
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
481 482 483
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

484
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
485
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
486
        self._init_splited_vars()
487

G
gongweibao 已提交
488
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
489
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
490
        send_vars = []
491 492 493 494 495 496

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
497
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
498

G
gongweibao 已提交
499
        if not self.config.slice_var_up:
500 501
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
502

503
        self.grad_name_to_send_dummy_out = dict()
504
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
505
            eplist = ps_dispatcher.dispatch(splited_vars)
506

G
gongweibao 已提交
507
            if not self.config.slice_var_up:
508 509
                assert (len(splited_vars) == 1)

510
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
511
            if len(splited_vars) == 1:
512
                splited_grad_varname = splited_vars[0].name
513 514
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
515 516
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
517
                        grad_varname]
Q
Qiao Longfei 已提交
518 519 520 521
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
522
            elif len(splited_vars) > 1:
523
                orig_var = program.global_block().vars[splited_grad_varname]
524 525
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
526 527 528 529
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
530 531
            else:
                AssertionError("Can not insert the send op by original "
532
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
533

W
Wu Yi 已提交
534 535
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
536
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
537

Q
Qiao Longfei 已提交
538 539 540 541 542 543 544 545 546 547 548
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
549 550 551 552
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
553
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
554
                index=index + 1,
555
                type="send",
Q
Qiao Longfei 已提交
556
                inputs={"X": send_input_vars},
557
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
558 559
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
560 561
                    "sections": sections,
                    "send_varnames": send_varnames,
562
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
563 564 565 566
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
567
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
568
                })
Y
update  
Yancey1989 已提交
569 570
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
571 572

        if self.sync_mode:
W
Wu Yi 已提交
573 574
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
575 576 577 578
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
579
            input_deps = list(self.grad_name_to_send_dummy_out.values())
580

Y
Yancey1989 已提交
581 582
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
583
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
584
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
585 586
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
587 588
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
589
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
590
                })
Y
Yancey1989 已提交
591

G
gongweibao 已提交
592
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
593
        recv_vars = []
Y
update  
Yancey1989 已提交
594
        for _, var in enumerate(send_vars):
595
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
596
        ps_dispatcher.reset()
Y
Yancey1989 已提交
597 598
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
599
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
600 601
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
602

603 604 605 606
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
607
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
608
        all_recv_outputs = []
609
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
610
            eps = []
Q
Qiao Longfei 已提交
611
            table_names = []
Y
Yancey1989 已提交
612 613 614
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
615
                table_names.append(var.name)
W
Wu Yi 已提交
616 617 618 619
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
620
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
621
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
622

W
Wu Yi 已提交
623 624 625 626 627 628 629 630 631
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
632
            if param_varname in self.sparse_param_to_height_sections:
633 634 635 636 637 638

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
639 640
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
641 642
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
643
            else:
Q
Qiao Longfei 已提交
644 645 646
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
647
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
648
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
649
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
650

Q
Qiao Longfei 已提交
651 652 653 654 655 656
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
657
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
658 659 660 661 662 663
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
664

Q
qiaolongfei 已提交
665
        if self.sync_mode:
W
Wu Yi 已提交
666
            # form a WAW dependency
Q
qiaolongfei 已提交
667 668 669
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
670
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
671 672
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
673
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
674 675
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
676

677
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
678 679
            if len(splited_var) <= 1:
                continue
680
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
681
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
682 683 684 685 686 687 688 689 690
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
691

G
gongweibao 已提交
692 693
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

694
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
695 696
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
697
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
698

699 700 701
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
702
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
703 704 705 706 707
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
708 709 710 711 712 713 714 715 716 717 718 719

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
720
        """
T
typhoonzero 已提交
721
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
722
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
723

T
typhoonzero 已提交
724
        lr_ops = self._get_lr_ops()
725
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
726 727
        delete_ops(self.origin_program.global_block(), lr_ops)

