fusion_lstm_op.cc 17.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17 18 19 20 21
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
DECLARE_int32(paddle_num_threads);
T
tensor-tang 已提交
22 23 24 25 26

namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
35 36
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
37 38 39 40
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
T
tensor-tang 已提交
41 42
  PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"),
                 "Output(BatchedGate) of LSTM should not be null.");
T
tensor-tang 已提交
43
  PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
T
tensor-tang 已提交
44
                 "Output(BatchedGate) of LSTM should not be null.");
T
tensor-tang 已提交
45

T
tensor-tang 已提交
46 47
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
48 49 50 51 52 53 54 55 56 57 58 59

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
74 75
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
76 77
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
78 79 80 81 82 83 84 85
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

T
tensor-tang 已提交
86 87 88 89 90 91
  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);
T
tensor-tang 已提交
92

T
tensor-tang 已提交
93
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
94 95
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
96
  ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]});
T
tensor-tang 已提交
97
  ctx->SetOutputDim("BatchCellPreAct", out_dims);
T
tensor-tang 已提交
98 99 100 101 102 103
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");

  int xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
104 105 106 107 108
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
109
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
110 111 112 113
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
114
  AddInput("X",
T
tensor-tang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
           "(LoDTensor) the first input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X 4D), where T is the "
           "total time steps in this mini-batch, D is the hidden size.");
  AddInput("H0",
           "(Tensor, optional) the initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) the initial cell state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
  AddInput("Weight",
           "(Tensor) the learnable hidden-hidden weights."
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
           "(Tensor) the learnable weights, which contains two parts: "
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
  AddOutput("Hidden",
            "(LoDTensor) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
149 150 151 152 153 154
  AddOutput("XX",
            "(LoDTensor) the first input is a LodTensor, which support "
            "variable-time length input sequence. The underlying tensor in "
            "this LoDTensor is a matrix with shape (T X 4D), where T is the "
            "total time steps in this mini-batch, D is the hidden size.");
  AddOutput("BatchedGate",
T
tensor-tang 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            "(LoDTensor) This LoDTensor contains input gate, forget gate "
            "and output gate after the nonlinear computation. This "
            "LoDTensor has the same shape as the reorganized input, which "
            "is also be called batch input. The LoD size is 2. The first "
            "LoD is the batch offsets and the second LoD contains the "
            "indexes, which denote the position of reorganized sequence "
            "in the raw input.")
      .AsIntermediate();
  AddOutput("BatchCellPreAct",
            "(LoDTensor) This LoDTensor is obtained in the forward and used "
            "in the backward.")
      .AsIntermediate();
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
Long-Short Term Memory (LSTM) Operator.

The defalut implementation is diagonal/peephole connection
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) $$

$$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) $$

$$ \\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) $$

$$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) $$

$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

$$ h_t = o_t \\odot act_h(c_t) $$

- W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
  of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
  are diagonal weight matrices for peephole connections. In our implementation,
  we use vectors to reprenset these diagonal weight matrices.
- The b terms denote bias vectors ($b_i$ is the input gate bias vector).
- $\sigma$ is the non-line activations, such as logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- $act_g$ and $act_h$ are the cell input and cell output activation functions
  and `tanh` is usually used for them.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.

Set `use_peepholes` False to disable peephole connection. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Users can choose to use fully-connect operator before LSTM operator.

)DOC");
}

template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
T
tensor-tang 已提交
243
  // TODO(TJ): check mem copy perf
T
tensor-tang 已提交
244 245 246
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
}

T
tensor-tang 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
// TODO(TJ): can move to math::details
template <typename DeviceContext, typename T>
inline void SimpleFC(const math::BlasT<DeviceContext, T>& blas, const int M,
                     const int N, const int K, const T* A, const T* B, T* C,
                     const T* bias_data = NULL) {
  blas.GEMM(CblasNoTrans, CblasNoTrans, M, N, K, static_cast<T>(1), A, B,
            static_cast<T>(0), C);
  if (bias_data) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#endif
    for (int i = 0; i < M; i++) {
      blas.AXPY(N, static_cast<T>(1), bias_data, C + i * N);
    }
  }
}

T
tensor-tang 已提交
264
template <typename DeviceContext, typename T>
T
tensor-tang 已提交
265
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
266 267
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
268 269 270
    auto* x = ctx.Input<LoDTensor>("X");
    auto* wx = ctx.Input<Tensor>("WeightX");  // x*4D
    auto* wh = ctx.Input<Tensor>("WeightH");  // D*4D
T
tensor-tang 已提交
271 272 273 274
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

T
tensor-tang 已提交
275 276 277 278
    // the result after x*Wx (size: sum_words*4D) or batched_x (size:
    // sum_words*x)
    auto* xx = ctx.Output<LoDTensor>("XX");
    auto* batched_gate = ctx.Output<LoDTensor>("BatchedGate");
T
tensor-tang 已提交
279 280
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
T
tensor-tang 已提交
281 282 283 284 285
    bool is_reverse = ctx.Attr<bool>("is_reverse");

