fusion_lstm_op.cc 25.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc_compute.h"
20
#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
22 23
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
24 25 26 27
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
28 29
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of LSTM.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
30
                 "Assert only one Input(WeightX) of LSTM.");
31
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
32
                 "Assert only one Input(WeightH) of LSTM.");
33 34 35
  PADDLE_ENFORCE(ctx->HasInput("Bias"), "Assert only one Input(Bias) of LSTM.");
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of LSTM.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
36
                 "Assert only one Output(Hidden) of LSTM.");
37 38
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Assert only one Output(Cell) of LSTM.");
T
tensor-tang 已提交
39

T
tensor-tang 已提交
40 41
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
42

43 44
  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
68 69
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
70 71
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
72 73 74 75 76 77 78
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90
  if (ctx->Attrs().Get<bool>("use_peepholes")) {
    PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                      "The second dimension of Input(Bias) should be "
                      "7 * %d if enable peepholes connection",
                      frame_size);
    ctx->SetOutputDim("CheckedCell", {2, frame_size});
  } else {
    PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                      "The second dimension of Input(Bias) should be "
                      "4 * %d if disable peepholes",
                      frame_size);
  }
T
tensor-tang 已提交
91

T
tensor-tang 已提交
92
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
93 94
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
95 96
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
97
  int xx_width;
T
tensor-tang 已提交
98
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
99 100 101
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
102
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
103
                   "Assert only one Output(BatchedInput) of LSTM.");
104
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
T
tensor-tang 已提交
105
                   "Assert only one Output(BatchedHidden) of LSTM.");
106
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
T
tensor-tang 已提交
107
                   "Assert only one Output(BatchedCell) of LSTM.");
108
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
109
                   "Assert only one Output(ReorderedH0) of LSTM");
110
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
T
tensor-tang 已提交
111
                   "Assert only one Output(ReorderedC0) of LSTM.");
T
tensor-tang 已提交
112 113 114
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
115
  }
T
tensor-tang 已提交
116 117
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
118 119 120 121 122
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
123
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
124 125 126 127
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
128
  AddInput("X",
T
tensor-tang 已提交
129
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
130
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
131 132 133 134 135 136 137 138 139
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
140 141 142
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
143 144
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
145 146 147 148 149 150 151 152
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
153 154 155 156 157 158 159 160 161 162 163 164
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
165
  AddOutput("Hidden",
T
tensor-tang 已提交
166
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
167 168
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
169
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
170
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
171
  AddOutput("XX",
T
tensor-tang 已提交
172 173 174
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
175 176
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
177 178 179 180 181
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
182 183
  AddOutput("CheckedCell", "(Tensor) (2 x D) only for peephole.")
      .AsIntermediate();
T
tensor-tang 已提交
184 185 186 187 188 189 190 191
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
192 193 194 195
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
214 215
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
216 217 218
)DOC");
}

T
tensor-tang 已提交
219
template <typename T>
T
tensor-tang 已提交
220
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
221
 public:
T
tensor-tang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

T
tensor-tang 已提交
239 240 241 242 243 244 245 246 247 248 249 250
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");     \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");
T
tensor-tang 已提交
251 252 253 254 255 256 257 258 259 260

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273
#define INIT_BASE_INPUT_DATAS                                 \
  const T* x_data = x->data<T>();                             \
  const T* wx_data = wx->data<T>();                           \
  const T* wh_data = wh->data<T>();                           \
  /* diagonal weight*/                                        \
  const T* wc_data = bias->data<T>() + D4;                    \
  /* for peephole only*/                                      \
  T* checked_cell_data = nullptr;                             \
  auto place = ctx.GetPlace();                                \
  if (use_peepholes) {                                        \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/          \
    auto* checked_cell = ctx.Output<Tensor>("CheckedCell");   \
    checked_cell_data = checked_cell->mutable_data<T>(place); \
T
tensor-tang 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  }

/// Compute LSTM
#define GEMM_WH_ADDON(bs, prev, out)                                           \
  blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
            wh_data, D4, static_cast<T>(1), out, D4)

#define GET_Ct(ct_1, gates, ct)                   \
  /* C_t = C_t-1 * fgated + cand_gated * igated*/ \
  act_cand(D, gates, gates);                      \
  blas.VMUL(D, gates, gates + D, gates + D);      \
  blas.VMUL(D, ct_1, gates + D2, gates + D2);     \
  blas.VADD(D, gates + D, gates + D2, ct)

#define GET_Ht(ct, gates, ht)        \
  /* H_t = act_cell(C_t) * ogated */ \
  act_cell(D, ct, gates + D2);       \
  blas.VMUL(D, gates + D2, gates + D3, ht)