728 729
        # delete table init op
        if self.has_distributed_lookup_table:
730 731 732
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
733 734
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
735 736 737 738 739
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
740
            table_init_op = table_param_init_op[0]
741 742 743 744 745 746
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
747

748
        self.origin_program.__str__()
G
gongweibao 已提交
749

W
Wu Yi 已提交
750 751 752
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

753
        return self.origin_program
T
typhoonzero 已提交
754

W
Wu Yi 已提交
755
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
756 757 758 759
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
760
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
761
            eplist (list): A list of strings indicating
G
gongweibao 已提交
762 763 764 765

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
766
        startup_program = self.startup_program
G
gongweibao 已提交
767 768 769 770

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
771
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
792
                inputs={"X": []},
G
gongweibao 已提交
793 794 795
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
796
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
797 798 799
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
800 801
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
802 803 804
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
805
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
806 807
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
808
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
809 810 811
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
812
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
813
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
814 815
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
816
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
817
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
818 819 820 821 822 823 824 825 826 827
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
828 829 830 831 832 833 834 835
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
836 837
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
838
        Get parameter server side program.
839

Y
yi.wu 已提交
840 841
        Args:
            endpoint (str): current parameter server endpoint.
842

Y
yi.wu 已提交
843 844
        Returns:
            Program: the program for current parameter server to run.
845 846 847 848 849 850 851 852 853 854 855 856 857 858

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
859
        """
Y
yi.wu 已提交
860 861 862 863
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
864 865 866
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
867 868
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
869
        pserver_program.random_seed = self.origin_program.random_seed
870 871
        pserver_program._copy_dist_param_info_from(self.origin_program)

872
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
873 874 875 876 877 878 879 880
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
881 882 883 884 885
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
886 887 888 889 890 891 892 893 894
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
895
            if self.sync_mode and self.trainer_num > 1:
896
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
897 898 899 900 901 902 903 904 905
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
906

Q
qiaolongfei 已提交
907
        # step 3
908
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
909 910 911
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
912
        # step 3.2
T
typhoonzero 已提交
913 914 915 916
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
917 918
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
919
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
920
        # step 3.3
W
Wu Yi 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
939
        # Iterate through the ops, and if an op and the optimize ops
940
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
941
        # append it into the sub program.
T
typhoonzero 已提交
942 943 944

        global_ops = []

945 946 947
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
948 949
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
950
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
951
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
952 953
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
954
            elif op not in lr_ops:
Q
Qiyang Min 已提交
955
                self._append_pserver_non_opt_ops(block, op)
956

Y
Yancey1989 已提交
957
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
958 959 960 961 962 963 964 965
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
966
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
967 968 969

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
970
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
971 972

            # clone ops
Y
Yancey1989 已提交
973 974
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
975
                # clone sub_block of op
Y
Yancey1989 已提交
976
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
977 978

            # reset the block of op
W
Wu Yi 已提交
979
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
980

981
        # append lr decay ops to the child block if exists
982
        lr_ops = self._get_lr_ops()
983 984
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
985
        if len(lr_ops) > 0:
W
Wu Yi 已提交
986
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
987
                pserver_program.num_blocks - 1)
988
            optimize_blocks.append(lr_decay_block)
989
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
990
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
991
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
992 993
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
994

T
typhoonzero 已提交
995
        # append op to the current block
Q
qiaolongfei 已提交
996
        grad_to_block_id = []
Q
qiaolongfei 已提交
997
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
998
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
999
            per_opt_block = pserver_program._create_block(pre_block_idx)
1000
            optimize_blocks.append(per_opt_block)
1001
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1002
            # append grad merging ops before clip and weight decay
1003 1004
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1005
            for _, op in enumerate(self.optimize_ops):
1006
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1007
                # merged_var should be the input var name of L2Decay
1008 1009 1010
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1011 1012 1013
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1014 1015 1016 1017 1018 1019
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1020
                            op not in global_ops:
1021 1022 1023 1024 1025
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1026

