creation.py 41.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19
from ..fluid.framework import unique_name
20
from ..fluid.framework import _current_expected_place, _get_paddle_place
21
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
27 28
from paddle.common_ops_import import *
# TODO: define functions to get create a tensor  
29
from ..fluid.layers import linspace  #DEFINE_ALIAS
30
import paddle
31

W
wangchaochaohu 已提交
32
__all__ = [
33
    'to_tensor',
34 35
    'diag',
    #       'get_tensor_from_selected_rows',
36
    'linspace',
37 38 39 40
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
41
    'arange',
42
    'eye',
W
wangchaochaohu 已提交
43
    'full',
P
Pei Yang 已提交
44
    'full_like',
45
    'empty',
46
    'empty_like',
W
WuHaobo 已提交
47 48
    'triu',
    'tril',
49 50
    'meshgrid',
    'assign',
W
wangchaochaohu 已提交
51 52 53
]


54 55
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
56
    r"""
C
chentianyu03 已提交
57 58
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
59 60 61

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
L
Leo Chen 已提交
62
    and returned. 
63 64

    Args:
C
chentianyu03 已提交
65 66
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
67
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
C
chentianyu03 已提交
68 69
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
70
            except for python float number which gets dtype from ``get_default_type`` .
71 72 73
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
74 75 76
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
C
chentianyu03 已提交
77
        Tensor: A Tensor constructed from ``data`` .
78 79

    Raises:
C
chentianyu03 已提交
80
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor
81 82
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
83
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 
84 85 86 87 88 89 90 91 92 93 94

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
95 96
        # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #        [1])
97 98 99

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
100 101
        # Tensor(shape=[1], dtype=int32, place=CPUPlace, stop_gradient=True,
        #        [1])
102 103

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
104 105
        # Tensor(shape=[1], dtype=float32, place=CUDAPinnedPlace, stop_gradient=True,
        #        [1])
106 107

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
108 109 110
        # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
111

C
chentianyu03 已提交
112 113
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.VarBase'>
114 115

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
C
chentianyu03 已提交
116 117 118
        # Tensor(shape=[2, 2], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
119 120
    """

121
    place = _get_paddle_place(place)
122 123
    if place is None:
        place = _current_expected_place()
124 125 126
    elif not isinstance(
            place,
        (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
127
        raise ValueError(
128
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        else:
            raise TypeError(
C
chentianyu03 已提交
157
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor".
158
                format(type(data)))
159 160 161 162 163 164 165 166 167 168 169 170
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
        data = data.astype(dtype)
171

C
chentianyu03 已提交
172 173 174 175 176 177
    return paddle.Tensor(
        value=data,
        place=place,
        persistable=False,
        zero_copy=False,
        stop_gradient=stop_gradient)
178 179


180
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
181
    """
S
swtkiwi 已提交
182

183 184
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
185

P
Pei Yang 已提交
186
    Args:
187 188
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
189
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
190 191
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
192 193
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
194
    Returns:
195
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
196
    
P
Pei Yang 已提交
197 198
    Examples:
        .. code-block:: python
199

P
Pei Yang 已提交
200 201
          import paddle
          import numpy as np
202 203
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
204
          output = paddle.full_like(input, 2.0)
205 206
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
207 208 209
    """

    if dtype is None:
210
        dtype = x.dtype
211
    else:
212 213 214 215 216
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
217

218
    helper = LayerHelper("full_like", **locals())
219 220 221
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
222 223
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
224
                'full_like/zeros_like/ones_like')
225
    out = helper.create_variable_for_type_inference(dtype=dtype)
226

P
Pei Yang 已提交
227 228
    helper.append_op(
        type='fill_any_like',
229
        inputs={'X': [x]},
230
        attrs={'value': fill_value,
231
               "dtype": dtype},
P
Pei Yang 已提交
232
        outputs={'Out': [out]})
233
    out.stop_gradient = True
P
Pei Yang 已提交
234 235 236
    return out


237
def ones(shape, dtype=None, name=None):
238
    """
S
swtkiwi 已提交
239

240 241 242
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
243
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
244
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
245 246 247
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
248
    Returns:
249
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
250 251 252 253

    Examples:
        .. code-block:: python

254 255
          import paddle 
          
256
          # default dtype for ones OP
257 258 259 260 261 262 263 264 265
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
266
          # shape is a Tensor
267
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
268 269 270
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
271
    """
272 273 274
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
275 276


277
def ones_like(x, dtype=None, name=None):
278
    """
279 280
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
281 282

    Args:
283 284 285 286 287 288 289 290 291 292
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

293
    Returns:
294 295 296 297 298
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
299
        float64, int32 or int64.
300 301 302 303

    Examples:
        .. code-block:: python

304
            import paddle
305

306
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
307 308
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
309

310 311
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
312 313


314
def zeros(shape, dtype=None, name=None):
315 316 317 318
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
319
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
320
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
321 322 323
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
324 325

    Returns:
326
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
327 328 329 330 331

    Examples:
        .. code-block:: python

          import paddle
332
          
333 334 335 336 337 338 339 340 341
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
342
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
343
          data3 = paddle.zeros(shape=shape, dtype='int32') 
344 345
          # [[0 0]
          #  [0 0]]
346
    """
347 348 349
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
350 351


352
def zeros_like(x, dtype=None, name=None):
353
    """
354 355
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
356 357

    Args:
358 359 360 361 362 363
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
364 365 366
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
367 368

    Returns:
369 370
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
371

372
    Raise:
373
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
374
        float64, int32 or int64.
375

376 377 378
    Examples:
        .. code-block:: python

379
            import paddle
380

Z
zhupengyang 已提交
381
            x = paddle.to_tensor([1, 2, 3])
382 383
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
384