T
tensor-tang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
#define GET_Ct_NOH0C0(gates, ct)     \
  /* C_t = igated * cgated*/         \
  act_gate(D, gates + D, gates + D); \
  act_cand(D, gates, gates);         \
  blas.VMUL(D, gates, gates + D, ct)

#define COMPUTE_CtHt_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                \
  act_gate(D, gates + D3, gates + D3);     \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                         \
  /* get outgated, put W_oc * C_t on igated */      \
  blas.VMUL(D, wc_data + D2, ct, gates + D);        \
  blas.VADD(D, gates + D, gates + D3, gates + D3);  \
  act_gate(D, gates + D3, gates + D3);              \
T
tensor-tang 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht)        \
  /* get fgated and igated*/                              \
  blas.VMUL(D, wc_data, ct_1, checked_cell_data);         \
  blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \
  blas.VADD(D2, checked_cell_data, gates + D, gates + D); \
  act_gate(D2, gates + D, gates + D);                     \
  GET_Ct(ct_1, gates, ct);                                \
  /* get ogated*/                                         \
  blas.VMUL(D, wc_data + D2, ct, gates + D);              \
  blas.VADD(D, gates + D, gates + D3, gates + D3);        \
  act_gate(D, gates + D3, gates + D3);                    \
  GET_Ht(ct, gates, ht)

T
tensor-tang 已提交
325 326
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
327 328 329
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
330
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
331

T
tensor-tang 已提交
332
    auto x_lod = x->lod();
T
tensor-tang 已提交
333
    const int total_T = x_dims[0];
T
tensor-tang 已提交
334
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
335 336
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
337
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
338 339
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
340 341 342
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
B
Brian Liu 已提交
343

T
tensor-tang 已提交
344 345 346 347 348
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
349 350
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
351 352 353 354
      xx_offset = -D4;
      gate_offset = -D;
    }

T
tensor-tang 已提交
355 356 357 358 359 360 361
#define MOVE_ONE_STEP                    \
  prev_h_data = h_out_data;              \
  prev_c_data = c_out_data;              \
  xx_data = xx_data + xx_offset;         \
  h_out_data = h_out_data + gate_offset; \
  c_out_data = c_out_data + gate_offset

T
tensor-tang 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#define PROCESS_H0C0_DEFINES                       \
  int bid = is_reverse ? N - 1 - i : i;            \
  int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; \
  const T* prev_c_data = nullptr;                  \
  const T* prev_h_data = nullptr;                  \
  int tstart = 0

#define PROCESS_H0C0_PEEPHOLE                                      \
  PROCESS_H0C0_DEFINES;                                            \
  if (h0_data) {                                                   \
    prev_h_data = h0_data + bid * D;                               \
    prev_c_data = c0_data + bid * D;                               \
  } else {                                                         \
    COMPUTE_CtHt_PEEPHOLE_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                                 \
    tstart = 1;                                                    \
  }

#define PROCESS_H0C0                                      \
  PROCESS_H0C0_DEFINES;                                   \
  if (h0_data) {                                          \
    prev_h_data = h0_data + bid * D;                      \
    prev_c_data = c0_data + bid * D;                      \
  } else {                                                \
    COMPUTE_CtHt_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                        \
    tstart = 1;                                           \
T
tensor-tang 已提交
389
  }
B
Brian Liu 已提交
390

T
tensor-tang 已提交
391 392
    if (use_peepholes) {
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
393
        PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
394
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
395 396 397 398 399 400
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt_PEEPHOLE(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
      }
    } else {
401 402 403 404 405 406 407
      const auto& ker =
          math::jitkernel::KernelPool::Instance()
              .template Get<math::jitkernel::LSTMKernel<T>, int,
                            const std::string&, const std::string&,
                            const std::string&>(D, act_gate_str, act_cand_str,
                                                act_cell_str);

T
tensor-tang 已提交
408
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
409
        PROCESS_H0C0
T
tensor-tang 已提交
410
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
411
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
412
          ker->ComputeCtHt(xx_data, prev_c_data, c_out_data, h_out_data);
T
tensor-tang 已提交
413 414
          MOVE_ONE_STEP;
        }
T
tensor-tang 已提交
415
      }
T
tensor-tang 已提交
416
    }
T
tensor-tang 已提交
417 418
#undef PROCESS_H0C0_DEFINES
#undef PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
419 420
#undef PROCESS_H0C0
#undef MOVE_ONE_STEP
T
tensor-tang 已提交
421 422 423 424
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
425
    INIT_BASE_INPUT_OUTPUT
426
    INIT_BASE_SIZES
T
tensor-tang 已提交
427
    if (x->lod()[0].size() == 2) {
428
      xx->Resize({x_dims[0], D4});
T
tensor-tang 已提交
429
      SeqCompute(ctx);
T
tensor-tang 已提交
430
      return;
T
tensor-tang 已提交
431 432
    }
    INIT_VEC_FUNC
T
tensor-tang 已提交
433
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
434