1027
        # dedup grad to ids list
W
Wu Yi 已提交
1028
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1029
        # append global ops
1030
        if global_ops:
W
Wu Yi 已提交
1031
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1032
                pserver_program.num_blocks - 1)
1033
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1034
            for glb_op in global_ops:
X
Xi Chen 已提交
1035
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1036
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1037

1038
        # process distributed lookup_table
Q
qiaolongfei 已提交
1039
        prefetch_var_name_to_block_id = []
1040 1041
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1042
            table_opt_block = self._create_table_optimize_block(
1043
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1044
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1045
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1046
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1047 1048
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1049

T
tangwei12 已提交
1050
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1051 1052
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1053

1054
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1055 1056
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1057 1058 1059 1060 1061 1062
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1063
        attrs = {
1064
            "optimize_blocks": optimize_blocks,
1065 1066 1067
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1068
            "grad_to_block_id": grad_to_block_id,
1069
            "sparse_grad_to_param": sparse_grad_to_param,
1070
        }
T
tangwei12 已提交
1071 1072

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1073
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1074 1075
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1076

T
tangwei12 已提交
1077 1078 1079 1080
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1081 1082 1083 1084 1085
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1086
            attrs=attrs)
1087

W
Wu Yi 已提交
1088
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1089 1090
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1091 1092
        return pserver_program

W
Wu Yi 已提交
1093 1094 1095 1096 1097 1098
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1099

W
Wu Yi 已提交
1100 1101
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1116 1117
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1118 1119
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1120 1121
        return pserver_prog, pserver_startup

1122 1123
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1124
                            pserver_program=None,
1125
                            startup_program=None):
T
typhoonzero 已提交
1126
        """
W
Wu Yi 已提交
1127 1128
        **Deprecated**

T
typhoonzero 已提交
1129 1130 1131
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1132 1133 1134

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1135 1136
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1137
                when initalizing
1138

Y
yi.wu 已提交
1139 1140
        Returns:
            Program: parameter server side startup program.
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1156 1157
        """
        s_prog = Program()
W
Wu Yi 已提交
1158
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1159
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1171
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1172
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1173
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1174 1175 1176 1177
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1178
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1179 1180
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1191 1192

            if op_on_pserver:
1193 1194 1195
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1196
                if op.type in [
1197 1198
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1199
                ]:
W
Wu Yi 已提交
1200
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1201 1202 1203 1204
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1205
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1215

T
typhoonzero 已提交
1216 1217
        return s_prog

1218 1219
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1220
        block_suffix = "block"
1221 1222 1223
        block_idx = 0
        offset = 0
        is_slice = False
1224

1225
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1226

1227 1228
        if not block_name:
            return is_slice, block_idx, offset
1229

1230 1231 1232 1233
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1234 1235 1236 1237 1238
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1302

Y
yi.wu 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1342
    def _init_splited_vars(self):
Y
yi.wu 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1366
        if self.config.slice_var_up:
Y
yi.wu 已提交
1367 1368
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1369 1370 1371
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1372
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1373 1374
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1375 1376 1377
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1378 1379 1380 1381
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1382 1383
        assert (len(grad_blocks) == len(param_blocks))

1384
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1385 1386
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1403
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1404 1405 1406 1407
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1408
        # dict(grad_splited_var -> param_splited_var)
1409
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1410 1411 1412
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1413
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1414
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1415 1416

        # create mapping of endpoint -> split var to create pserver side program
1417
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1427
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1428 1429
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1430
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1431
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1432 1433
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1434 1435
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1436 1437 1438 1439 1440 1441

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1442 1443
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1444
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1445 1446 1447
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1448 1449
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1450 1451
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1452 1453 1454
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1455
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1456
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1457 1458

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1459
                    self.all_out_emb_vars.append(out_var)
1460 1461