385 386
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
387 388


389
def eye(num_rows, num_columns=None, dtype=None, name=None):
390
    """
391
    
392
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
393

394
    Args:
395 396
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
397
            If None, default: num_rows.
W
wangchaochaohu 已提交
398
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
399 400
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
401 402
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
403

404
    Returns:
405
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
406

407 408
    Examples:
        .. code-block:: python
409
          
410
          import paddle
411

412
          data = paddle.eye(3, dtype='int32')
413 414 415
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
416
          data = paddle.eye(2, 3, dtype='int32')
417 418
          # [[1 0 0]
          #  [0 1 0]]
419 420
    """

421 422 423
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
424
        num_columns = num_rows
425 426 427 428 429
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
430 431


432
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
433
    """
S
swtkiwi 已提交
434

435
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
436 437
    
    Args:
438
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
439 440
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
441 442 443
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
444
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
445
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
446
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
447 448 449
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
450
    Returns:
451
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
452

W
wangchaochaohu 已提交
453 454 455
    Examples:
        .. code-block:: python

456
          import paddle
W
wangchaochaohu 已提交
457

458 459 460
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
461

462
          # attr shape is a list which contains Tensor.
463
          positive_2 = paddle.full([1], 2, "int32")
464 465
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
466

467
          # attr shape is a Tensor.
468
          shape = paddle.full([2], 2, "int32")
469 470 471
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
472
          
473
          # attr fill_value is a Tensor.
474
          val = paddle.full([1], 2.0, "float32")
475 476 477
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
478 479 480 481 482
    """

    if dtype is None:
        dtype = 'float32'

483
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
484 485


486
def arange(start=0, end=None, step=1, dtype=None, name=None):
487
    """
488
    This OP returns a 1-D Tensor with spaced values within a given interval.
489

490 491
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
492

493 494
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
495 496

    Parameters:
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
515

516 517
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
518 519
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
520

521
    Raises:
522
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
523

Z
zhupengyang 已提交
524
    Examples:
525 526
        .. code-block:: python

Z
zhupengyang 已提交
527
            import paddle
528

Z
zhupengyang 已提交
529 530
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
531

Z
zhupengyang 已提交
532 533
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
534

Z
zhupengyang 已提交
535 536 537
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
538

Z
zhupengyang 已提交
539 540 541
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
542 543 544 545 546 547 548
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
549

550
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
551 552 553 554 555 556


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
557
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
558 559 560 561 562

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
563
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
587
def tril(x, diagonal=0, name=None):
588
    r"""
W
WuHaobo 已提交
589
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
590
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
591 592 593 594
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
595
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
596 597 598 599 600 601 602 603 604 605 606 607
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
608
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
609
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
610 611 612

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
613
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
614 615 616 617 618

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
619
            import paddle
W
WuHaobo 已提交
620 621 622 623 624 625

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

Y
yaoxuefeng 已提交
626

627
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
628 629
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
630 631 632 633 634
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
635
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
636 637 638 639 640
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
641
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
642 643 644 645
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

646 647 648
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
649
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
650 651 652 653

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
654
def triu(x, diagonal=0, name=None):
655
    r"""
W
WuHaobo 已提交
656
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
657
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
658 659 660 661
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
662
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
663 664 665 666 667 668 669 670 671 672 673 674
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
675
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
676
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
677 678 679

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
680
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
681 682 683 684 685

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
686
            import paddle
W
WuHaobo 已提交
687 688 689 690 691

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
692

W
WuHaobo 已提交
693 694

            # example 1, default diagonal
695
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
696
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
697 698 699 700 701
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
702
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
703 704 705 706 707
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
708
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
709 710 711 712 713
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
714 715
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
716
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
717 718

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
719 720


721
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
722
    """
723
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
724 725 726
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
727
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
728
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
729 730
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
731 732 733
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
734
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
735 736 737 738 739 740

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
741 742 743 744
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
745

Y
yaoxuefeng 已提交
746 747
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
748 749 750 751 752 753

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

754 755
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
756
    if in_dygraph_mode():
757 758
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
759 760
        return out

761
    name = kwargs.get("name", None)
S
suytingwan 已提交
762 763
    helper = LayerHelper('meshgrid', **locals())

764 765
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
766

767
    for id, input_ in enumerate(args):
S
suytingwan 已提交
768 769 770 771
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

772
    num = len(args)
S
suytingwan 已提交
773
    out = [
774
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
775 776
        for i in range(num)
    ]
777 778
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
779 780

    return out
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
857 858 859 860 861 862 863
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

864 865 866 867 868 869 870 871 872 873 874 875 876
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = core.ops.empty('shape', shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        out = core.ops.empty('shape', x.shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102


def assign(x, output=None):
    """
 
 
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
        x (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float16, float32, float64, int32 and int64.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('assign', **locals())
    check_type(x, 'x', (Variable, numpy.ndarray), 'assign')
    if isinstance(x, Variable):
        check_dtype(
            x.dtype, 'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
        if output is None:
            output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='assign', inputs={'X': [x]}, outputs={'Out': [output]})
    elif isinstance(x, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(x.dtype)
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in x.flat]
        elif dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in x.flat]
        elif dtype == VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in x.flat]
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in x.flat]
        else:
            raise TypeError(
                "When the type of 'x' in assign is numpy.ndarray, "
                "the data type of 'x' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if x.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        if output is None:
            output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={'dtype': dtype,
                   'shape': list(x.shape),
                   value_name: values})

    return output