T
tensor-tang 已提交
435 436 437 438 439 440 441 442 443 444 445
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
446

T
tensor-tang 已提交
447
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
448 449
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
450 451 452 453
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
454 455
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
456 457 458
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
459
                                        bias->data<T>());
T
tensor-tang 已提交
460 461
    }

T
tensor-tang 已提交
462 463 464 465 466 467 468
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
469 470
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
471 472 473 474 475 476
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
477 478
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
T
tensor-tang 已提交
479 480 481 482 483 484 485 486
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
487 488 489 490 491
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
T
tensor-tang 已提交
492 493 494 495 496 497 498
        GET_Ct_NOH0C0(cur_in_data, cur_c_out_data);
        if (use_peepholes) {
          blas.VMUL(D, wc_data + D2, cur_c_out_data, cur_in_data + D);
          blas.VADD(D, cur_in_data + D, cur_in_data + D3, cur_in_data + D3);
        }
        act_gate(D, cur_in_data + D3, cur_in_data + D3);
        GET_Ht(cur_c_out_data, cur_in_data, cur_h_out_data);
T
tensor-tang 已提交
499 500 501 502 503
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
504 505
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
506
    }
T
tensor-tang 已提交
507 508
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;

#define DEFINE_CUR                        \
  T* cur_in_data = batched_input_data;    \
  T* cur_prev_c_data = prev_c_data;       \
  T* cur_c_out_data = batched_c_out_data; \
  T* cur_h_out_data = batched_h_out_data

#define MOVE_ONE_BATCH  \
  cur_in_data += D4;    \
  cur_prev_c_data += D; \
  cur_c_out_data += D;  \
  cur_h_out_data += D

#define MOVE_ONE_STEP                  \
  prev_c_data = batched_c_out_data;    \
  prev_h_data = batched_h_out_data;    \
  batched_c_out_data = cur_c_out_data; \
  batched_h_out_data = cur_h_out_data; \
  batched_input_data = cur_in_data
B
Brian Liu 已提交
532

T
tensor-tang 已提交
533 534 535 536 537 538 539 540 541
    if (use_peepholes) {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt_PEEPHOLE(cur_in_data, cur_prev_c_data, cur_c_out_data,
                                cur_h_out_data);
          MOVE_ONE_BATCH;
B
Brian Liu 已提交
542
        }
T
tensor-tang 已提交
543 544 545
        MOVE_ONE_STEP;
      }
    } else {
546 547 548 549 550 551 552
      const auto& ker =
          math::jitkernel::KernelPool::Instance()
              .template Get<math::jitkernel::LSTMKernel<T>, int,
                            const std::string&, const std::string&,
                            const std::string&>(D, act_gate_str, act_cand_str,
                                                act_cell_str);

T
tensor-tang 已提交
553 554 555 556 557
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
558 559
          ker->ComputeCtHt(cur_in_data, cur_prev_c_data, cur_c_out_data,
                           cur_h_out_data);
T
tensor-tang 已提交
560 561 562
          MOVE_ONE_BATCH;
        }
        MOVE_ONE_STEP;
T
tensor-tang 已提交
563 564
      }
    }
T
tensor-tang 已提交
565 566 567
#undef MOVE_ONE_STEP
#undef MOVE_ONE_BATCH
#undef DEFINE_CUR
T
tensor-tang 已提交
568 569

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
570 571 572 573
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
574
  }
T
tensor-tang 已提交
575

T
tensor-tang 已提交
576
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
577
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
578 579 580 581 582
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
583 584

#undef COMPUTE_CtHt_PEEPHOLE
T
tensor-tang 已提交
585 586 587
#undef GET_Ct_NOH0C0
#undef COMPUTE_CtHt_NOH0C0
#undef COMPUTE_CtHt_PEEPHOLE_NOH0C0
T
tensor-tang 已提交
588 589 590 591
#undef GET_Ht
#undef GET_Ct
#undef GEMM_WH_ADDON
#undef INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
592 593 594
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
595 596 597 598 599 600
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
601
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
602 603
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
604 605
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);