                    # delete lookup_table_op
1462
                    delete_ops(program.global_block(), [op])
1463 1464 1465
                    # break for loop
                    break

S
seiriosPlus 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1512
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1513
        # 2. add split_ids_op and send_op to send gradient to pservers
1514

1515 1516
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1517
        table_grad_name = grad_var_name(self.table_name)
1518 1519 1520 1521
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1522
                program.global_block()._insert_op(
1523 1524 1525 1526 1527
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1528 1529
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1530
                program.global_block()._insert_op(
1531
                    index=op_index + 2,
1532
                    type="send",
1533
                    inputs={'X': self.trainer_side_table_grad_list},
1534 1535 1536 1537 1538
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1539
                    attrs={
1540
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1541
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1542
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1543 1544 1545 1546 1547
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1548
                    })
1549 1550 1551 1552 1553 1554
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1555
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1581
        return prefetch_var_name_to_block_id
1582 1583

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1584
                                     pre_block_idx, grad_to_block_id):
1585
        # STEP: create table optimize block
1586
        table_opt_block = pserver_program._create_block(pre_block_idx)
1587
        # create table param and grad var in pserver program
1588 1589
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1590 1591 1592
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1593 1594
        ][0]

Y
Yancey1989 已提交
1595 1596
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1597

T
tangwei12 已提交
1598
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1599 1600
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1601 1602 1603
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1604 1605
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1606
            shape=table_shape,
Y
Yancey1989 已提交
1607 1608 1609
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1610

1611 1612
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1613
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1614
            self.origin_program.global_block().vars[grad_var_name(
1615
                self.table_name)])
1616

1617 1618 1619
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1620

1621 1622 1623
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1624
            pserver_side_table_grad_list = [
1625 1626 1627 1628 1629 1630 1631 1632 1633
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1634
            # append sum op for pserver_side_table_grad_list
1635 1636
            table_opt_block.append_op(
                type="sum",
1637
                inputs={"X": pserver_side_table_grad_list},
1638 1639
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1640 1641
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1642
            origin_grad_name = grad_var.name
1643 1644
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1645 1646
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1647
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1648
            grad_var = pserver_program.global_block()._rename_var(
1649
                origin_grad_name, splited_grad_name)
1650 1651 1652 1653 1654 1655 1656

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1657
        # only support sgd now
1658 1659 1660
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1661
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1662

1663 1664 1665
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1666 1667
        return table_opt_block

T
tangwei12 已提交
1668 1669 1670 1671 1672
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1673
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1674
            name="kLookupTablePath",
T
tangwei12 已提交
1675 1676
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1677

W
Wu Yi 已提交
1678
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1679
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1680 1681 1682 1683
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1684
            attrs={'file_path': "none"})
T
tangwei12 已提交
1685 1686 1687

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1688 1689 1690 1691 1692
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1693
        Create vars for each split.
T
typhoonzero 已提交
1694 1695
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1696 1697 1698 1699
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1700
        Returns:
1701
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1702
                from original var name to each var split.
T
typhoonzero 已提交
1703
        """
1704 1705

        # varname->[(block_id, current_block_size)]
1706
        block_map = collections.OrderedDict()
1707

1708
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1709 1710
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1711
            if varname not in block_map:
T
typhoonzero 已提交
1712
                block_map[varname] = []
1713
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1714

M
minqiyang 已提交
1715
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1716
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1717
            if len(splited) == 1:
1718
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1719
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1720
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1721
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1722 1723 1724 1725 1726
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1727
                continue
T
typhoonzero 已提交
1728
            var_mapping[varname] = []
T
typhoonzero 已提交
1729 1730 1731 1732
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1733