    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_gate_data = batched_gate->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
286 287
    cell_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
288 289 290 291 292
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    auto x_dims = x->dims();
    auto wx_dims = wx->dims();

T
tensor-tang 已提交
293
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
294 295 296 297 298 299 300 301 302 303 304 305
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    // TODO(TJ): op test these two cases
    if (x_dims[1] > wx_dims[1]) {
      SimpleFC<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1], x_data,
                                 wx_data, xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_gate, true, is_reverse);
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
      SimpleFC<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                 xx_data, wx_data, batched_gate_data,
                                 bias->data<T>());
T
tensor-tang 已提交
306 307
    }

T
tensor-tang 已提交
308 309
    int frame_size = static_cast<int>(wx_dims[1] / 4);
    framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
310
    math::LstmMetaValue<T> lstm_value;
T
tensor-tang 已提交
311 312 313 314
    // no peephole
    lstm_value.check_ig = nullptr;
    lstm_value.check_fg = nullptr;
    lstm_value.check_og = nullptr;
T
tensor-tang 已提交
315 316 317 318

    lstm_value.prev_state_value = nullptr;
    Tensor ordered_c0;

T
tensor-tang 已提交
319
    framework::Vector<size_t> order(batched_gate->lod()[2]);
T
tensor-tang 已提交
320 321 322 323 324

    if (cell_t0) {
      // Since the batch computing for LSTM reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
T
tensor-tang 已提交
325 326
      ReorderInitState<DeviceContext, T>(dev_ctx, *cell_t0, order, &ordered_c0,
                                         true);
T
tensor-tang 已提交
327 328 329 330 331 332
      lstm_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
    LoDTensor batch_hidden, batch_cell;
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
T
tensor-tang 已提交
333 334 335
    batch_hidden.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell_pre_act->mutable_data<T>(out_dims, ctx.GetPlace());
T
tensor-tang 已提交
336

T
tensor-tang 已提交
337 338
    auto batch_starts = batched_gate->lod()[0];
    size_t max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
339 340 341 342 343 344 345
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));

T
tensor-tang 已提交
346
    for (size_t n = 0; n < max_seq_len; n++) {
T
tensor-tang 已提交
347 348 349
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

T
tensor-tang 已提交
350
      Tensor gate_t = batched_gate->Slice(bstart, bend);
T
tensor-tang 已提交
351 352 353 354 355 356 357 358 359 360
      Tensor out_t = batch_hidden.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
T
tensor-tang 已提交
361 362
        // TODO(TJ): use gemm directly
        blas.MatMul(pre_hidden_t, false, *wh, false, static_cast<T>(1.0),
T
tensor-tang 已提交
363 364
                    &gate_t, static_cast<T>(1.0));
      } else if (hidden_t0) {
T
tensor-tang 已提交
365
        // TODO(TJ): move h0 outside for
T
tensor-tang 已提交
366 367 368 369 370 371 372 373
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTM reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
        Tensor ordered_h0;
T
tensor-tang 已提交
374
        ReorderInitState<DeviceContext, T>(dev_ctx, *hidden_t0, order,
T
tensor-tang 已提交
375
                                           &ordered_h0, true);
T
tensor-tang 已提交
376 377 378
        // TODO(TJ): use gemm directly
        blas.MatMul(ordered_h0, false, *wh, false, static_cast<T>(1.0), &gate_t,
                    static_cast<T>(1.0));
T
tensor-tang 已提交
379 380 381 382 383 384 385
      }

      lstm_value.gate_value = gate_t.data<T>();
      lstm_value.output_value = out_t.data<T>();
      lstm_value.state_value = cell_t.data<T>();
      lstm_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
T
tensor-tang 已提交
386 387
          dev_ctx, lstm_value, frame_size, cur_batch_size, gate_act, cell_act,
          cand_act);
T
tensor-tang 已提交
388 389 390 391
      lstm_value.prev_state_value = lstm_value.state_value;
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
392
    batch_hidden.set_lod(batched_gate->lod());
T
tensor-tang 已提交
393
    // restore the output hidden in LoDTensor from the batch hidden
T
tensor-tang 已提交
394
    to_seq(dev_ctx, batch_hidden, hidden_out);
T
tensor-tang 已提交
395

T
tensor-tang 已提交
396
    batch_cell.set_lod(batched_gate->lod());
T
tensor-tang 已提交
397
    // restore the output cell state in LoDTensor from the batch cell
T
tensor-tang 已提交
398
    to_seq(dev_ctx, batch_cell, cell_out);
T
tensor-tang 已提交
399 400 401 402 403 404 405
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
406
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
407 408 409
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(
T
tensor-tang 已提交
410 411 412
    fusion_lstm,
    ops::FuisonLSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FuisonLSTMKernel<paddle::platform::CPUDeviceContext, double>);