fusion_lstm_op.cc 15.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>

namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("Input"),
                 "Input(Input) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Weight"),
                 "Input(Weight) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                 "Output(BatchGate) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                 "Output(BatchGate) of LSTM should not be null.");

  auto in_dims = ctx->GetInputDim("Input");
  PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

  int frame_size = in_dims[1] / 4;
  auto w_dims = ctx->GetInputDim("Weight");
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "The rank of Input(Weight) should be 2.");
  PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
                    "The first dimension of Input(Weight) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                    "The second dimension of Input(Weight) "
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

  if (ctx->Attrs().Get<bool>("use_peepholes")) {
    PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                      "The second dimension of Input(Bias) should be "
                      "7 * %d if enable peepholes connection",
                      frame_size);
  } else {
    PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                      "The second dimension of Input(Bias) should be "
                      "4 * %d if disable peepholes connection",
                      frame_size);
  }

  framework::DDim out_dims({in_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
  ctx->SetOutputDim("BatchGate", in_dims);
  ctx->SetOutputDim("BatchCellPreAct", out_dims);
  ctx->ShareLoD("Input", "Hidden");
  ctx->ShareLoD("Input", "Cell");
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
  AddInput("Input",
           "(LoDTensor) the first input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X 4D), where T is the "
           "total time steps in this mini-batch, D is the hidden size.");
  AddInput("H0",
           "(Tensor, optional) the initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) the initial cell state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
  AddInput("Weight",
           "(Tensor) the learnable hidden-hidden weights."
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
           "(Tensor) the learnable weights, which contains two parts: "
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
  AddOutput("Hidden",
            "(LoDTensor) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("BatchGate",
            "(LoDTensor) This LoDTensor contains input gate, forget gate "
            "and output gate after the nonlinear computation. This "
            "LoDTensor has the same shape as the reorganized input, which "
            "is also be called batch input. The LoD size is 2. The first "
            "LoD is the batch offsets and the second LoD contains the "
            "indexes, which denote the position of reorganized sequence "
            "in the raw input.")
      .AsIntermediate();
  AddOutput("BatchCellPreAct",
            "(LoDTensor) This LoDTensor is obtained in the forward and used "
            "in the backward.")
      .AsIntermediate();
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
Long-Short Term Memory (LSTM) Operator.

The defalut implementation is diagonal/peephole connection
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) $$

$$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) $$

$$ \\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) $$

$$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) $$

$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

$$ h_t = o_t \\odot act_h(c_t) $$

- W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
  of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
  are diagonal weight matrices for peephole connections. In our implementation,
  we use vectors to reprenset these diagonal weight matrices.
- The b terms denote bias vectors ($b_i$ is the input gate bias vector).
- $\sigma$ is the non-line activations, such as logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- $act_g$ and $act_h$ are the cell input and cell output activation functions
  and `tanh` is usually used for them.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.

Set `use_peepholes` False to disable peephole connection. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Users can choose to use fully-connect operator before LSTM operator.

)DOC");
}

template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
}

template <typename DeviceContext, typename T>
class LSTMKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

    auto* batch_gate = ctx.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(ctx.GetPlace());
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    hidden_out->mutable_data<T>(ctx.GetPlace());
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    cell_out->mutable_data<T>(ctx.GetPlace());

    bool is_reverse = ctx.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& device_ctx = ctx.template device_context<DeviceContext>();
    to_batch(device_ctx, *input, batch_gate, true, is_reverse);

    auto in_dims = input->dims();
    int frame_size = static_cast<int>(in_dims[1] / 4);
    framework::DDim dims({in_dims[0], frame_size});

    if (bias) {
      Tensor b = *bias;
      b.Resize({bias->numel(), 1});
      Tensor gate_bias = b.Slice(0, 4 * frame_size);
      math::RowwiseAdd<DeviceContext, T> add_bias;
      add_bias(device_ctx, *batch_gate, gate_bias, batch_gate);
    }

    math::LstmMetaValue<T> lstm_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      // the code style in LstmMetaValue will be updated later.

      lstm_value.check_ig = bias_data + 4 * frame_size;
      lstm_value.check_fg = lstm_value.check_ig + frame_size;
      lstm_value.check_og = lstm_value.check_fg + frame_size;
    } else {
      lstm_value.check_ig = nullptr;
      lstm_value.check_fg = nullptr;
      lstm_value.check_og = nullptr;
    }
    lstm_value.prev_state_value = nullptr;
    Tensor ordered_c0;

    framework::Vector<size_t> order(batch_gate->lod()[2]);

    if (cell_t0) {
      // Since the batch computing for LSTM reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(device_ctx, *cell_t0, order,
                                         &ordered_c0, true);
      lstm_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
    LoDTensor batch_hidden, batch_cell;
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
    batch_hidden.mutable_data<T>(dims, ctx.GetPlace());
    batch_cell.mutable_data<T>(dims, ctx.GetPlace());
    batch_cell_pre_act->mutable_data<T>(dims, ctx.GetPlace());

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));

    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor out_t = batch_hidden.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
        blas.MatMul(pre_hidden_t, false, *weight, false, static_cast<T>(1.0),
                    &gate_t, static_cast<T>(1.0));
      } else if (hidden_t0) {
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTM reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
        Tensor ordered_h0;
        ReorderInitState<DeviceContext, T>(device_ctx, *hidden_t0, order,
                                           &ordered_h0, true);
        blas.MatMul(ordered_h0, false, *weight, false, static_cast<T>(1.0),
                    &gate_t, static_cast<T>(1.0));
      }

      lstm_value.gate_value = gate_t.data<T>();
      lstm_value.output_value = out_t.data<T>();
      lstm_value.state_value = cell_t.data<T>();
      lstm_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
          device_ctx, lstm_value, frame_size, cur_batch_size, gate_act,
          cell_act, cand_act);
      lstm_value.prev_state_value = lstm_value.state_value;
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_hidden.set_lod(batch_gate->lod());
    // restore the output hidden in LoDTensor from the batch hidden
    to_seq(device_ctx, batch_hidden, hidden_out);

    batch_cell.set_lod(batch_gate->lod());
    // restore the output cell state in LoDTensor from the batch cell
    to_seq(device_ctx, batch_cell, cell_out);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(lstm, ops::LSTMOp, ops::LSTMOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(
    fusion_lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMKernel<paddle::platform::CPUDeviceContext, double>);