T
typhoonzero 已提交
1734
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1735
                size = block[1]
M
minqiyang 已提交
1736
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1737 1738 1739
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1740
                new_var_name = ""
1741
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1742
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1743
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1744 1745
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1746
                                   (varname, i)
T
typhoonzero 已提交
1747
                var = program.global_block().create_var(
T
typhoonzero 已提交
1748 1749
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1750
                    dtype=orig_var.dtype,
1751
                    type=orig_var.type,
T
typhoonzero 已提交
1752
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1753
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1754
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1755
        return var_mapping
T
done  
typhoonzero 已提交
1756

1757
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1758 1759 1760 1761 1762 1763
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1764
            persistable=persistable)
T
done  
typhoonzero 已提交
1765

Q
Qiao Longfei 已提交
1766 1767 1768 1769 1770 1771 1772
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1773
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1774 1775
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1776
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1777
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1778
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1779 1780
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1781
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1782 1783 1784 1785
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1786 1787 1788 1789
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1790
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1791
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1792 1793 1794 1795
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1796
                attrs={
Q
Qiao Longfei 已提交
1797
                    "sections": height_sections,
1798 1799
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1800 1801 1802
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1803

T
typhoonzero 已提交
1804 1805 1806 1807
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1808
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1821
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1822 1823
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1824 1825
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1826
                return param_shape
1827 1828 1829
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1830 1831 1832
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1833 1834
        elif op_type == "sgd":
            pass
1835 1836 1837 1838
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1839 1840
        return orig_shape

1841 1842
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1843
        orig_var_name = ""
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1854
        else:
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1877
            return None
1878 1879 1880 1881
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1882
        else:
1883
            merged_var_name = orig_varname
1884 1885

        merged_var = pserver_block.vars[merged_var_name]
1886 1887 1888
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1889
            for i in range(self.trainer_num):
1890
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1891
                                   (merged_var_name, i)
1892 1893 1894 1895
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1896 1897
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1898 1899 1900 1901 1902
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1903
        return merged_var
T
typhoonzero 已提交
1904

W
Wu Yi 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1967
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1968 1969
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1970
        program = optimize_block.program
T
typhoonzero 已提交
1971
        pserver_block = program.global_block()
1972
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1983 1984 1985 1986
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1987
        for key in opt_op.input_names:
T
typhoonzero 已提交
1988
            if key == "Grad":
W
Wu Yi 已提交
1989 1990 1991
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2002
            elif key == "Param":
W
Wu Yi 已提交
2003
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2004 2005
                if not param_block:
                    return
T
typhoonzero 已提交
2006
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2007
                    name=param_block.name,
T
typhoonzero 已提交
2008
                    persistable=True,
T
typhoonzero 已提交
2009 2010 2011
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2012
            elif key == "LearningRate":
2013
                # learning rate variable has already be created by non-optimize op,
2014
                # don't create it once again.
2015
                lr_varname = opt_op.input(key)[0]
2016
                if lr_varname in pserver_block.vars:
2017 2018 2019 2020 2021 2022 2023 2024 2025
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2026

T
typhoonzero 已提交
2027
        for key in opt_op.input_names:
2028
            new_shape = None
W
Wu Yi 已提交
2029
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2030
                continue
2031
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2032
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2033
            # update accumulator variable shape
2034 2035
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2036
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2037 2038 2039 2040 2041
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2042

2043
        # change output's ParamOut variable
2044 2045
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2046
        outputs["ParamOut"] = new_inputs["Param"]
2047
        optimize_block.append_op(
T
typhoonzero 已提交
2048 2049
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2050
            outputs=outputs,
G
gongweibao 已提交
2051
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2052

2053 2054 2055 2056 2057 2058
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2070
        grad_block = None
M
minqiyang 已提交
2071
        for _, g in six.iteritems(var_dict):
2072
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2073
                # skip per trainer vars
2074
                if g.name.find(".trainer_") == -1:
2075
                    # only param or grads have splited blocks
2076 2077
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2078 2079
                        grad_block = g
                        break
2080 2081
        return grad_block

Q
Qiyang Min 已提交
2082 2083 2084
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2085
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2086 2087 2088 2089
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2090
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2091 2092 2093

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2094
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2095 2096 2097 2098
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2099
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2100

Y
Yancey1989 已提交
2101
        return block.append_op(
G
gongweibao 已提交
2102
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2103 2104

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2105
        program = optimize_block.program
2106
        # Append the ops for parameters that do not need to be optimized/updated
2107 2108
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2109
        for key, varlist in six.iteritems(inputs):
2110 2111
            if not isinstance(varlist, list):
                varlist = [varlist]
2112 2113 2114
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2115
                # for inputs/outputs
2116
                grad_block = self._get_pserver_grad_param_var(
2117 2118
                    var, program.global_block().vars)
                if grad_block:
2119
                    varlist[i] = grad_block
2120
                elif var.name not in program.global_block().vars:
2121 2122 2123 2124 2125
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2126

2127 2128
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2129
        for key, varlist in six.iteritems(outputs):
2130 2131
            if not isinstance(varlist, list):
                varlist = [varlist]
2132 2133 2134
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2135 2136
                    var, program.global_block().vars)
                if grad_block:
2137
                    varlist[i] = grad_block
2138
                elif var.name not in program.global_block().vars:
2139 2140 2141 2142 2143
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2144

Y
Yancey1989 已提交
2145
        return optimize_block.append_op(
T
typhoonzero 已提交
2146
            type=opt_op.type,
T
typhoonzero 已提交
2147 2148
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2149
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2150

2151 2152 2153 2154
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2155
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2156
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2157 2158 2159 2160 2161 2162
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2163 2164
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2165 2166 2167 2168 2169 2170
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2171
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2172
        if "Param" in op.input_names and \
T
tangwei12 已提交
2173
                "LearningRate" in op.input_names:
2174 2175 2176 2177 2178 2179 2180
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2181
        if op.input("Param")[0] in param_names:
2182 2183 2184
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2185
                param = op.input("Param")[0]
T
typhoonzero 已提交
2186
                if same_or_split_var(n, param) and n != param:
2187 2188 2189
                    return True
            return False

T
typhoonzero 已提交
2190
    def _get_input_map_from_op(self, varmap, op):
2191
        """Returns a dict from op input name to the vars in varmap."""
2192
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2204
        """Returns a dict from op output name to the vars in varmap."""
2205
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2215 2216

    def _get_lr_ops(self):
2217 2218 2219
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2220 2221 2222 2223
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2224 2225 2226 2227 2228
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2229 2230 2231 2232
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2233
            if self._is_optimizer_op(op):
2234 2235 2236 2237
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2238
        block = self.origin_program.global_block()
2239 2240 2241 2242 2243
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2244

2245 2246 2247 2248 2249
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2250
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2251 2252 2253 2254 2255 2256
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2257 2258
                    # we only need to append op for once
                    break
2259
        return lr_ops
Y
Yancey1989 已提交
2260

W
Wu Yi 已提交
2261 2262 2263 2264 2265
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2266 2267
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2268 2269 2270
            return True
        return False

Y
Yancey1989 已提交
2271
    def _get_optimize_pass(self):
2272
        """
2273
        Get optimizer operators, parameters and gradients from origin_program
2274 2275
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2276
            params_grads (dict): parameter->gradient.
2277
        """
Y
Yancey1989 已提交
2278 2279 2280
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2281 2282
        # tmp set to dedup
        optimize_params = set()
2283
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2284
        for op in block.ops:
W
Wu Yi 已提交
2285
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2286
                opt_ops.append(op)
2287 2288 2289 2290 2291 2292
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2293 2294
                        params_grads.append([
                            origin_var_dict[param_name],
2295
                            origin_var_dict[grad_name]
2296
                        ])
Y
Yancey1989 已提交
2297 2298 2299
            else:
                pass
        return opt_ops, params_grads